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Abstract. In my talk I will consider Newton’s views on mathematical method. Newton never
wrote extensively about this issue. However, in his polemic writings addressed against Descartes
and Leibniz he expressed the idea that his method was superior to the ones proposed by the French
and the German. Considering these writings can help us in understanding the role attributed to
algebra and calculus in Newton’s mathematical thought.
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1. Newton’s memorandum on his early discoveries

Newton blossomed as a creative mathematician in 1665–1666, the so-called anni
mirabiles, about four years after matriculating at Cambridge.1 A Newtonian mem-
orandum, written about fifty years later, gives an account that has been basically
confirmed by manuscript evidence:

In the beginning of the year 1665 I found the Method of approximating series &
the Rule for reducing any dignity of any Binomial into such a series. The
same year in May I found the method of Tangents of Gregory & Slusius, & in
November had the direct method of fluxions & the next year in January had the
theory of Colours & in May following I had entrance into ye inverse method of
fluxions. And the same year I began to think of gravity extending to ye orb of
the Moon […] All this was in the two plague years of 1665–1666. For in those
days I was in the prime of my age for invention & minded Mathematicks &
Philosophy more than any time since. ([1])

There would be much to say in order to decipher and place into context Newton’s dis-
course. For instance, the task of commenting on the meaning of the term ‘philosophy’
would require space and scholarship not at my disposal [2].

1Readers interested in Newton’s mathematics should read Tom Whiteside’s introductions and commentaries
in [9].
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Figure 1. Newton’s home at Woolsthorpe where – he claimed – he made his early discoveries in
mathematics and natural philosophy when Cambridge University was evacuated because of the
plague during the biennium 1665–1666. As a matter of fact, he did important work in mathematics
during periods in which he returned to the University. Further, his juvenile insights – particularly
those concerning gravitation – had to be elaborated during the next decades. Source: [1], 54.

Let me note three things about the above memorandum. The ‘Method of approxi-
mating series’ is the method of series expansion via long division and root extraction
(as well as other methods which were later subsumed under more general techniques
usually attributed to Puiseux) that allowed Newton to go beyond the limitation of what
he termed ‘common analysis’ – where ‘finite equations’ were deployed – and express
certain curves locally in terms of infinite fractional power series, which Newton called
‘infinite equations’. The ‘Rule for reducing any dignity of any Binomial’ is what we
call the ‘binomial theorem’. Such methods of series expansion were crucial for at-
taining two goals: the calculation of areas of curvilinear surfaces and the rectification
of curves (see Figure 2). Notice that Newton does not talk about a theorem, but rather
about ‘methods’ and a ‘rule’. This last fact is of utmost importance and deserves
our commentary in Sections 2, 3, and 4, before turning in Section 5 to the direct and
inverse methods of fluxions which are the Newtonian equivalent of the Leibnizian
differential and integral calculus.2

2For a recent evaluation of Newton’s early mathematical researches see [3].
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Figure 2. Calculation of areas of hyperbolic and circular surfaces via extraction of root of√
aa + xx = y and

√
aa − xx = y. This technique of series expansion and termwise integration

was basic in Newton’s early mathematical work and was displayed in a tract entitled On the
analysis by means of infinite equations (written in 1669, but printed only in 1711), an extension
of ‘common analysis’ which proceeds via ‘finite equations’ only. Source: [8], vol. 1, 8.
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2. Pappus on the method of analysis and synthesis

Newton belonged to a mathematical community in which the distinction between the-
orems and problems was articulated according to criteria sanctioned by the venerated
Greek tradition. Most notably in the work of the late Hellenistic compiler Pappus en-
titled Mathematical Collection which appeared in 1588 in Latin translation Newton –
who avidly read this dusty work – could find a distinction between ‘theorematic and
problematic analysis’.

In the 7th book of the Collection there was a description of works (mostly lost and
no longer available to early modern mathematicians) which – according to Pappus –
had to do with a heuristic method followed by the ancient geometers. The opening
of the seventh book is often quoted. It is an obscure passage whose decoding was
top in the agenda of early modern European mathematicians, convinced as they were
that here lay hidden the key to the method of discovery of the ancients. Given the
importance this passage had for Newton, it is worth quoting at length:

That which is called the Domain of Analysis, my son Hermodorus, is, taken
as a whole, a special resource that was prepared, after the composition of the
Common Elements, for those who want to acquire a power in geometry that
is capable of solving problems set to them; and it is useful for this alone. It
was written by three men: Euclid the Elementarist, Apollonius of Perge, and
Aristaeus the elder, and its approach is by analysis and synthesis.

