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ABSTRACT: This paper presents a procedure for standard application of hydrologic ⁄ water quality models. To
date, most hydrologic ⁄ water quality modeling projects and studies have not utilized formal protocols, but rather
have employed ad hoc approaches. The procedure proposed is an adaptation and extension of steps identified
from relevant literature including guidance provided by the U.S. Environmental Protection Agency. This proto-
col provides guidance for establishing written plans prior to conducting modeling efforts. Eleven issues that
should be addressed in model application plans were identified and discussed in the context of hydrologic ⁄ water
quality studies. A graded approach for selection of the level of documentation for each item was suggested. The
creation and use of environmental modeling plans is increasingly important as the results of modeling projects
are used in decision-making processes that have significant implications. Standard modeling application proto-
cols similar to the proposed procedure herein provide modelers with a roadmap to be followed, reduces modelers’
bias, enhances the reproducibility of model application studies, and eventually improves acceptance of modeling
outcomes.
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INTRODUCTION

Planning for modeling projects is just as important
as planning traditional environmental measurements
for data collection projects. If model predictions are to
be used for regulatory purposes, research or design,
then the modeling effort should be scientifically
sound, robust, and defensible. To ensure this and
to lead to confidence in results, the U.S. Environmen-
tal Protection Agency (USEPA, 2002) recommends a

planning process that incorporates the following ele-
ments:

(1) A systematic planning process including identi-
fication of assessments and related performance
criteria.

(2) Peer-reviewed theory and equations.
(3) Carefully designed life-cycle development pro-

cesses that minimize errors.
(4) Documentation of changes from the original

plan.
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(5) Clear documentation of assumptions, theory,
and parameterization that is detailed enough so
others can fully understand the model predic-
tions.

(6) Input data and parameters that are accurate
and appropriate for the application.

(7) Model prediction data that can be used to help
inform decision-making.

A Quality Assurance Project Plan and good project
management in modeling projects are closely linked.
A good Quality Assurance Project Plan documents all
criteria and assumptions in one place for easy review
and reference. The plan can be used to guide project
personnel through the model development or applica-
tion process and helps ensure that choices are consis-
tent with project objectives and requirements.
However, it should be noted that many assumptions
and decisions cannot be made until the modeling
effort is underway. A well prepared plan can be help-
ful in providing guidance in such situations. Assump-
tions and decisions made during the modeling process
should be documented.

Quality assurance (QA) in hydrologic modeling is
the procedural and operational framework put in place
by the organization managing the modeling study to
ensure adequate execution of all project tasks, and to
ensure that all modeling-based analyses are verifiable
and defensible (Taylor, 1985). The two major elements
of QA are quality control (QC) and quality assessment.
QC addresses the procedures that ensure the quality
of the final product. The procedures include: (1) the
use of appropriate methodology in developing and
applying computer models; (2) suitable verification,
calibration, and validation procedures; and (3) proper
use of the methods and model. Quality assessment is
applied to monitor the QC procedures (van der Heijde,
1987).

Use of a modeling protocol provides several poten-
tial benefits to projects that include a significant
modeling component. These include: (1) reduces
potential modeler bias, (2) provides a roadmap to be
followed, (3) allows others to assess decisions made
in modeling the system of interest, (4) allows others
to repeat the study, and (5) improves acceptance of
model results.

A modeling protocol, preferably written, should be
established prior to conducting a modeling study. To
date, most hydrologic ⁄ water quality modeling projects
and studies have not utilized formal modeling proto-
cols, but rather ad hoc approaches are typically
employed. The goal of this paper is to define the con-
tent of a modeling protocol or a modeling QA plan
that can be used to help hydrologic ⁄ water quality
modelers establish such protocols for their modeling
projects.

LITERATURE REVIEW

In following the scientific method, steps should be
taken to minimize the potential influence of scientists’
possible bias. The use of a modeling protocol or a QA
plan in modeling projects can provide the documenta-
tion needed to assess the project and can be helpful in
reducing potential bias. By definition, the scientific
method is impartial and the results from the applica-
tion of the scientific method must be reproducible.
Therefore, the modeling protocol and associated docu-
mentation must provide enough detail to allow the
modeling project to be repeated. It should be noted
that models are not hypotheses, but are simply tools
that are used to evaluate a hypothesis. As applied to
hydrologic modeling, the steps in the scientific method
may be given as follows:

(1) Based on existing theory and data, develop a
hypothesis that is consistent with the current
understanding of the system being modeled.

(2) Based on the hypothesis, make predictions by
applying an appropriate hydrologic model.

(3) Test the hypothesis by comparing model predic-
tions with observed data.

(4) Accept or reject the hypothesis based on appro-
priate criteria.

(5) If needed, modify the hypothesis and repeat
Steps 2-5.

Refsgaard (1997) defined a modeling protocol as
depicted in Figure 1. Refsgaard makes a distinction
between a model and a model code; a model is any
hydrologic model established for a particular
watershed. Others might refer to Refsgaard’s defini-
tion of a model as a model ‘‘setup’’ or a ‘‘parameter-
ized’’ model. Refsgaard (1997) defined a model code
as a generalized software package, which without
changes, can be used to establish a model with the
same basic types of equations (but allowing diffe-
rent parameter values) for different watersheds.
Refsgaard (1997) defined model validation as the
process of demonstrating that a given site-specific
model is capable of making ‘‘sufficiently accurate’’
predictions, where ‘‘sufficiently accurate’’ will vary
by application and project needs. A model is consid-
ered validated if its accuracy and predictive capabi-
lity in the validation period have been proven to lie
within acceptable limits. Again, acceptable limits
will vary by application and project requirements.
Interestingly, Refsgaard (1997) does not include a
model sensitivity analysis in his steps. Sensitivity
analyses, discussed in more detail later in the paper,
can be helpful for a variety of purposes in modeling
projects.
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Developing efficient and reliable hydrologic ⁄ water
quality models and applying them requires numer-
ous steps, each of which should be taken conscien-
tiously and reviewed carefully. Taking a systematic,
well-defined and controlled approach to all steps of
the model development and application process is
essential for successful model implementation. QA
provides the mechanisms and framework to ensure
that decisions made during this process are based
on the best available data and analyses.

