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Abstract: High resolution fluorescence microscopy requires optimization of the protocols for 
biological sample preparation. The optical and chemical characteristics of mounting media 
are among the things that could be modified to achieve optimal image formation. In our 
search for chemical substances that could perform as mounting media, 3,3′-thiodipropanol 
(TDP) emerged as a sulfide with potentially interesting characteristics. In this work, several 
tests of its performance as a mounting medium for fluorescence microscopy of biological 
samples were performed, including the labeling of filamentous actin with fluorescent 
phalloidins. The refractive index dispersion curve of pH-adjusted TDP was experimentally 
obtained in the visible range and compared to the dispersion curves of commercial and lab-
made mounting media. The effects on the fluorescence of commonly used dyes were tested 
by using TDP as a solvent and measuring the relative fluorescence quantum yield of the dyes. 
By being able to mix TDP in any concentration with water and 2,2′-thiodiethanol (TDE), it 
was possible not only to fine-tune the refractive index of the resulting solution, but also to 
preserve the compatibility of TDP with the most popular and efficient fluorescent actin 
staining used in biological microscopy. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Use of high numerical aperture lenses, low background staining protocols, high quality glass 
for slide preparation are common steps that can be undertaken to improve the quality of the 
fluorescence images that could be generated from biological microscopy slides. Another 
aspect that needs to be considered in the staining and mounting protocol is the chemical 
substance that is used to seal the sample between the slide and the coverslip. Such material, 
called mounting medium, needs to fulfil some requirements. 

First of all, it should be a colorless and transparent liquid, capable of permeating into cells 
and tissues and not causing any dye diffusion or fading. In addition to the lack of adverse 
effect on tissue components, it is desirable for the mounting medium to be harmless for the 
user. Another often disregarded characteristic is the refractive index (n) of the mounting 
medium, which for high resolution, diffraction-limited microscopy should be as close as 
possible to that of glass and immersion oil, i.e., 1.515 (by convention measured at the sodium 
spectral line). When resolution is not an issue and/or the limiting factor is the type of lens 
available, another useful characteristic is that the same medium could be diluted to vary its 
refractive index, to match the n of water or glycerol, other common options for liquid 
immersion objectives. The maximal homogeneity in n at the two coverslip boundaries is 
required to avoid size scaling in the z axis, reduction of the effective numerical aperture and 
reduction in resolution and peak intensity [1]. 
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In a search among different simple compounds, TDP has emerged as an interesting 
candidate for mounting medium: it is liquid, colorless, possesses a high n when undiluted, it is 
miscible in water, non-toxic and its potential use as a mounting medium would represent a 
cheaper alternative compared to other commercial products. In this work, a thorough optical 
characterization of TDP was performed and the chemical was tested for its use as mounting 
medium for biological samples stained with common used fluorophores. The fluorescent 
slides were subsequently imaged with confocal microscopy, confirming its suitability for this 
application. 

The major improvement that comes with the use of TDP as mounting medium is its 
compatibility with the use of toxin-based actin markers, in particular phalloidin. Differently 
from what happens with the related molecule TDE, phalloidin staining of microfilaments 
maintains its morphology and fluorescent properties after mounting in TDP. Additionally, 
TDP and TDE can be mixed, to finely adjust the n of the medium for high resolution 
fluorescent microscopy without losing the capability of staining actin with phalloidin. This 
type of actin decoration is by far the most popular in biomedical microscopy experiments, 
both for staining and counterstaining, due to the simplicity of the protocol and the quality of 
the outcome. For this reason, widening the application range of sulfides mounting to actin 
staining will add an important tool to high resolution biological fluorescent microscopy 
protocols. 

2. Methods and materials 

2.1 Mounting media and immersion oil 

2,2′-thiodiethanol (TDE) and 3,3′-thiodipropanol (TDP) (Sigma Aldrich No. 166782 and 
205346 respectively) pH were adjusted to 7 ± 1 using sodium hydroxide. 1 mL of TDE is 
adjusted to the desired pH value using approx. 2 µL of 0.05M NaOH. In the case of TDP, 1 
mL is adjusted using 12.5 µL of 0.25M NaOH, although the volumes could vary depending 
on the lot number. The terms aTDE and aTDP refer to the media prepared as above. TDE and 
TDP are viscous compounds and provide inconsistent readings with the electrodes normally 
used for pH measurement, therefore pH indicator strips (Macherey Nageland) and the pH 
indicator phenol red (No. P4758, Sigma Aldrich) were also used. 

