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Abstract: Cryptococcus neoformans is a major fungal pathogen that infects immunocompromised
people and causes life-threatening meningoencephalitis. C. neoformans does not occur in isolation
either in the environment or in the human host, but is surrounded by other microorganisms. Bacteria
are ubiquitously distributed in nature, including soil, and make up the dominant part of the human
microbiota. Pioneering studies in the 1950s demonstrated antifungal activity of environmental
bacteria against C. neoformans. However, the mechanisms and implications of these interactions
remain largely unknown. Recently, interest in polymicrobial interaction studies has been reignited by
the development of improved sequencing methodologies, and by the realization that such interactions
may have a huge impact on ecology and human health. In this review, we summarize our current
understanding of the interaction of bacteria with C. neoformans.
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1. Introduction

Most microorganisms on earth do not occur in isolation, but interact with other microbes. This
is true for interactions among members of the same kingdom, such as between different species of
bacteria, as well as for mixed populations of multi-kingdom microbial consortia, e.g., interactions
between bacteria and fungi [1,2]. Bacterial interactions with fungal pathogens are not only biologically
interesting but may also provide new opportunities for antifungal therapy. Fortunately, the vast
majority of fungi are harmless for humans [3]. However, a small number of fungi are human pathogens
and can cause life-threatening infections [4]. Some of the predominant fungal pathogens include the
human-associated fungus Candida albicans, and the environmental fungi Cryptococcus neoformans and
Aspergillus fumigatus [5]. Fungal infections are usually very difficult to treat with current antifungal
drugs, and the incidence of worldwide fungal resistance is on the rise [6].

C. neoformans is a common human fungal pathogen, and the yeast is responsible for almost a quarter
million deaths annually [7]. The fungus primarily affects people with impaired immune systems,
especially patients suffering from HIV/AIDS. Indeed, C. neoformans is estimated to be responsible for
a staggering 15% of all AIDS-associated deaths worldwide [7]. Natural habitats for C. neoformans
include soil, trees, and bird excreta [8–10]. C. neoformans cells are thought to be present in different
morphologies in nature. Fungal cells can occur as desiccated yeast cells or as spores, which have the
tendency to be distributed by wind and animals. For example, it has been shown that C. neoformans can
be found attached to the feet and beaks of pigeons [11]. Interestingly, birds are not susceptible to the
fungus. Humans, however, can inhale C. neoformans spores and yeast cells, leading to the development
of pulmonary infections [12]. Such infections of the lung can further develop into life-threatening
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cryptococcal meningitis in a process involving the transition of the fungus from the lung to the brain
via crossing the blood brain barrier.

So far, studies of fungal–bacterial interaction have mainly been performed with C. albicans,
and it was found that these interkingdom interactions can dramatically influence human health and
disease [13–17]. Relatively few studies have addressed interkingdom interactions between C. neoformans
and bacteria. As mentioned, C. neoformans occurs both in the environment, for example in soil, and
inside humans during infection, in comparison to C. albicans—which is obligately associated with
a mammalian host. Therefore, C. neoformans is likely to come into contact and potentially interact
with an enormous number of bacteria in its natural habitats and with the human microbiota during
disease [18,19]. In this review, we provide background context and highlight new studies indicating
that specific bacteria can have dramatic effects on cryptococcal growth and virulence factor expression.
Understanding such interactions may lead to the discovery of novel antifungal drug targets or novel
antifungal drugs.

2. Types of Fungal–Bacterial Interactions

There are several ways that fungi and bacteria can interact with each other. Considering a
bi-microbial interaction between a fungus and a bacterium, the outcome can be negative, positive,
or neutral for both, or for either partner. In total, this results in nine possible interaction outcomes
(Figure 1a). A useful illustrative example of positive and negative interactions comes from the bacterial
pathogen Pseudomonas aeruginosa and C. albicans, which often co-infect patients with cystic fibrosis (CF).
P. aeruginosa forms recalcitrant biofilms with increased antibiotic tolerance in the lungs, and it was
shown that biofilm formation is promoted by C. albicans through ethanol production by the fungus [20].
P. aeruginosa itself stimulates fungal ethanol production by generating redox-active small molecules
termed phenazines. This cyclic relationship was proposed to establish favorable conditions for both
P. aeruginosa and C. albicans to co-infect CF patients [20]. Indeed, co-infection results in a significantly
worse clinical outcome for CF patients compared with infection with P. aeruginosa alone [21]. The
interaction between P. aeruginosa and C. albicans is more complex, however, and can have different
outcomes than those mentioned in the context of CF. In general, pseudomonal phenazines are toxic
to C. albicans at higher concentrations. At lower concentrations, phenazines were demonstrated to
inhibit key C. albicans virulence factors, for example the yeast-to-hypha transition, adhesion to surfaces,
and biofilm formation [22,23]. Conversely, in the context of gastrointestinal infections, C. albicans was
recently shown to produce factors that inhibit P. aeruginosa virulence by suppressing production of the
siderophores pyochelin and pyoverdine [24]. Notably, this process did not impact bacterial growth or
gut colonization.