USEPA Quality Assurance

The USEPA uses the Quality Assurance Project
Plan to help project managers and planners docu-
ment the type and quality of data and information

needed for making environmental decisions. The
USEPA (2002) has developed a document, Guidance
for Quality Assurance Project Plans for Modeling
(EPA QA ⁄ G-5 M), to provide recommendations on
how to develop a Quality Assurance Project Plan for
projects involving modeling (e.g., model development,
model application, as well as large projects with a
modeling component). A ‘‘model’’ is defined by USEPA
as something that creates a prediction. The guidance
regarding modeling is based on recommendations and
policies from USEPA Quality Assurance Project Plan
protocols, but is written specifically for modeling pro-
jects. However, modeling projects have different QA
concerns than traditional environmental monitoring
data collection projects. The structure for the Quality
Assurance Project Plan for modeling is consistent
with the EPA Requirements for Quality Assurance
Project Plans (QA ⁄ R-5) (USEPA, 2001) and EPA
Guidance for Quality Assurance Project Plans (QA ⁄
G-5) (USEPA, 1998), though for modeling not all
elements are included because not all are relevant.

The USEPA Quality System defined in USEPA
Order 5360.1 A2 (USEPA, 2000), Policy and Program
Requirements for the Mandatory Agency-Wide Quality
System, includes environmental data produced from
models. Environmental data includes any measure-
ments or information that describes environmental
processes, location, or conditions, ecological or health
effects and consequences, or the performance of envi-
ronmental technology. As defined by USEPA, environ-
mental data includes information collected directly
from measurements, produced from models, or com-
piled from other sources, such as databases or litera-
ture. The USEPA Quality System is based on the
American National Standard ANSI ⁄ ASQC E4-1994.

Graded Approach to QA Project Plans

USEPA defines the graded approach as ‘‘the pro-
cess of basing the level of application of managerial
controls applied to an item or work according to the
intended use of the results and degree of confidence
needed in the quality of the results’’ (USEPA, 1998).
This allows the application of QA and QC activities to
be adapted to meet project specific needs. Models that
provide an initial ‘‘ballpark’’ estimate or nonregulatory
priorities, for example, would likely not require the
same level of QA and planning as would models that
will be used to set regulatory requirements. However,
USEPA provides no explicit categorizations or other
specific guidelines for applying the graded approach
(USEPA, 2002).

In applying the graded approach, USEPA suggests
two aspects that are important for defining the level
of QA that a modeling project needs: (1) intended use
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FIGURE 1. A Hydrological Model
Protocol as Proposed by Refsgaard (1997).

A HYDROLOGIC ⁄ WATER QUALITY MODEL APPLICATION PROTOCOL

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 1225 JAWRA



of the model and (2) the project scope and magnitude
(USEPA, 2002). The intended use of the model is a
determining factor because it is an indication of the
potential consequences or impacts that might occur
because of the QC problems. For example, higher
standards might be set for projects that involve
potentially large consequences, such as Congressional
testimony, development of new laws and regulations,
or the support of litigation. More modest levels of
defensibility and rigor would often be acceptable for
data used for technology assessment or ‘‘proof of prin-
ciple,’’ where no litigation or regulatory action are
expected. Still lower levels of defensibility would likely
apply to basic exploratory research requiring extre-
mely fast turnaround, or high flexibility and adaptabil-
ity. In such cases, the work may have to be replicated
under more stringent controls or the results carefully
reviewed prior to publication. The USEPA (2002) sug-
gests peer review may be substituted, to some extent,
for the level of QA. By analyzing the end-use needs,
appropriate QA criteria can be established to guide the
program or project. The examples presented are for
illustration only, and the degree of rigor needed for
any particular project should be determined based on
an evaluation of the project needs and resources.

Other aspects of the QA effort can be established
by considering the scope and magnitude of the pro-
ject. The scope of the model development and applica-
tion determines the complexity of the project; more
complex models or modeling projects likely need more
QA effort. The magnitude of the project defines the
resources at risk if quality problems lead to rework
and delays.

The QA Project Plan Elements for a Model
Application Project

The USEPA (2002) defined the following nine
model application tasks and mapped them into
Quality Assurance Project Plan elements: (1) needs
assessment; (2) purpose, objectives, and output speci-
fications; (3) define quality objectives, desired perfor-
mance criteria, and documentation needs for model
output; (4) select the most appropriate model; (5) data
development, model parameterization, and model cal-
ibration; (6) determine whether data, models, and
parameters for the application meet desired perfor-
mance criteria; (7) run the computer code; (8) model
output testing and peer review; and (9) summarize
results and document. Further details on how these
modeling tasks fit within a potential modeling QA
plan are described in detail in Guidance for Quality
Assurance Project Plans for Modeling (USEPA, 2002).

In this paper, we develop a standard protocol for
conducting modeling efforts with an emphasis on

hydrologic ⁄ water quality modeling. To this end, the
work of USEPA (2002) and other relevant literature
were reviewed to arrive at a preliminary list of rec-
ommended steps in conducting modeling studies.
These steps were further extended based on the
authors’ experience to include issues, such as repre-
sentation of nonpoint source (NPS) best management
practices (BMPs). A detailed description of the pro-
posed steps follows.