VectaShield (abbreviated as VS, Vector Labs, Product number H 1000), ProLong 
Diamond (abbreviated as PLD, Thermo Fisher Scientific, No P36965), Dako (DAKO North 
America Inc., S3023) and Immersol 518-F (Zeiss Item Number: 444960-0000-000) were also 
used in this work. 

2.2 Refractive index 

The refractive index of mounting media was measured using an Abbe refractometer Type-
WY1A (Edmund Optics, Barrington, U.S.A.). The nD value refers to refractive index 
measured at 589 nm obtained using a white light source directed to the illumination window 
of the refractometer and using the compensating prism to deflect other wavelengths. 

2.3 Dispersion measurements 

Two different types of light sources were used to cover the visible range from 410 to 680 nm: 
a SCT500 supercontinuum laser (FYLA, Spain) whose spectrum ranges from 500 to 2150 nm 
and 2 LED sources with spectra centered in 420 nm (thereafter called LED420, FWHM: 18 
nm) and 440 nm (LED440, FWHM: 19 nm). LED420 was used for the 410 nm reading and 
LED440 for the 440 and 470 nm. Seven data points in the range of 500-680 nm were measured 
with the laser in wavelength steps of 30 nm. The 590 nm point was replaced with 589 nm 
since it approximates to the sodium line conventionally used for reporting refractive indices. 

Through a double-convex lens (Edmund Optics, U.S.A), the light beam from the LEDs 
was focused to a DMC1-03 monochromator (Optometrics, USA). Data from the manufacturer 
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indicates a resolution of 2.16 nm for a slit width of 300 μm. For the laser, no lens was 
required since an optic collimator is coupled to the fiber. Another double-convex lens was 
placed to expand the beam so that it could fill the illumination window of the Abbe 
refractometer. The refractometer is provided with a compensator dial to filter out the sodium 
D line and deflect other wavelengths. During the measurements, the compensator was set to 
position 30 to avoid wavelength-dependent beam deviation. A CCD cell phone camera 
focusing on the eyepiece of the refractometer was mounted on a mechanical support, allowing 
an instantaneous view of the eyepiece image to be seen on the cell phone screen. The whole 
system was placed in a temperature-controlled room at 21°+/− 0.5° C. 

2.4 Curve fitting for dispersion data 

The dispersion curve for the refractive index in the visible range was approximated using the 
least squares fitting method for a four terms Cauchy’s dispersion equation: 

 31 2
0 2 4 6

AA A
n A

λ λ λ
= + + +  (1) 

where Ai (i = 0,1,2,3) are the Cauchy’s dispersion parameters and λ is the wavelength in nm. 
The statistical parameter used to define how well the measured data fit the Cauchy’s 

dispersion equation is the adjusted coefficient of determination, 2
.adjR  

2.5 Abbe number 

To further compare dispersions of the liquids analyzed, Abbe numbers were calculated for D, 
F and C spectral lines, according to the formula [2]: 
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Where nD, nF and nC are the refractive indices of the material at 589.3, 486.1 and 656.3 nm 
respectively. 

2.6 Intensity along the optical axis 

A 1 mM solution of the dye Rhodamine b was dissolved 10% v/v into each of the mounting 
media tested in this work, and mounted in slides. 70 µm Z-stacks were captured with a 63X 
1.4 NA oil immersion objective, with a 1 µm separation between optical sections. 

2.7 Spectra 

The absorption and emission spectra were measured with a Cytation 5 spectrophotometer 
(Biotek, Vermont, U.S.A.): suspensions of fluorophores in TDP, TDE, VS, Dako and PBS 
were measured within single wells of a black-walled, clear-bottom 96-well microplate 
(Corning Incorporated, NY, U.S.A.). Alexa Fluor phalloidin probes were used at a 
concentration of 2.6 μM and DAPI at 11.4 mM. The volume used in each measurement is 100 
μL. 