For C. neoformans, interactions with bacteria could have a positive outcome for the fungus in
the form of enhanced proliferation, or stimulation of protective fungal virulence factors such as
melanin and capsule formation (Figure 1b). On the other hand, bacterial activities that result in
inhibition of these processes may confer negative outcomes for C. neoformans (Figure 1b). Fungal
proliferation is clearly important in competing for limited space and nutrient sources in a given niche.
As virulence factors, melanin and capsule provide readily assayable readouts to observe the impact
of bacteria. Melanin is a dark-brown/black, cell wall-anchored pigment that protects C. neoformans
from multiple stresses in the environment and during host infection [25–28]. Melanin formation is
one of the main cryptococcal virulence factors, and mutants with defects in melanization are usually
attenuated for virulence in vivo [29–31]. The most important virulence factor in C. neoformans, however,
is the polysaccharide capsule [32–34]. Polysaccharide fibers are anchored to the α-1,3-glucan layer
of the cell wall and protect cells from phagocytosis by amoeba in the environment or macrophages
in the human host [12,35]. Moreover, capsule polysaccharide can modulate the human immune
response [36]. Capsule-deficient mutants are usually avirulent or strongly reduced for virulence in
animal models [30,37–39]. Below we discuss the impact of specific bacterial species on cryptococcal
proliferation and virulence factor production.



J. Fungi 2019, 5, 31 3 of 10

J. Fungi 2019, 5, x FOR PEER REVIEW 2 of 10 

 

life-threatening cryptococcal meningitis in a process involving the transition of the fungus from the 
lung to the brain via crossing the blood brain barrier. 

So far, studies of fungal–bacterial interaction have mainly been performed with C. albicans, and 
it was found that these interkingdom interactions can dramatically influence human health and 
disease [13–17]. Relatively few studies have addressed interkingdom interactions between C. 
neoformans and bacteria. As mentioned, C. neoformans occurs both in the environment, for example in 
soil, and inside humans during infection, in comparison to C. albicans—which is obligately 
associated with a mammalian host. Therefore, C. neoformans is likely to come into contact and 
potentially interact with an enormous number of bacteria in its natural habitats and with the human 
microbiota during disease [18,19]. In this review, we provide background context and highlight new 
studies indicating that specific bacteria can have dramatic effects on cryptococcal growth and 
virulence factor expression. Understanding such interactions may lead to the discovery of novel 
antifungal drug targets or novel antifungal drugs. 

2. Types of Fungal–Bacterial Interactions 

There are several ways that fungi and bacteria can interact with each other. Considering a 
bi-microbial interaction between a fungus and a bacterium, the outcome can be negative, positive, or 
neutral for both, or for either partner. In total, this results in nine possible interaction outcomes 
(Figure 1a). A useful illustrative example of positive and negative interactions comes from the 
bacterial pathogen Pseudomonas aeruginosa and C. albicans, which often co-infect patients with cystic 
fibrosis (CF). P. aeruginosa forms recalcitrant biofilms with increased antibiotic tolerance in the lungs, 
and it was shown that biofilm formation is promoted by C. albicans through ethanol production by 
the fungus [20]. P. aeruginosa itself stimulates fungal ethanol production by generating redox-active 
small molecules termed phenazines. This cyclic relationship was proposed to establish favorable 
conditions for both P. aeruginosa and C. albicans to co-infect CF patients [20]. Indeed, co-infection 
results in a significantly worse clinical outcome for CF patients compared with infection with P. 
aeruginosa alone [21]. The interaction between P. aeruginosa and C. albicans is more complex, however, 
and can have different outcomes than those mentioned in the context of CF. In general, 
pseudomonal phenazines are toxic to C. albicans at higher concentrations. At lower concentrations, 
phenazines were demonstrated to inhibit key C. albicans virulence factors, for example the 
yeast-to-hypha transition, adhesion to surfaces, and biofilm formation [22,23]. Conversely, in the 
context of gastrointestinal infections, C. albicans was recently shown to produce factors that inhibit P. 
aeruginosa virulence by suppressing production of the siderophores pyochelin and pyoverdine [24]. 
Notably, this process did not impact bacterial growth or gut colonization. 