MODEL APPLICATION PROTOCOL STEPS

A hydrologic ⁄ water quality model application pro-
tocol is proposed based on the authors’ experiences
and review of the literature, including the USEPA
(2002) Guidance for Quality Assurance Project Plans
for Modeling document. The authors recognize that a
‘‘graded’’ approach in implementing a modeling proto-
col will be required, and thus not all modeling QA
plans will include all sections or issues suggested.
Further, the level of detail in such plans will vary
greatly depending on the purpose of the model appli-
cation project. The USEPA (2002) suggests that a
graded approach can be used to define the level of
QA effort that a modeling project needs based on the
intended use of the model and the project scope and
magnitude (Table 1).

The following items or sections should be included
in a hydrologic ⁄ water quality modeling protocol:
(1) problem definition ⁄ background; (2) model applica-
tion goals, objectives, and hypothesis; (3) model selec-
tion; (4) model sensitivity analysis; (5) available data;
(6) data to be collected; (7) model representation
issues – data, BMPs, etc.; (8) model calibration; (9)
model validation; (10) model scenario prediction; and
(11) results interpretation ⁄ hypothesis testing.

The proposed modeling protocol steps may be itera-
tive. For example, the scientific literature and a preli-
minary sensitivity analysis using general data may
initially be used to identify the model parameters
that are the most sensitive. A more comprehensive
sensitivity analysis assessment may be performed
later once more detailed location specific data have
been collected or obtained.

Decisions made throughout the modeling effort and
the rationale for these decisions should be docu-
mented. In most instances, it will be necessary to
make various assumptions and decisions throughout
the modeling project. Many of these assumptions are
best made during the modeling project rather than
before the modeling starts, as information from prior
steps may impact decisions. The amount of documen-
tation that should be created depends on the project
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goals and the consequences of decisions that will be
made as a result of the project findings. Each of the
modeling protocol steps is discussed in more detail in
the sections that follow.

Item 1. Problem Definition ⁄ Background

Background information and preliminary data for
the study area should be obtained to help initially
define the overall problem that will be addressed by
the study. The background information and data col-
lected in this step will be useful to determine whether
modeling will be necessary, assist in defining the mod-
eling objectives (if modeling is required) and to select
the model or models to be used. More detailed objec-
tives or hypotheses to be examined within the project
are defined in the subsequent step. This initial step is
similar to the initial observation phase commonly
employed within the scientific method.

Questions that may be addressed when defining
the problem include the following:

(1) What is the specific problem?
(2) What are the overall goals and objectives of this

project that will address this problem?
(3) Why should a modeling approach be used to

address the problem?
(4) How will modeling of the problem help to

address the overall goals of the project?

It is also important to place the problem in context
to provide a sense of the project’s purpose relative
to other project and program phases and initia-
tives. Questions that might be addressed include the
following:

(1) What information, previous work, or previous
data may currently exist that this project can
use?

(2) Given that the problem is best solved by a mod-
eling approach, what models currently exist (if
any) that can be used to achieve this project’s
goals and objectives?

(3) What are the advantages and disadvantages of
using these models?

The presentation of background information may
also include a discussion of initial ideas or potential
approaches for model application.

Item 2. Model Application Goals, Objectives, and
Hypothesis

The specific objectives and ⁄ or hypotheses to be
accomplished or tested by the modeling effort are
defined based on the background information and
data collected in the first step. The objectives or
hypotheses should be stated in a manner that
they can be tested or evaluated using the model
predictions.

In setting the objectives or hypotheses to be tested,
one should keep in mind that models are typically
more accurate when making relative comparisons
rather than making absolute predictions. Thus, an
objective or hypothesis might be written to compare
expected pollutant losses for different tillage systems
rather than examining whether a particular tillage
system results in pollutant losses below a given mag-
nitude. Model calibration can help improve the accu-
racy of absolute predictions, but adequate data for
calibration that represent the range of conditions of
interest for the location of interest are not always
available.

A summary of the work to be performed and the
‘‘products’’ to be created by the model application
effort should be identified. These will be described in
more detail in subsequent sections.

TABLE 1. Examples of Modeling Projects With Differing Intended Uses (adapted from USEPA, 2002).

Purpose for Obtaining Model-Generated
Information (intended use) Typical QA Issues Level of QA

Regulatory compliance
Litigation
Congressional testimony

Legal defensibility of data sources
Compliance with laws and regulatory mandates applicable
to data gathering

Regulatory development
State Implementation Plan (SIP) attainment
Verification of model

Compliance with regulatory guidelines
Existing data obtained under suitable QA program
Audits and data reviews

Trends monitoring (nonregulatory)
Technical development
‘‘Proof of principle’’

Use of accepted data-gathering methods
Use of widely accepted models
Audit and data reviews

Basic research
Bench-scale testing

QA planning and documentation at the facility level
Peer review of novel theories and methodology

m
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Item 3. Model Selection

An appropriate model should be selected based on
(1) the project goals, objectives or hypotheses; (2) how
model results will be used; (3) the characteristics
of the hydrologic ⁄ water quality system that are
important to the objectives or hypotheses; and
(4) various other factors including: (a) appropriate
level of detail (space and time); (b) important chemi-
cal, physical, and biological processes are included;
(c) calibration requirements; (d) data requirements
and availability; (e) previous applications of the model
and acceptance in the scientific, regulatory, and
stakeholder communities; (f) ease of use; (g)
sensitivity to processes of interest; and (h) Available
resources (e.g. modeler expertise, model technical
support) and time.

Item 4. Model Sensitivity Analysis

A model sensitivity analysis can be helpful in
understanding which model inputs are most impor-
tant or sensitive and in understanding potential limi-
tations of the model. Additional care should be taken
when estimating model parameters that are the most
sensitive. Data collection efforts that support the
modeling study may focus on obtaining better data
for the most sensitive parameters.