2.8 Cell culture, transfection and immunocytochemistry 

HeLa (ATCC, clone CCL-2) and HEK293 cells were grown in DMEM and SH-SY5Y in 
DMEM-F12, supplemented with 10% fetal bovine serum and antibiotics at 37°C in 5% CO2. 

For the imaging experiments, cells were seeded on glass coverslips. When grown to a 
confluency of about 80%, they were fixed in 4% formaldehyde. The cells were subsequently 
permeabilized with 0.1% Triton-X 100, washed in PBS, then incubated in blocking buffer 
composed of 10% bovine serum, 0.05% Triton X-100 in PBS for 30 minutes and incubated 
with the primary antibody (polyclonal anti pan-tubulin, ATN02, Cytoskeleton). After 
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overnight incubation at 4°C, the cells were washed 3 times with PBS for 10 min and 
incubated with the secondary antibody (Alexa Fluor 488, A-11015, Thermo Fisher Scientific) 
for 1.5 h. Nucleus staining was performed by incubating cells in the presence of 3 µM DAPI 
for 10 min (62248, Thermo Fisher Scientific). Actin cytoskeleton was stained by incubating 
for 20 minutes in 130 nM Alexa Fluor phalloidin or 100 nM SiR-actin. 

Biological markers used are: anti-tubulin polyclonal primary antibody (sheep host) 
(Cytoskeleton, No. ATN02), monkey anti sheep secondary antibody conjugated to Alexa 
FluorTM 488 (Themo Fisher Scientific, No. A-11015), DAPI (Thermo Fisher Scientific, No 
62248) and Alexa Fluor488 phalloidin (Thermo Fisher Scientific, No A12379), Alexa Fluor 
647 phalloidin (Thermo Fisher Scientific, No A22287) and Alexa Fluor 568 phalloidin 
(Thermo Fisher Scientific, No A12380) and SiR-actin (Cytoskeleton, CY-SC001). 

For fluorescent protein expression, HeLa cells were seeded on glass coverslips and 
transfected after 24 hours using lipofectamine 2000 (Thermo Fisher Scientific, No 11668019) 
with either pAC γactin EGFP or pAC ßactin mCherry. Transfection was performed according 
to the protocol of the manufacturer. 

2.9 Mounting procedure and imaging 

Fixed samples prepared for microscopy were incubated in different dilutions of aTDP to 
facilitate the exchange of water and mounting medium as described in [3]. The three dilutions 
were prepared with 10, 25 or 50% of aTDP, 25% PBS and water. Incubation time for each 
solution was 10 minutes. Two final incubations were performed in aTDP before the final 
mounting in aTDP. Mounting in VectaShield and Prolong Diamond was performed according 
to the respective technical data sheet. 

A LSM-710-NLO confocal microscope (Zeiss, Germany) equipped with a LCI Plan-
Neofluar 25x/0.8 Imm Korr DIC M27 and an alpha Plan-Apochromat 63x/1.46 Oil Korr M27 
immersion objectives were used for imaging. For phase contrast experiments an AXXIO 
Observer.A1 microscope, with 10X/0.25 NA was used. 

2.10 Cell size analysis 

Twenty micrographs of HEK293 cells stained with fluorescent phalloidins and DAPI were 
included in the analysis, 4 mounted in PLD, 7 mounted in aTDP and 9 mounted in PBS. 
Independent binarization of the 2 channels was performed estimating thresholds by Otsu’s 
algorithm [4]. Once the binarized images were obtained, a morphological closure operation 
using monostructural elements was applied [4]. The number of cells in a micrograph was 
determined by the number of nuclei; when apparently joint nuclei were detected, a k-means 
clustering analysis was used to solve the nuclei division. The regional average size of the cells 
was calculated dividing the surface filled with actin by the number of nuclei counted in the 
region. The whole image analysis was performed using Matlab (MathWorks). 