 
Figure 1. Types of fungal–bacterial interactions. (a) Possible types of interactions between fungi and 
bacteria, and their respective outcomes. (b) Examples of positive and negative interaction outcomes 
for C. neoformans cells following exposure to bacteria. Bacteria may induce fungal proliferation, or kill 
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Figure 1. Types of fungal–bacterial interactions. (a) Possible types of interactions between fungi and
bacteria, and their respective outcomes. (b) Examples of positive and negative interaction outcomes
for C. neoformans cells following exposure to bacteria. Bacteria may induce fungal proliferation, or
kill fungal cells. Bacteria may also trigger the expression of fungal virulence factors (e.g., formation
of melanin pigment or polysaccharide capsule), or repress formation of these factors. The different
outcomes are color-coded depending on their impact on the fungus, i.e., outcomes likely to be beneficial
to the fungus are boxed in blue, while outcomes likely to be unfavorable are boxed in orange.

3. Interaction of C. neoformans with Bacteria

Cells of C. neoformans can be found in pigeon excreta, suggesting that the pigeon gastrointestinal
tract is at least temporarily colonized with this fungus. Interestingly, pigeons as well as other birds are
not susceptible to cryptococcal disease, and fungal cells are completely cleared from the excreta within 4
weeks [40]. This observation suggests that factors within the gastrointestinal tract may have fungicidal
activity. In an attempt to examine the impact of the natural pigeon gut microbiota, researchers in the
late 1970s isolated bacteria from the intestinal contents of healthy pigeons and studied their impact on
C. neoformans viability [40]. Seven distinct bacterial species were isolated including Bacillus subtilis,
Escherichia coli, Klebsiella aerogenes, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus albus, and
Streptococcus faecalis. Strikingly, a mixture of these seven bacteria completely inhibited growth of a
suspension of C. neoformans cells (Figure 2a) [40]. These results indicated that the bacterial mixture
had potent anticryptococcal activity. Therefore, it is tempting to speculate that, in addition to the
elevated avian body temperature, a specialized avian microbiota may protect birds from infections by
C. neoformans. Indeed, a study in the early 1980s re-analyzed most of the above mentioned bacteria
in individual bacterium–cryptococcal co-cultures, and found that the growth-inhibiting activity was
mainly exerted by P. aeruginosa and B. subtilis [41].

Already in the mid 1950s, it was observed that cultures of the ubiquitous soil bacterium
P. aeruginosa had the capacity to inhibit the growth of C. neoformans by an unknown mechanism [42]. A
follow-up study in the mid 1970s analyzed 44 different P. aeruginosa clinical strains for their individual
potential to inhibit 14 different clinical C. neoformans strains [43]. Strikingly, all pseudomonal strains
inhibited growth of all 14 C. neoformans strains on solid media, although with varying efficiency. The
authors noted that the more mucoid fungal strains had a tendency to display increased sensitivity
towards P. aeruginosa-mediated inhibition [43]. Usually, mucoidy in C. neoformans is indicative of
normal polysaccharide capsule formation, while strains with a dry colony appearance have reduced
capsules [44]. This observation raises the possibility that P. aeruginosa may preferentially target
encapsulated cryptococcal cells. Although unsuccessful in isolating the precise bacterial factor(s)
responsible for the antifungal activity, the authors ruled out an involvement of the pseudomonal
phenazine, pyocyanin [43]. Contrary to the findings in the study from 1975 [43], newer studies
of the interaction between P. aeruginosa and C. neoformans indicate that direct bacterial–fungal
cell-to-cell-contact triggers the production of pyocyanin and other factors to inhibit cryptococcal
growth (Figure 2b) [45]. The differences in both studies regarding the role of pyocyanin may have been
due to differences in the growth media used for cultivation. Indeed, it was shown that the inhibitory
activity towards C. neoformans was fungicidal, and that it was dependent on the pseudomonal cell
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density and relative ratio of fungal and bacterial cells [45]. Since exogenously supplied pyocyanin only
had fungistatic effects on C. neoformans cultures, it was concluded that additional bacterial factors, for
example proteases and rhamnolipids, might also contribute to the antifungal activity [45]. Notably,
C. neoformans did not impact the growth of P. aeruginosa, indicating that the bacteria have antagonistic
activity, while the fungus remains neutral during this interaction [45].
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Similar to P. aeruginosa, S. aureus also displays fungicidal activity towards C. neoformans during 
fungal–bacterial co-culture (Figure 2b) [46]. Again, bacterial growth was not affected by C. 
neoformans, indicating a mono-directional interaction. Interestingly, a control experiment also 