The sensitivity analysis can also identify potential
limitations of the model. If a model is not sensitive to
parameters that are to be varied in testing the pro-
ject objectives or hypotheses, a different model may
need to be selected. Models are abstractions of the
systems they simulate and therefore typically repre-
sent system components with varying levels of detail.
For example, the scientific literature may indicate
that differences in tillage practices influence pesticide
losses in surface runoff. In such a case, the use of a
model that is not sensitive to tillage to examine the
impact of switching from conventional tillage to con-
servation tillage on pesticide losses in surface runoff
is likely inappropriate.

The literature and model documentation are often
excellent sources of information on model sensitivity.
For example, Muttiah and Wurbs (2002) identified the
sensitivity of Soil and Water Assessment Tool (SWAT)
to various parameters. However, it may be necessary
to conduct a sensitivity analysis for the study
watershed if its conditions are significantly different
than those for model sensitivity analyses reported in
the literature, as model sensitivity may be specific to
the model setup. Thus, limited data for parameteriz-
ing the model may need to be collected prior to
conducting a sensitivity analysis. Generally, the
sensitivity analysis should be completed using

an uncalibrated model setup, as the sensitive para-
meters and those with the greatest uncertainty are
typically used for model calibration. For example,
Spruill et al. (2000) conducted a SWAT sensitivity
analysis to evaluate parameters that were thought
to influence stream discharge predictions. During
calibration, the average absolute deviation between
observed and simulated streamflows was minimized
and used to identify optimum values or ranges for
each parameter.

Item 5. Available Data

The goal of this step is to select the most appropri-
ate data for the modeling effort. Data available for
the modeling effort will likely come from numerous
sources. An assessment of available data, its quality,
and the time period it covers should be made. The
amount of data available for a watershed can vary
greatly, as can the quality of the data. For example,
flow and water quality data may be available for
1983 through 1988, while land use data might have
been developed for conditions in 1995. This may
result in a misrepresentation of the land uses that
were present during the observed flow and water
quality data period, especially for areas experiencing
rapid urbanization. In other instances, differences in
data collected at different dates may be negligible.
For example, soil property data used in modeling
runoff from a watershed would not typically change
significantly over time, even over periods of tens of
years. In instances where data, such as land use,
may have changed significantly, it may be necessary
to estimate data for the period of interest by interpo-
lating between datasets for different time periods or
by adjusting the data from the available time period
using other sources of data and information.

The USEPA (2002) indicates that a Quality Assur-
ance Project Plan for modeling should address the fol-
lowing issues regarding information on how nondirect
measurements (data and other information that have
been previously collected or generated under some
effort outside the specific project being addressed by
the Quality Assurance Project Plan) are acquired and
used in the project:

(1) The need and intended use of each type of data
or information to be acquired;

(2) How the data will be identified or acquired, and
expected sources of these data;

(3) The method of determining the underlying qual-
ity of the data;

(4) The criteria established for determining
whether the level of quality for a given set of
data is acceptable for use in the project.
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Water quality and runoff data for the study
watershed may be available from federal, state or
local government agencies. For example, the U.S.
Geological Survey is often an excellent source of
streamflow data and the USEPA STORET database
may provide useful water quality data. Datasets may
also be available from past studies, and often are doc-
umented in project reports. In many instances, these
data will not be identified by simply conducting a lit-
erature search; rather contacts with local universi-
ties, state and local agencies, and local watershed
groups will likely be necessary.

Well documented and widely used datasets, such
as soil properties from the U.S. Department of Agri-
culture Natural Resources Conservation Service,
often have well understood properties and degree of
uncertainty. It is useful to understand this degree of
uncertainty, the assumptions in the data and how
these will likely impact the model results. Spatial or
geographic information systems (GIS) data may be
available from federal, state and local government
agencies. Increasingly, county and local governments
are developing detailed spatial datasets. For example,
many county governments with urban areas have
developed detailed elevation datasets that provide
more detail than state and national elevation data-
sets. Spatial data from these sources should have
metadata available that describe the accuracy and
other properties of the data that will be helpful in
understanding the data quality and limitations.

Remotely sensed datasets from satellites and aerial
photography can potentially provide land use and
other data needed in hydrologic ⁄ water quality model-
ing studies. In addition, archived satellite data and
aerial photography may be useful in creating land
use information for the past. Remotely sensed data-
sets will require interpretation to create the land use
or other data that are needed. Accuracy assessments
of the interpreted results should be performed to pro-
vide information concerning the quality of the land
use products created.

The scientific literature may contain some informa-
tion about the study area. Project reports, however,
are more likely to contain the detailed data typically
required for a model application project. Scientific
papers may also provide insight into transformation of
various data into the data or parameters required by
the model. In most cases, these data must be trans-
formed into values and formats required by the model.

After identifying the data available and its various
properties, including quality and temporal aspects,
an assessment of the suitability of the data for use in
the model that has been selected must be made. The
model data requirements and the sensitivity of the
model to various parameters should be considered
when evaluating and selecting the data to use. The

rationale for the data selected for use in the model
should be well documented, as should any required
data transformation.

The scientific literature contains numerous studies
on the impacts that various data sources and
data errors can have on model results. For example,
Chaubey et al. (1999) explored the assumption of spa-
tial homogeneity of rainfall when parameterizing
models and concluded large uncertainty in estimated
model parameters can be expected if detailed varia-
tions in the input rainfall are not considered. Nan-
dakumar and Mein (1997) examined the levels of
uncertainty in rainfall-runoff model predictions as a
result of errors in hydrological and climatic data, and
considered the implications for prediction of the
hydrologic effect of landuse changes. Studies, such
as these highlight the importance of understanding
the consequences of the data used in the project on
the model results and their interpretation.