2.11 Mixtures of TDP-TDE 

Three mixtures containing aTDE and aTDP at different concentrations were also tested as 
mounting media: solution M1 contains 25% aTDP, solution M2 contains 50% and solution 
M3 is made of 75% aTDP. For the mounting process, the same procedure as in the case of 
aTDP was followed: cells were incubated in solutions of 10, 25 and 50% concentration of 
mixture in PBS before mounting. 

3. Results 

3.1 Refractive index 

The refractive indices of TDP and TDE at increasing concentrations in water were measured. 
The experimental set of data obtained corresponds to nD and is shown in Fig. 1, where the 
linear relation found between refractive index and concentration in water is reported. 
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Table 1. Constants of Cauchy formula of TDP, TDE, Vectashield and Immersol 518 F at 
a temperature of 21 °C. 

Parameter (nm) Immersion oil aTDE aTDP Vectashield 
A0 1.49043 1.478040 1.49254 1.43294

A1 (nm) 12199.9 21517.70 2781.66 7424.59
A2 (nm2) −15773E + 05 −4.0651E + 09 8.29063E + 08 −6.48647E + 08
A3 (nm4) 1.2075E + 14 3.317730E + 14 −7.49276E + 13 2.80746E + 13

R2 0.98939441 0.9952367 0.994396958 0.986122463

For immersion oil, five n reported in the technical datasheet of the product 
(Immersionsoele, 2004 [8]) were compared to the values obtained with our system, at 
corresponding wavelengths: the average difference of the two series of n is 0.00020, with the 
maximum variation being 0.00044, which shows good agreement between the two sets of 
data (see Data File 1). 

For the commercial medium VectaShield, the only refractive index available from the 
literature was the one corresponding to 590 nm [9]: the value that can be interpolated from 
our model (1.449) corresponds to the published value (1.45). 

TDE was presented as mounting medium by Staudt et al. and some points of its dispersion 
curve were reported graphically in the original paper [3]. In our work, we have analyzed the 
dispersion behavior in a larger spectral region and, as for the other media, we have calculated 
the mathematical approximation that allows to interpolate the refractive index in any given 
point of the visible spectrum. 

In the case of the new medium TDP, the only n information previously available, to our 
knowledge, was the value given by the producer, nD

20 = 1.51; the value we measured is 
1.5056, again in good agreement. 

3.3 Abbe number 

The constringence or Abbe number (Eq. (2)) of the liquids analyzed, which measures the 
variation of the refractive index with the wavelength, shows that the substance with the 
highest VD among those analyzed in this work is VectaShield (57.35), while aTDP (46.17) 
and aTDE (45.88) show dispersion similar to that of immersion oil (46.07) (Table 2). 

Table 2. Dispersion of TDP, TDE, Vectashield and Immersol 518 F (Abbe numbers) 

Media 
Dn Fn Cn Abbe number 

aTDP 1.5056 1.5134 1.5025 46.17
aTDE 1.5142 1.5214 1.5102 45.88

Vectashield 1.4496 1.4549 1.4470 57.35
Oil immersion 1.5152 1.5230 1.5119 46.07 

3.4 Effects of n mismatch on confocal image stacks 

We have measured the fluorescent intensity along the optical axis in slides where the dye 
Rhodamine b was diluted and mounted in the different mounting media used. As expected, 
the mounting media with higher n are those that better perform in this test (Fig. 3). 
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since they differ in cell size and morphology, allowing the imaging and test for performance 
of our mounting medium with different cytoskeletal architectures. The analysis of samples 
confirmed that TDP could be used as mounting medium, since the conventional distribution 
of DAPI, tubulin and filamentous actin staining in epithelial, cervix cancer and neuroblastoma 
cells was observed. The lack of morphological distortions was also confirmed by our cell size 
analysis. Additionally, transfected cells mounted in TDP were also imaged, confirming that 
TDP is compatible also with fluorescent proteins. 

