Wide - sense nonblocking $\log_d(N, 0, p)$ networks

Maja Rotovnik a Janez Žerovnik a,b

aIMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia

bFME, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia

Key words: switching network, WSNB, strong product, chromatic number

1 Introduction

One of the common architectures that are used in high-speed photonic and electronic switching networks is the $\log_d(N, m, p)$ switching network [1,2]. In this paper we consider a special case of such network, $\log_d(N, 0, p)$ network. Usually, the architecture is accompanied with the control algorithm that works online, i.e. after arrival of a connection request, a path through the network is assigned that connects the input and output of the new connection [3,4]. A switching network is wide sense nonblocking (WSNB) if a new call is always routable as long as all previous requests were routed according to a given routing algorithm [5]. WSNB switching networks were first introduced by Beneš [6] for symmetric 3-stage Clos network. He proved that $C(n, m, 2)$ is WSNB if and only if $m \geq \left\lceil \frac{3n}{2} \right\rceil$.

Here we introduce an auxiliary path graph of switching network such that the number of required planes is the chromatic number of the path graph. From the structure of the path graphs it follows that the minimal p is $d\left\lfloor \frac{n}{d} \right\rfloor - 1$ for every n. Furthermore, our analysis implies that at least p planes are needed regardless of the control algorithm used.

A special case of this result was proved for a particular algorithm and even n (for $d = 2$ in [7] and for general d in [8]). For other cases only bounds in terms of so-called non-blocking conditions were known [5,9,10].

Email addresses: maja.rotovnik@imfm.si (Maja Rotovnik), janez.zerovnik@imfm.uni-lj.si (Janez Žerovnik).

CTW2010, University of Cologne, Germany. May 25-27, 2010
2 Basic definitions and notations

The basic components of switching network are crossbar switches and links which connect switches. The \(\log_d(N, 0, p) \) switching network consist of \(p \) copies of \(\log_d(N, 0, 1) \), called the planes. Each plane contains \(n \cdot d^{n-1} \) switches divided into \(n \) stages. In each stage there are \(d^{n-1} \) switches and each switch has \(d \) inputs and \(d \) outputs. Inputs and outputs are numbered \(0, 1, ..., N - 1 \), \(N = d^n \), from top to bottom, and stages are numbered \(0, 1, ..., n \) from left to right. Examples of \(\log_2(8, 0, 1) \), \(\log_2(16, 0, 1) \), and \(\log_3(27, 0, 1) \) switching networks are given on figures 1, 2, and 3 respectively.

![Diagram](image)

Fig. 1. Example of switching network for \(n = 3 \) and \(d = 2 \).

![Diagram](image)

Fig. 2. Example of switching network for \(n = 4 \) and \(d = 2 \).

Definition: The path graph \(G_P(n, d) \) of a switching network \(\log_d(N = d^n, 0, 1) \) is the graph with a vertex \((i, j) \) for every connection \(\langle i, j \rangle \) in the switching network. Two vertices \((i_1, j_1) \) and \((i_2, j_2) \) are adjacent in \(G_P \) if connections \(\langle i_1, j_1 \rangle \) and \(\langle i_2, j_2 \rangle \) share an interstage link in switching network.

For example in figure 2 the connections \(< 0, 0 >, < 1, 5 > \) share the link between stages 1 and 2, so they are adjacent. The connections \(< 0, 0 >, < 2, 9 > \) are independent because they do not share a link.

Proposition. The path graph \(G_P(n, d) \) is in the worst case isomorphic to
Remark. From details of our construction one can find a formula which assigns
the chromatic number of both factors is equal to their clique number [11].

Hence we have

Recall that the chromatic number of the strong product of graphs is less than
or equal to product of chromatic numbers of factors. Equality holds when
chromatic number of both factors is equal to their clique number [11].

Hence we have

Proof omitted in the abstract.

Proposition. The number of planes \(p \) needed to make \(\log_d(N, 0, p) \) switching
network a WSBN is equal to the chromatic number of the path graph.

\[
p = \chi(G_P(n, d))
\]

(Proof omitted in the abstract.) Idea of proof: by construction of the path
graph, the vertices corresponding to independent connections are independent
and two vertices are connected when the connections share a link. Hence any
subset of connections can be can be divided into \(p = \chi(G_P(n, d)) \) independent
sets and each of them can be realized in a different plane. On the other hand,
it is easy find a set of connections that forms a clique, so it can not be realized
in less than \(p \) planes without blocking.

Remark. From details of our construction one can find a formula which assigns
the color (the plane) on which it should be realized, so there is no complicated
algorithm for assigning the planes needed. Compare to [7].

Fig. 3. Example of switching network for \(n = 3 \) and \(d = 3 \).
Theorem: The $\log_d(N, 0, p)$ switching network, $n = \log_d N$, is WSNB if and only if
\[
p \geq \begin{cases}
d^k, & \text{if } n = 2k, \ k \in \mathbb{N} \\
d^{k-1}, & \text{if } n = 2k - 1, \ k \in \mathbb{N}.
\end{cases}
\]

References