Item 6. Data to Be Collected

Based on the project objectives and hypotheses,
available data and model sensitivity should be consid-
ered in deciding what, if any, additional data should
be collected. After assessing these issues, the modeler
may conclude that additional data should be collected.
Following calibration or validation, the modeler may
also decide that additional data should be collected in
an attempt to improve model performance. The collec-
tion of additional data can be expensive, as well as
require a significant amount of time. An appropriate
QA plan for the collection of additional data should be
prepared and followed (USEPA, 1998).

Item 7. Model Representation Issues – Data, Best
Management Practices, etc.

Models are abstractions of the systems they are
simulating. Therefore, the modeler will be required to
make decisions on how to represent the various com-
ponents of the system being modeled. This may
include decisions on representation of components
within the model and in the transformation of avail-
able data into the formats needed by the model.
These decisions should be documented. The expected
effect of these assumptions on the results, relative to
alternative assumptions that could have been made
should also be documented.

One of the data representation issues typically
faced is related to pollutant sources. It is typically
impossible to include all pollutant sources in the
modeling effort. For example, if the amount of phos-
phorus leaving a watershed is of interest, the modeler
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may decide not to include phosphorus losses from
septic systems, if they are small relative to other
sources. Criteria should be established to determine
which pollutant sources to include in the model
and ⁄ or overall analysis. A simple mass balance for
water and pollutants of interest may be helpful to
identify the most important components of the
hydrologic cycle and system to model and the most
important sources of pollutants to consider. Another
option is to use the selected model to perform a sim-
ple preliminary model simulation using limited data.
Based on such a model, criteria to exclude pollutant
sources that represent less than 5% (or other levels
deemed appropriate) of the pollutant might be estab-
lished. It should be noted, however, that pollutant
sources less than this threshold may be included if
these data are readily available and easy to incor-
porate into the model. When potential pollutant
sources are not incorporated into the model, care in
the interpretation of the final model results is
required.

The representation of BMPs within the model may
not be well defined. Model documentation and the sci-
entific literature can often provide guidance in BMP
representation (Bracmort et al., 2006). However, in
most instances, these sources do not fully describe
how a specific BMP, such as a grassed waterway,
should be represented within a particular model;
rather the modeler must exercise judgment in the
BMP representation decision. Therefore, the modeler
will need to determine how BMPs will be represented
in the application of a model to a given location.

The accuracy of hydrologic ⁄ water quality models
also depends in part on how well model input param-
eters describe the relevant characteristics of the
watershed. Data that are obtained for a watershed
will typically require some transformation and inter-
pretation to create the inputs required by the model.
For example, soil properties in the SSURGO database
are often reported with a range of values, while the
model will require a single value for each soil prop-
erty. The model documentation and scientific litera-
ture can often provide guidance in transforming
commonly available data into the inputs required by
the model. These data were used and the decisions
made in data transformations should be documented.

Input parameter aggregation may have a substan-
tial impact on model output. For example, FitzHugh
and Mackay (2000) used SWAT to determine how the
size or number of subwatersheds used to partition
the watershed affect model output and the processes
responsible for model behavior. Mankin et al. (2002)
explored the errors introduced when translating GIS
data into model-input data. Watershed modelers
using GIS data should be aware of the issues related
to appropriate grid cell sizes, generation of land-

management practice GIS coverages, accuracy of GIS
data, and accuracy of interface algorithms.

Refsgaard and Storm (1996) indicated that a rigor-
ous model parameterization procedure is crucial to
avoid methodological problems in subsequent phases
of model calibration and validation. They suggest the
following points are important to consider in model
parameterization:

(1) Parameter classes (soil types, vegetation types,
etc.) should be selected so it is easy, in an objec-
tive way, to associate parameter values. Thus,
when possible parameter values in the classes
should be determined based on available field
data.

(2) Determine which parameters can be assessed
from field data or the literature and which will
require calibration. For parameters subject to
calibration, the physically acceptable intervals
for the parameter values should be estimated
and documented.

(3) The number of calibration parameters should be
minimized both from practical and methodolo-
gical points of view. Fixing a pattern for a
spatially varying parameter but allowing its
value to be modified uniformly throughout the
watershed can help minimize the number of
calibrated parameters.

Item 8. Model Calibration

The USEPA (2002) indicates that if no nationally
recognized calibration standards exist, the basis for
the calibration should be documented. Quality Assur-
ance Project Plan guidance indicates that calibration
for data collection efforts address calibration of the
analytical instruments that will be utilized to gener-
ate analytical data. In modeling projects, by analogy,
the ‘‘instrument’’ is the predictive tool (the model)
that is to be applied (USEPA, 2002). All models, by
definition, are a simplification of the processes they
are intended to represent. When formulating the
mathematical representations of these processes,
there are relationships and parameters that need to
be defined. Estimating parameters for these relation-
ships is called calibration. Some model parameters
may need to be estimated for every application of the
model using site-specific data. Similar to an analyti-
cal instrument, models are calibrated by comparing
the predictions (output) for a given set of assumed
conditions to observed data for the same conditions.
This comparison allows the modeler to evaluate
whether the model and its parameters reasonably
represent the environment of interest. Statistical
methods typically applied when performing model
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calibrations include regression analyses and good-
ness-of-fit methods. An acceptable level of model per-
formance should be defined prior to the initiation of
model calibration. The details of the model calibration
procedure, including statistical analyses that are
involved, should be documented.