Knowing the solvatochromism of probes dissolved in the mounting media is important to 
determine excitation and detection wavelengths of the fluorescence microscope set up and 
establish if the excitation sources and filters, as well as the detection filters, are appropriate 
and efficient for the fluorescence of each experiment. The excitation wavelengths used in this 
work were those recommended by the fluorophore providers and each fluorophore was 
imaged using the same excitation and emission parameters in all experimental conditions, i.e. 
when mounted in PLD, aTDE or aTDP. The bathochromism observed in the spectra of the 
dyes when TDP is the solvent is subtle, therefore no changes in filters or detectors were 
necessary. Fluorophore-solvent interactions also have an effect over the fluorophore quantum 
yield of the dyes used: for Alexa Fluor 647 and DAPI, the relative quantum yield indicates 
stronger fluorescence brightness when embedded in TDP relative to PBS. In case of Alexa 
Fluor 488 the brightness is lower, similarly to what happens with Oregon Green 488 as 
reported in [3]. This might suggest that similar non-covalent molecular interactions take place 
between “fluorescein-based dyes” and both sulfides media. 

A key feature of TDP compared to most commercial media is its refractive index, which 
by being close to that of immersion oil reduces the refraction caused by the n mismatch and 
the consequent aberrations in Z. It has been demonstrated that the loss of intensity when 
imaging deeper into a fluorescent medium, in a confocal system, can be solely explained by 
aberrations [1]. Spherical aberrations induced by a n mismatch provoke a larger spread of the 
focus; the spreading of the illumination and detection PSF caused by aberrations affects 
resolution and intensity [13]. When imaging, the object space, made of the immersion liquid, 
glass coverslip and the mounting medium-embedded sample, is necessarily heterogeneous. 
However, differences in the dispersion behavior of the components could led to additional 
aberrations (i.e. chromatic). Therefore, the selection of the mounting and immersion fluids 
could be based on the assumption that, for equal conditions of nD, similar dispersion on the 
two sides of the coverslip is most desirable, especially when detecting several fluorophores in 
a Z-stack, as is the case when studying colocalization in a volume [14]. As the homogeneity 
of n improves the axial resolution, which is critical when imaging deep into thick samples, 
optical sectioning techniques like confocal, lightsheet and multiphoton microscopy are 
already benefitting from the use of refractive index matching liquids that enable even deeper 
imaging [15]. Noteworthy, some index matching liquids were also shown not to interfere with 
the generation of second harmonics for the stain-free imaging of collagen fibers in the 
forward direction [16]. 

Another factor that affects imaging inside 3D samples is unwanted lateral scattering 
caused by heterogeneities in biological tissues. Clarification, a group of techniques that 
achieves the downsizing of light deviation by means of chemical reduction of tissue scattering 
[17], makes extensive use of media with high refractive index, including TDE [18]. It is safe 
to predict that TDP, due to the chemical similarity to TDE and high n, could be useful for 
volume fluorescence microscopy, whether this implies clarification or not. 

The physico-chemical behavior of mixtures is often unpredictable; for instance, the 
refractive index of binary mixtures is not always accurately described by mixing rules [19]. 
For this reason, the effect of mixing aTDE with aTDP on the refractive index of the solution 
was tested, as well as the performance of the mixtures as mounting media in biological slides. 
We found that the refractive indices of the mixtures linearly increased with the addition of 
aTDE making it possible to tune the n from 1.505 to 1.5123. Also, by mixing aTDP and 
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aTDE in three different proportions we observed dramatic differences on the confocal images, 
which were tightly dependent on the aTDP:aTDE ratio employed for mounting the slides: on 
the one hand, the destabilizing effect of TDE on the labeling of actin with fluorescent 
phalloidins was confirmed; on the other hand, staining loss was hindered by increasing the 
content of TDP. In other words, by playing with the amount of each medium, we were able to 
increase the n of the mounting medium based on TDP, besides diminishing the destabilizing 
effect of TDE on the toxin-based actin staining. 

Index matching liquids are necessary in microscopy either for imaging into tissue or to 
achieve the highest possible resolution when required; TDP represents a new, flexible option 
for these microscopy applications. Additional optical uses of TDP may include optofluidics 
[20], which combines liquids and photonics, or the related area of tunable optics [21]. 
Tunable n liquids can be also advantageously used in particle image velocimetry, where 
tunability associated to miscibility in water make TDP a potentially good solvent for both 
dynamic light scattering, where differences in n must be minimized, and diffusing wave 
spectroscopy, where large differences in n are pursued [22,23]. 
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