Figure 2. The spectrum of interactions between C. neoformans and bacteria. (a) A mixture of bacteria
isolated from the gastrointestinal tract of healthy pigeons kills C. neoformans. (b) Acinetobacter baumanii
and C. neoformans reciprocally inhibit each other’s growth. Staphylococcus aureus kills C. neoformans by an
unknown mechanism, and P. aeruginosa kills cryptococcal cells via production of pyocyanin and other
factors. (c) A. baumanii induces C. neoformans capsule formation, and S. aureus preferentially attaches to
and kills encapsulated C. neoformans cells. Bacillus safensis inhibits capsule formation via production
of chitinase and other factors. (d) K. aerogenes produces dopamine, and diverse bacteria produce
homogentisic acid (HGA), both of which serve as substrates for cryptococcal melanin biosynthesis.
B. safensis inhibits fungal melanin production via chitinase activity and other factors. (e) Cell wall
peptidoglycan from E. coli and Streptococcus pneumoniae induce C. neoformans titan cell formation.
The murine microbiota induces fungal titanization by an unknown mechanism. The orange colored
arrow-headed and blunt-ended lines indicate inducing and repressive processes, respectively, that
have a negative impact on cryptococcal viability or virulence factor production. The blue colored
arrow-headed lines indicate processes that have a positive influence on the formation of C. neoformans
virulence factors.

The bacterial pathogen Staphylococcus aureus can cause life-threatening infections in humans.
Similar to P. aeruginosa, S. aureus also displays fungicidal activity towards C. neoformans during
fungal–bacterial co-culture (Figure 2b) [46]. Again, bacterial growth was not affected by C. neoformans,
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indicating a mono-directional interaction. Interestingly, a control experiment also revealed that
C. albicans growth and survival was not affected by S. aureus [46]. This points to the possibility of
Cryptococcus-specific proteins or factors targeted by the bacterium. Indeed, S. aureus cells were observed
to preferentially attach to C. neoformans cells that have the capacity to form capsule (Figure 2c). Bacteria
did not attach to an acapsular mutant of C. neoformans [46]. However, since the experiments were not
performed under robust capsule-inducing conditions, it would be interesting to study the interaction
of S. aureus and C. neoformans under conditions that promote capsule biosynthesis. Nevertheless, the
likelihood that S. aureus attaches to capsule polysaccharide is quite high because exogenously added
capsular polysaccharides reduced bacterial binding to and killing of C. neoformans [46].

Recently, the nosocomial bacterial pathogen Acinetobacter baumanii was demonstrated to induce
cryptococcal capsule and biofilm formation during co-cultivation (Figure 2c) [47]. The exact molecular
mechanism of this interaction remains to be determined, however, the authors established that physical
contact was not required, at least for the biofilm-inducing activity. This indicates that A. baumanii likely
secretes specific factors that affect the fungus either at the cell surface or inside the cell. The interaction
between both organisms also resulted in reciprocal killing. Co-incubation experiments revealed that
40–75% of cryptococcal cells were killed by A. baumanii, while ~65% of bacterial cells were killed by
C. neoformans [47]. As noted by other researchers however, A. baumanii is not a common soil bacterium
and it is unclear whether the observed effects have clinical or biological significance [48].