Calibration Procedures

Model calibration is often important in hydrologic
modeling studies, as uncertainty in model predic-
tions can be reduced if models are properly cali-
brated. Factors contributing to difficulties in model
calibration include calibration data with limited
metadata, data with measurement errors, and spa-
tial variability of rainfall or watershed properties
poorly represented by point measurements. Model
calibration can be done manually or by a combina-
tion of manual and automatic procedures. Manual
calibration can be subjective and time-consuming
(Eckhardt and Arnold, 2001). Initial values can be
assigned to parameters, which are then optimized
by an automatic procedure (Gan et al., 1997).
Chanasyk et al. (2002) calibrated SWAT until the
predicted and observed results were visibly close.
Many studies use comparable ad hoc approaches in
calibration. However, approaches that use only
visual comparison should be avoided. One of the
advantages of an automated approach to calibration
is that it uses a systematic approach in adjusting
the model parameters, thereby removing potential
modeler bias. With an ad hoc calibration approach,
the modeler could potentially adjust model parame-
ters during calibration that would create a model
setup or parameterization that would be more likely
to provide desired results when testing the project
objectives or hypotheses.

Santhi et al. (2001a) presented a flow chart with
the decision criteria used during the calibration of
SWAT. This flowchart has been adapted by Arabi
et al. (2004) and others for calibration of SWAT, and
an adapted version is presented in Figure 2. In some
instances, this approach is too rigid to be strictly fol-
lowed because of the interactions between model
parameters, and thus the modeler may need to devi-
ate from strictly following such an approach.

The approach that will be followed in calibrating
the model should be identified prior to beginning cali-
bration. Performance criteria should also be estab-
lished prior to beginning model calibration so that
the modeler knows when the model has been success-
fully calibrated. The scientific literature can often
provide an idea of the likely performance of the model
following calibration. Statistical measures can be
used to identify performance criteria for determining

whether the model has been calibrated successfully.
For some efforts, an ad hoc calibration approach may
be acceptable, while in other instances it will be
desirable to have a specific calibration protocol.

For projects supporting regulatory decision-making,
the USEPA (2002) suggests the level of detail on
model calibration in the Quality Assurance Project
Plan should be sufficient to allow another modeler to
duplicate the calibration method, if the modeler is
given access to the model and to the data being used
in the calibration process. For other projects (e.g.,
some basic research projects), it may be acceptable to
provide less detail on this issue for the Quality Assur-
ance Project Plan. In some instances, projects may
use procedures that are somewhat different from
standard calibration techniques, such as ‘‘benchmark-
ing’’ procedures, and therefore the level of detail may
differ from what is generally portrayed for calibration.

Examples of features that the model calibration
portion of the Quality Assurance Project Plan may
address include the following:

(1) Objectives of model calibration activities, includ-
ing acceptance criteria;

(2) Details on the model calibration procedure;
(3) Method of acquiring the input data;
(4) Types of output generated during model calibra-

tion;
(5) Method of assessing the goodness-of-fit of the

model calibration equation to calibration data;
(6) Method of quantifying variability and uncer-

tainty in the model calibration results; and
(7) Corrective action to be taken if acceptance crite-

ria are not met.

The calibration plan should identify the parame-
ters that will be adjusted, the order in which they
will be adjusted, and ranges in which the adjusted
parameters must fall. The ranges of parameters
used in calibration and the calibration results
obtained should be documented during calibration.

Not all models must be calibrated prior to using
the model to test the project objectives or hypotheses.
However, in most cases, calibration of the model for
the study watershed(s) conditions can reduce the
uncertainty in model predictions. If models are not
calibrated, they should still be validated for the study
watershed if data are available.

For hydrologic ⁄ water quality models, the hydro-
logic components are usually calibrated first. In the
calibration of the hydrologic components of the model,
it may be necessary to separate streamflow into
direct or surface runoff and base flow. In balancing
surface runoff and base flow volumes for a system of
interest, other components associated with the hydro-
logic component could be ultimately balanced. The
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model is typically calibrated first to obtain acceptable
performance in the hydrologic components, then for
sediment, and finally for nutrients, pesticides, bacte-
ria, or other constituents.

Calibration Data

Data that will be used for calibration should be
identified. One common method is to split observed
data into one dataset for calibration and one for
validation. It is important that the calibration and
validation datasets each have observed data of
approximately the same magnitudes. For example,

both calibration and validation datasets should have
periods with high and low flows in order to increase
the robustness of the model.

Yapo et al. (1996) used varying lengths of calibra-
tion data and found that approximately eight years of
data were needed to obtain calibrations that were
insensitive to the calibration period selected for their
watershed. Gan et al. (1997) indicated that ideally,
calibration should use three to five years of data that
include average, wet, and dry years so that the data
encompass a sufficient range of hydrologic events to
activate all the model components during calibration.
However, the required amount of calibration data is
project specific.

FIGURE 2. Example SWAT Calibration Flowchart (adapted from Santhi et al., 2001a).
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Calibration Statistics

The goodness-of-fit statistics to be used in
describing the model’s performance relative to the
observed data should be selected prior to calibration
and validation. The American Society of Civil Engi-
neers (ASCE) Task Committee (1993) recommended
graphical and statistical methods useful for evaluat-
ing model performance. In most instances, both
visual comparisons of predicted and observed data,
as well as goodness-of-fit statistics, should be used.
Plotting of predicted results and observed results
along with the 1:1 line can be helpful in identifying
model bias. The percent deviation of predicted val-
ues from observed values is one numerical good-
ness-of-fit criterion. A second basic goodness-of-fit
criterion recommended by the ASCE Task Commit-
tee (1993) is the Nash-Sutcliffe coefficient or coeffi-
cient of simulation efficiency. Legates and McCabe
(1999) evaluated various goodness-of-fit measures
for hydrologic model validation and suggested that
correlation and correlation-based measures (e.g., the
coefficient of determination) are oversensitive to
extreme values and are insensitive to additive and
proportional differences between model estimates and
observed values. Thus, correlation-based measures
can indicate that a model is a good predictor, even
when it is not. Legates and McCabe (1999) concluded
that measures, such as the Nash-Sutcliffe coefficient
of efficiency and the index of agreement are better
measures for hydrologic model assessment than corre-
lation-based measures. Legates and McCabe (1999)
suggested a modified Nash-Sutcliffe coefficient that is
less sensitive to extreme values may be appropriate
in some instances. They also suggested additional
evaluation measures, such as summary statistics and
absolute error measures (observed and modeled
means and standard deviations, mean absolute error
and root mean square error) should be reported for
model results.

