Woodhead Publishing Series in Electronic and Optical Materials: Number 29

Ultrasonic transducers

Materials and design for sensors, actuators and medical applications

Edited by K. Nakamura

Oxford Cambridge Philadelphia New Delhi

Contents

	Contributor contact details Woodhead Publishing Series in Electronic and Optical Materials Preface	xiii xvii xxi
Part I	Materials and design of ultrasonic transducers	1
1	Piezoelectricity and basic configurations for piezoelectric ultrasonic transducers S. Cochran, University of Dundee, UK	3
1.1 1.2 1.3 1.4 1.5 1.6	Introduction The piezoelectric effect Piezoelectric materials Piezoelectric transducers Summary, future trends and sources of further information References	3 4 13 20 31 33
2	Electromagnetic acoustic transducers G. HÜBSCHEN, Fraunhofer Institute for Non-Destructive Testing (IZFP), Germany	36
2.1 2.2 2.3 2.4 2.5 2.6	Introduction Physical principles Lorentz-force-type transducers Magnetostriction-type transducers Conclusion References	36 36 41 60 66 66
3	Piezoelectric ceramics for transducers K. UCHINO, The Pennsylvania State University, USA and Office of Naval Research – Global, Japan	70
3.1 3.2 3.3	The history of piezoelectrics Piezoelectric materials: present status References	70 88 114 V

vi	Contents
VI	Contenta

4	Thin-film PZT-based transducers M. K. Kurosawa, Tokyo Institute of Technology, Japan	117
4.1	Introduction	117
4.2	PZT deposition using the hydrothermal process	118
4.3	Applications using the bending and longitudinal vibration	
	of the $d_{\rm effect}$	127
4.4	Thickness-mode vibration, $d_{\rm ex}$	140
4.5	Epitaxial film	150
4.6	Conclusions	151
4.7	References	151
1. /		
5	High-Curie-temperature piezoelectric single crystals of the $Pb(In_{1/2}Nb_{1/2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ ternary system Y. YAMASHITA, Toshiba Research Consulting Corporation, Japan and Y. HOSONO, Toshiba Corporation, Japan	154
5.1	Introduction	154
5.2	PIMNT ceramics	157
5.3	PIMNT single crystals grown by the flux method	163
5.4	PIMNT single crystals grown by the Bridgman	
	method	165
5.5	Recent research into PIMNT single crystals and their	
	applications	175
5.6	Future prospects and tasks	177
5.7	Conclusions	179
5.8	References	180
Part II	Modelling and characterisation of ultrasonic transducers	185
6	Modelling ultrasonic-transducer performance: one-dimensional models S. Cochran and C. E. M. Démoré, University of Dundee, UK and C. R. P. COURTNEY, University of Bristol, UK	187
6.1	Introduction	187
6.2	Transducer performance expressed through the	··· - /
	wave equation	188
6.3	Equivalent electrical circuit models	195
6.4	The linear systems model	202
6.5	Examples	205
6.6	Summary, future trends and sources of further	
	information	216
6.7	References	218

7	The boundary-element method applied to micro-acoustic devices: zooming into the	
	near field A. Baghai-Wadii, RMIT University, Australia	220
7.1	Introduction	220
7.2	The acoustic wave equation: shear horizontal vibrations	221
7.3	Construction of infinite-domain Green's functions	224
7.4	Near-field analysis	239
7.5	Normalization of the field variables	249
7.6	Determining the asymptotic expansion terms for $\eta \rightarrow 0$	250
7.7	Future trends	258
7.8	Key references for further reading	260
7.9	Acknowledgements	261
7.10	References	261
8	Electrical evaluation of piezoelectric transducers K. NAKAMURA, Tokyo Institute of Technology, Japan	264
8.1	Introduction	264
8.2	Equivalent electrical circuit	265
8.3	Electrical measurements	267
8.4	Characterization of piezoelectric transducers under	
	high-power operation	271
8.5	Load test	274
8.6	Summary	275
8.7	References	276
9	Laser Doppler vibrometry for measuring vibration	
	in ultrasonic transducers	277
	M. JOHANSMANN and G. WIRTH, Polytec GmbH, Germany	
9.1	Introduction	277
9.2	Laser Doppler vibrometry for non-contact vibration	
	measurements	278
9.3	Characterization of ultrasonic transducers and	
	optimization of ultrasonic tools	286
9.4	Enhanced LDV designs for special measurements	303
9.5	Conclusion and summary	312
9.6	References	312
10	Optical visualization of acoustic fields: the schlieren	
	technique, the Fresnel method and the photoelastic	
	method applied to ultrasonic transducers	314
	K. YAMAMOTO, Kansai University, Japan	
10.1	Introduction	314