We recently showed that the ubiquitous soil bacterium Bacillus safensis has potent anti-capsular
activity, in part via the action of chitinase activity upon cell-to-cell contact (Figure 2c) [49]. B. safensis is
a Gram-positive, spore-forming bacterium that was first isolated from a Spacecraft Assembly Facility
at the Jet Propulsion Laboratory, USA, and it obtained its name from this location (SAFensis) [50].
B. safensis was also demonstrated to inhibit melanin formation by C. neoformans in a process that relied
in part on chitinase activity (Figure 2d) [49]. Physical contact was required for the anti-virulence factor
activities, and we hypothesized that the bacterial cell may produce cell surface-associated chitinase(s)
upon contact with the fungus, or that contact may trigger close-range secretion of the enzyme [51].
Bacterial proteases and lipopeptides could be other factors involved during the interaction of B. safensis
with C. neoformans. B. safensis specifically inhibited cryptococcal virulence factor production without
significantly affecting overall fungal growth, thus, it is tempting to speculate that this bacterium or
similar Bacilli may have the potential of being developed into antifungal probiotics that exclusively
target virulence factor production by C. neoformans [52,53]. Encouragingly, some Bacillus spp., including
B. subtilis and Bacillus pumilus, the latter being closely related to B. safensis, have recently been
demonstrated to have potent anti-pathogen activities and are already being used as probiotics in certain
countries [54–57].

While B. safensis inhibits cryptococcal melanin production, the opportunistic bacterial pathogen
K. aerogenes was shown to promote melanization of C. neoformans cells during co-cultivation
(Figure 2d) [58]. The basis for the activity was the bacterial production of dopamine that can serve
as a precursor for cryptococcal melanin biosynthesis [58]. Another study established that bacterial
homogentisic acid, which is an intermediate product of tyrosine and phenylalanine catabolism, can
serve as a precursor for melanin formation by bacteria and C. neoformans (Figure 2d) [59].

It was recently shown that the murine microbiota has the capacity to induce titan cell formation
by C. neoformans (Figure 2e) [60]. Titan cells are cryptococcal cells with enormous dimensions and
clinical relevance due to being refractory to phagocytosis by human immune cells [61,62]. The in vivo
significance of the microbiota in promoting titan cell formation was established by the finding that mice
pre-treated with antibiotics prior to infection with C. neoformans had significantly less fungal cells with
the titan morphology compared to antibiotic-free mice [60]. Further analysis of the titan cell-inducing
mechanisms revealed that bacteria such as E. coli, and Streptococcus pneumoniae trigger cryptococcal
titanization via shedding of peptidoglycan, a component of the bacterial cell wall (Figure 2e) [60].
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In summary, these studies demonstrate that different bacteria can have disparate effects on
C. neoformans, either promoting or preventing growth and survival, and either enhancing or blocking
production of virulence factors.

4. Direct Cell-To-Cell Contact during Fungal–Bacterial Encounters

Direct cell-to-cell contact is known to be important for interactions among bacteria. For example,
E. coli has a contact-dependent inhibition system to prevent the growth of competing bacteria [63].
Contact-dependent interactions between bacteria and fungi are far less well understood. Studies on
C. albicans–bacteria co-incubations revealed that several bacteria have the capacity to attach to the
fungal cells via interaction with the fungal surface-localized, hypha-specific and agglutinin-like protein
Als3 [64,65]. Accordingly, P. aeruginosa only attaches to and kills C. albicans hyphal cells. Yeast cells of
C. albicans are not affected by the bacterium [66].