There are no standards or a range of values for
goodness-of-fit statistical parameters that will
adjudge the model performance as acceptable (Loague
and Green, 1991). Ramanarayanan et al. (1997) sug-
gested values of goodness-of-fit statistics computed
based on monthly computations for determining the
acceptable performance of the APEX model. They
indicated that values close to zero for the correlation
coefficient and ⁄ or the Nash-Sutcliffe coefficient indi-
cated the model performance was unacceptable or
poor. They judged the model performance as satisfac-
tory if the correlation coefficient was greater than 0.5
and the Nash-Sutcliffe coefficient was greater than
0.4. Santhi et al. (2001a) assumed a Nash-Sutcliffe
coefficient greater than 0.5 and a goodness of fit (R2)
greater than 0.6 indicated acceptable model perfor-

mance when calibrating SWAT. However, acceptable
statistical measures are project specific.

The literature can provide typical ranges of good-
ness-of-fit statistics for models. For example, Saleh
et al. (2000) obtained Nash-Sutcliffe coefficients for
average monthly flow, sediment, and nutrient loading
at 11 locations with values ranging from 0.65 to 0.99,
indicating reasonable SWAT predicted values. SWAT
also adequately predicted monthly trends in average
daily flow, sediment, and nutrient loading over the
validation period with Nash-Sutcliffe coefficients
ranging from 0.54 to 0.94, except for NO3-N, which
had a value of 0.27. Fernandez et al. (2002) developed
a GIS-based, lumped parameter water quality model
to estimate the spatial and temporal nitrogen-loading
patterns for lower coastal plain watersheds in eastern
North Carolina. Predicted nitrogen loads were
highly correlated with observed loads (correlation
coefficients of 0.99 for nitrate-nitrogen, 0.90 for total
Kjeldahl nitrogen, and 0.96 for total nitrogen). How-
ever, the limitations of correlation coefficients, as dis-
cussed previously, should be considered in
interpretation of these results. Spruill et al. (2000)
evaluated SWAT and its parameter sensitivities for
streamflow from a small central Kentucky watershed
and concluded the model adequately predicted the
trends in daily streamflow, although Nash-Sutcliffe
coefficient values were 0.19 for calibration and )0.04
for validation. The Nash-Sutcliffe coefficients for
monthly total flows were 0.58 for validation and 0.89
for calibration.

In some instances, model calibration may not yield
results that are acceptable based on the predefined
model performance criteria. If this occurs, the
observed flow and pollutant data as well as the model
input data should be examined for potential errors.
The poor model performance may be an indication
that more detailed model inputs are required. In
other cases, this may be an indication that the model
is unable to adequately represent the processes of
interest for this watershed.

Item 9. Model Validation

When possible, it is important to reserve some
observed data (e.g., flow and water quality data) for
model validation. Additional discussion of the data
for validation and calibration can be found in the
Model Calibration section. Prior to beginning model
validation, the criteria used to validate, that is,
accept, reject, or qualify the model results, should be
documented (USEPA, 2002). The same statistics used
and reported for model calibration should be used in
model validation. Typically, the values of these statis-
tics are lower for validation than calibration. Accept-
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able levels of performance may be difficult to identify.
Acceptable model performance levels that have been
proposed are discussed in the Model Calibration sec-
tion. The scientific literature can provide suggestions
for levels of performance that might be anticipated
for a given model. The specific purpose of the study,
the available data and other factors should be
considered when establishing the performance crite-
ria. For example, the time period considered can
impact model performance. Typically, model perfor-
mance is poorer for shorter periods than for longer
periods (e.g., daily vs. monthly or yearly). For exam-
ple, Yuan et al. (2001) found that AnnAGNPS pro-
vided an R2 of 0.5 for event comparison of predicted
and observed sediment yields, while the agreement
between monthly data had an R2 of 0.7.

In some instances, acceptable model performance
may not be obtained during the validation step. Note
that the utility of the model may not depend on a sin-
gle performance indicator, and therefore, some judg-
ment will be required by the modeler. The potential
uncertainty associated with models and model setups
that do not attain the desired level of performance dur-
ing validation will be greater than those for which
model performance is deemed acceptable. Unacceptable
model performance for validation can be an indication
that the validation period data ranges or conditions are
significantly different than those for the calibration
period. Therefore, care in the selection of the data for
calibration and validation periods is needed. In other
cases, poor performance during validation may be an
indication that the model has not been adequately or
properly calibrated. It is possible that numerous model
setups or parameterizations can provide acceptable
model results for calibration. However, during valida-
tion such setups may provide poor results. In such
cases, the model should be re-calibrated and then vali-
dation attempted again. In addition, in some cases, the
lack of acceptable validation may be the result of inac-
curate validation data.

If data are unavailable for validation, other
approaches might be used to evaluate the potential
performance of the model. The literature on the
model may provide an indication of the model’s
expected performance. However, care should be taken
in inferring the model’s likely performance for the
study watershed based on validation results found in
the literature. Data used and model parameterization
for studies reported in the literature are not often
described with enough detail to allow a good assess-
ment of the model’s likely performance in other
watersheds. Further, if the model study reported in
the literature included calibration, assessment of the
model’s likely performance in the study watershed
will be even more difficult as the model will not be
calibrated for the study watershed.