viii	Contents	
10.2 10.3 10.4 10.5	Schlieren visualization technique Fresnel visualization method Photoelastic visualization method References	314 320 323 327
Part III	Applications of ultrasonic transducers	329
11	Surface acoustic wave (SAW) devices K. Hashimoto, Chiba University, Japan	331
11.1 11.2 11.3 11.4 11.5 11.6	Introduction Interdigital transducers (IDTs) Transversal SAW filter SAW resonators Conclusions References	331 332 351 362 371 371
12	Airborne ultrasound transducers D. A. HUTCHINS, University of Warwick, UK and A. NEILD, Monash University, Australia	374
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	Introduction Basic design principles Transducer designs for use in air Radiated fields in air Applications Future trends Sources of further information and advice Acknowledgements References	374 375 381 385 392 402 403 403 403
13	Transducers for non-destructive evaluation at high temperatures M. KOBAYASHI and CK. JEN, Industrial Materials Institute, Canada	408
13.1 13.2 13.3 13.4 13.5 13.6	Transducers for non-destructive evaluation at high temperatures Sol-gel composite ultrasonic transducers Structural-health monitoring demonstration Process-monitoring demonstration Conclusions Sources of further information	408 411 422 433 440 441
13.7	References	441

14	Analysis and synthesis of frequency-diverse ultrasonic flaw-detection systems using order statistics and neural network processors J. SANITE and E. ORUKLU, Illinois Institute of Technology, USA	444
14.1	Introduction	444
14.2	Ultrasonic flaw-detection techniques	445
14.3	Neural network detection processor	456
14.4	Flaw-detection performance evaluation	460
14.5	System-on-a-chip implementation – a case study	465
14.6	Future trends	472
14.7	Conclusions	473
14.8	Further information	474
14.9	References	474
15	Power ultrasonics: new technologies and applications for fluid processing	476
	J. A. GALLEGO-JUAREZ, Spanish National Research Council (CSIC), Spain	
15.1	Introduction	476
15.2	New power ultrasonic technologies for fluids and	
	multiphase media	478
15.3	Application of the new power ultrasonic technology	
	to processing	490
15.4	Conclusions	513
15.5	Acknowledgements	514
15.6	References	514
16	Nonlinear acoustics and its application to	
	biomedical ultrasonics	517
	P. A. LEWIN, Drexel University, USA and A. NOWICKI, Polish Academy of Sciences. Poland	
16.1	Introduction	517
16.2	Basic aspects of nonlinear acoustic wave propagation	511
	and associated phenomena	518
16.3	Measurements of and advances in the determination of B/A	519
16.4	Advances in tissue harmonic imaging	523
16.5	Nonlinear acoustics in ultrasound metrology	531
16.6	Nonlinear wave propagation in hydrophone probe	
	calibration	534
16.7	Nonlinear acoustics in therapeutic applications	538
16.8	Conclusions	539
16.9	Acknowledgements	540
16.10	References	540

;

х	Contents	
17	Therapeutic ultrasound with an emphasis on applications to the brain P. D. MOURAD, University of Washington, USA	545
17.1	Introduction and summary	545
17.2	Fundamentals of propagation and absorption of ultrasound	547
17.3 17.4	Acoustic attenuation as absorption plus scattering Physical and chemical processes engendered by	548
	medical ultrasound	549
17.5	Bubble formation and growth	551
17.6	Inertial cavitation and associated material stresses	554
17.7	Mechanical index	554
17.8	Diagnostic ultrasound	555
17.9	I herapeutic ultrasound	560
17.10	into the brain	562
17.11	Neuromodulation by ultrasound	566
17.12	Conclusion	567
17.13	References	568
18	Microscale ultrasonic sensors and actuators A. RAMKUMAR and A. LAL, Cornell University, USA	572
18 .1	Introduction: ultrasonic horn actuators	572
18.2	Advantages of silicon-based technology	574
18.3	Silicon ultrasonic horns	580
18.4	Sensor integration and fabrication of silicon horns	584
18.5	Planar electrode characterization	586
18.0	Plezoresistive strain gauges	592
18.7	Applications: cardiac electronbysiological measurement	597
18.9	Applications: microscale tissue metrology in testicular	002
	sperm extraction (TESE) surgery	606
18.10	Conclusions	614
18.11	References	615
19	Piezoelectric and fibre-optic hydrophones	619
	A. HURRELL, Precision Acoustics Ltd, UK and P. BEARD,	- • -
	University College London, UK	
19.1	Introduction	619
19.2	General hydrophone considerations	620
19.3	Piezoelectric hydrophones	626
19.4 10 5	ribre-optic nydrophones	641
17.5 19.6	Summa y References	671
12.0		0/3

		Contents	xi
20	Ultrasonic motors K. Nakamura, Tokyo Institute of Technology, Japan		677
20.1	Introduction		677
20.2	Standing-wave ultrasonic motors		678
20.3	Traveling-wave ultrasonic motors		694
20.4	Ultrasonic motor performance		700
20.5	Summary and future trends		702
20.6	References		703

Index

705