Bacterium-driven interactions that do not require direct cell contact are usually based on the
secretion of specific bacterial molecules that can enter the fungal cell on their own (Figure 3a I). In
contrast, there are several ways that direct cell-to-cell contact may trigger an interaction. First, bacterial
attachment to the fungus may trigger the injection of factors into the fungus (Figure 3a II). Second,
bacterial factors may be produced and impact the fungus at its surface following attachment of bacterial
cells (Figure 3a III). Finally, bacteria may attach to the fungal cell surface and form aggregates and
biofilms (Figure 3a IV). We have recently shown that the soil bacterium B. safensis forms aggregates on
some C. neoformans yeast cells during co-cultivation (Figure 3b) [49]. Moreover, we found that B. safensis
can attach to C. albicans hypha (Figure 3c) [49]. Interestingly, our unpublished results indicate that
B. safensis can also attach to cells of the plant-pathogenic fungus Ustilago maydis (Figure 3d). Therefore,
B. safensis has the capacity to attach to diverse fungi. These results also point to the possibility that the
fungal molecule(s) that the bacteria use for docking may be conserved among these different fungi.
Direct cell contact between bacteria and pathogenic fungi was also observed for the interaction of
C. neoformans with P. aeruginosa and S. aureus [45,46].
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Figure 3. Close-contact interactions of B. safensis with diverse fungal pathogens. (a) Schematic
representation of some fungal-bacterial interactions. (I) Bacteria may secrete certain factors that enter
the fungal cell; (II) bacteria may attach to the fungal cell surface and inject factors into the fungus;
(III) bacteria may attach to the fungal cell and express cell-surface associated factors; and (IV) bacteria
may attach to the fungal cell surface and form cell aggregates and biofilms. Additional mechanisms
may exist. (b) Differential interference contrast (DIC) microscopy image of C. neoformans cells grown
with B. safensis in yeast peptone dextrose medium for 24 h. Note that B. safensis appears to form a
cluster of cells (indicated by a white arrow) on one side of the C. neoformans cell. (c) DIC microscopy
image of C. albicans cells grown with B. safensis under fungal hypha-inducing conditions for 4 h. A
bacterial cell (black arrow) can be seen attached to the fungal filament. (d) DIC microscopy image of
U. maydis cells grown with B. safensis in potato dextrose broth for 24 h. A bacterial cell (black arrow)
has attached to the fungal cell. Scale bars, 2 µm.

In summary, it appears that direct cell-to-cell contact between bacteria and fungi is common during
interactions, and understanding mechanisms of attachment and bacterial factors that are delivered
could potentially lead to the identification of novel antifungal activities.
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5. Open Questions for Further Study

Despite recent insights into some specific C. neoformans–bacterial interactions, many questions
remain to be investigated. Specifically, it will be crucial to identify the molecular mechanisms
underlying the different types of interactions between C. neoformans and bacteria. Some of the open
questions are as follows:

• Which types of bacteria interact with C. neoformans in the environment and in the host?
• How prevalent are cryptococcal–bacterial interactions in nature and in the human host?
• Do polymicrobial interactions between C. neoformans and bacteria lead to emergent properties?
• Do bacteria impact cryptococcal gene expression?
• What effect does C. neoformans have on bacterial interaction partners?
• What are the immunological implications of C. neoformans–bacteria interactions?
• Do interactions, e.g., with the microbiota, impact the clinical outcome of cryptococcosis?
• What are the detailed molecular mechanisms in play during polymicrobial interactions?
• How may the bacterial factors mediating interaction with C. neoformans be identified?
• How do C. neoformans-bacteria interactions evolve?
• Will it be possible to use certain bacteria as probiotics to prevent or treat cryptococcosis?

In order to answer these questions, it will be important to carefully increase the level of
sophistication of fungal-bacterial interaction studies. First, these interactions should be studied
in vitro to potentially uncover mechanisms-of-action, and then the complexity could be increased
by including interactions in the presence of human cell lines (e.g., lung epithelial cells). For a long
time, the human lung has been thought to be a sterile organ. Recent studies however suggest that the
lungs have a distinct microbiota [67,68]. In this context, it is intriguing to consider the possibility that
the lung microbiota may influence the initial pulmonary infection with C. neoformans. Furthermore,
fungal–bacterial interactions may be studied in vivo in animal models leading potentially to the
discovery of novel probiotic bacteria that antagonize the growth or virulence of C. neoformans. Clinical
trials with new probiotics may then represent an important translational outcome. Finally, it should be
kept in mind that, while bi-microbial interaction studies provide a phenomenal opportunity to uncover
potentially new antifungal treatment strategies, ultimately the challenge will be understanding fungal
virulence within the complete consortia of thousands of niche-specific microbes. The establishment of
model polymicrobial communities may help in studying such interactions [69–71].

6. Conclusions

The era of multi-species interaction studies has just begun. New discoveries involving the human
microbiota are made on an almost daily basis, and many of them have potentially huge clinical
implications. Most current research efforts are focused on the impact of the bacteriome on the host,
and it will therefore be important to include fungi into future analyses. Fungal pathogens such as
C. neoformans can cause debilitating infections in humans. Therefore, finding new approaches to tackle
these neglected infections is extremely important, and the study of fungal–bacterial interactions may
open up the way to discover novel antifungal drug targets and new antifungal compounds.
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