Observed runoff and water quality data from a
similar watershed could potentially be used to deter-
mine the likely performance of the model for the
study watershed. Sogbedji and McIsaac (2002) dem-
onstrated the expected performance of the ADAPT
model through calibration of the model using data
from a comparable watershed and then applying it to
similar watersheds. However, it may be desirable not
to calibrate the model for the similar watershed, but
rather simply validate the model for such watersheds,
as data are unavailable for calibration of the model
in the study watershed.

The USEPA (2002) indicates that a model can be
evaluated by comparing model predictions of current
conditions with similar field or laboratory data not
used in the model calibration process, or with compa-
rable predictions from accepted models or by other
methods (e.g., uncertainty and sensitivity analyses).
The results of a simple mass balance model could be
compared with those of the model used in the study
to see how well results match. Multiple comprehen-
sive models might also be applied to the study
watershed if data are unavailable for calibration and
validation. If multiple models provide similar results,
confidence in the results that are obtained may be
increased. One must be cautious though with the
interpretation of results in such a case, especially if
the models use similar modeling components or
approaches.

If validation is not possible, varying ranges of
model inputs might be used in later stages of the mod-
eling effort to determine the sensitivity of the model
results to the model inputs. The use of Monte Carlo
techniques and other approaches can also be used to
identify confidence limits on outputs. ‘‘Biasing’’ the
model inputs may also be used in later stages of
the modeling effort to determine the sensitivity of the
results to assumptions in model inputs. In such a
situation, the model inputs would be set to extreme
values in their expected ranges. If the same conclu-
sions are reached with these inputs, the confidence in
the conclusions reached would be increased since the
conclusions are not sensitive to the model input
assumptions.

Item 10. Model Scenario Prediction

Once the model has been validated and the
results are deemed acceptable, the model is ready
to be parameterized to the conditions of interest
(e.g., a landuse change, implementation of BMPs).
The parameterization of the model and the rational-
ization for decisions regarding data and representa-
tions within the model should be documented to
allow others to recreate the model setup (see Model
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Representation Issues section). These data and
representation decisions should be consistent with
those used in setting up the model for calibration
and validation.

If possible, the uncertainty in model predictions
when parameterized for the condition(s) of interest
should be explored. The results from the validation
stage provide some basis for expected model perfor-
mance and level of uncertainty. Monte Carlo and other
techniques can also be used to place confidence inter-
vals on the expected results. For example, Kuczera
and Parent (1998) used two Monte Carlo-based
approaches for assessing parameter uncertainty in
complex hydrologic models.

An approach that can be helpful in exploring the
extremes in the uncertainty of model predictions is to
bias model inputs in a direction that would be
expected to represent the ‘‘worst case.’’ If the model
results for such a case result in the same conclusion
being reached, the confidence in the conclusion
should be high.

Item 11. Results Interpretation ⁄ Hypothesis Testing

Model results should be interpreted accounting for
the expected uncertainty. Typically, the uncertainty
in models cannot be quantified because of complexity
of interactions, and thus it will be necessary to quali-
tatively assess the objectives or hypotheses taking
into account the expected uncertainty in the results.
The approach to be utilized in testing the objectives
or hypotheses should be identified and documented
prior to initiating the modeling.

The literature contains numerous examples of
interpretation of model results. For example, Kirsch
et al. (2002) tested the SWAT model within pilot
watersheds and then applied it throughout a larger
watershed in Wisconsin to quantify impacts from the
application of basin-wide BMPs. Modeling results
indicated that implementation of improved tillage
practices (predominantly conservation tillage) could
reduce sediment yields by almost 20%. They deemed
this a significant reduction relative to current condi-
tions. Santhi et al. (2001b) applied SWAT, which had
been validated for flow and sediment and nutrient
transport, to a watershed to quantify the effects of
BMPs related to dairy manure management and
municipal wastewater treatment plant effluent. King
and Balogh (2001) used 99-year SWAT simulations
for three locations to test hydrologic ⁄ water quality
impacts of continuous corn, a forested environment, a
golf course built in a previously agricultural setting,
and a golf course constructed in a previously forested
setting. Differences in hydrologic, nitrate-nitrogen,
and pesticide impacts were examined using Tukey’s

pairwise comparison to determine whether differ-
ences were statistically different.

SUMMARY AND CONCLUSIONS

Data collection for environmental projects typically
follows a QA ⁄ QC plan. Likewise, QA planning for
environmental modeling projects should follow a stan-
dard procedure. A modeling protocol, preferably writ-
ten, should be established prior to conducting
modeling studies. A modeling standard protocol
would: (1) reduce potential modelers’ bias, (2) provide
a roadmap to be followed, (3) allow others to repeat
the study, and (4) improve acceptance of model
results.

This paper presents a model application protocol
for hydrologic ⁄ water quality studies. The present
work is an adaptation and extension of the guidance
available in the literature, including the USEPA, for
QA project plans for modeling. Eleven issues that
should be addressed in hydrologic ⁄ water quality
model application plans were identified that include:
(1) problem definition ⁄ background; (2) model applica-
tion goals, objectives, and hypothesis; (3) model selec-
tion; (4) model sensitivity analysis; (5) available data;
(6) data to be collected; (7) model representation
issues – data, BMPs, etc.; (8) model calibration;
(9) model validation; (10) model scenario prediction;
and (11) results interpretation ⁄ hypothesis testing.

It is essential to document the decisions made for
each of these items and the rationale for these deci-
sions. The extent of documentation that should be
prepared depends on various factors, including the
purpose of the modeling study. A graded approach
was recommended for defining the level of QA effort
that is required for a modeling study. A detailed
discussion of the above-mentioned steps was provided
with an emphasis on hydrologic ⁄ water quality studies
including considerations relevant to representation of
NPS BMPs with watershed models and appropriate
criteria for evaluation of the performance hydrologic
models.
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