Now analysis is the path from what one is seeking, as if it were established, by
way of its consequences, to something that is established by synthesis. That
is to say, in analysis we assume what is sought as if it has been achieved, and
look for the thing from which it follows, and again what come before that,
until by regressing in this way we come upon some one of the things that
are already known, or that occupy the rank of a first principle. We call this
kind of method ‘analysis’, as if to say anapalin lysis (reduction backward).
In synthesis, by reversal, we assume what was obtained last in the analysis to
have been achieved already, and, setting now in natural order, as precedents,
what before were following, and fitting them to each other, we attain the end
of the construction of what was sought.

There are two kinds of analysis: one of them seeks after the truth, and is called
‘theorematic’: while the other tries to find what was demanded, and is called
‘problematic’. In the case of the theorematic kind, we assume what is sought
as a fact and true, then advancing through its consequences, as if they are true
facts according to the hypothesis, to something established, if this thing that
has been established is a truth, then that which was sought will also be true,
and its proof the reverse of the analysis; but if we should meet with something
established to be false, then the thing that was sought too will be false. In
the case of the problematic kind, we assume the proposition as something
we know, then, proceeding through its consequences, as if true, to something
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established, if the established thing is possible and obtainable, which is what
mathematicians call ‘given’, the required thing will also be possible, and again
the proof will be the reverse of the analysis; but should we meet with something
established to be impossible, then the problem too will be impossible. ([4])

Pappus here made a distinction between analysis and synthesis. Analysis (‘res-
olutio’ in Latin) was often conceived of as a method of discovery, or a method of
problem solving, which, working step by step backwards from what is sought as if it
had already been achieved, eventually arrives at what is known. Synthesis (‘compo-
sitio’ or ‘constructio’) goes the other way round: it starts from what is known and,
working through the consequences, arrives at what is sought. On the basis of Pappus’
authority it was often stated that synthesis ‘reverses’ the steps of analysis. It was
synthesis which provided the rigorous proof. Thus the belief – widespread in early
modern Europe – that the ancients had kept the method of analysis hidden and had
published only the rigorous synthesis, either because they considered the former not
wholly demonstrative, or because they wanted to hide the method of discovery.

Another distinction which was of momentous importance for early modern math-
ematicians is that between problems and theorems. A problem asks a construction for
its solution. It starts from certain elements considered as already constructed either by
postulate or by previously established constructions. Such elements are the ‘givens’
(in Latin the ‘data’) of the problem. A problem ends with a ‘Q.E.I.’ or with a ‘Q.E.F.’
(‘quod erat inveniendum’ – ‘what was to be discovered’–, and ‘quod erat faciendum’
– ‘what was to be done’–, respectively). A theorem asks for a deductive proof, a
sequence of propositions each following from the previous one by allowed inference
rules. The starting point of the deductive chain can be either axioms or previously
proved theorems. A theorem ends with ‘Q.E.D.’ (‘quod erat demonstrandum’– ‘what
was to be demonstrated’). According to Pappus, therefore, there are two kinds of
analysis: the former referred to problems, the latter to theorems. But it is clear
from classical sources that the most important, or at least the most practiced kind,
was problematic analysis: and indeed early modern European mathematicians were
mainly concerned with the analysis of geometrical problems.

Another powerful idea that began to circulate in Europe at the end of the sev-
enteenth century was that the analysis of the Greeks was not geometrical but rather
symbolical: i.e. the Greeks were supposed to have had algebra and to have applied it
to geometrical problem solving. The evidence that symbolic algebra was within the
reach of the ancients was provided by a far from philological reading of the work of
Diophantus and of parts of Euclid’s Elements. The approach of Renaissance culture
towards the classics, in sculpture, architecture, music, philosophy, and so on, was
characterized by admiration united to a desire to restore the forgotten conquests of the
ancients. This approach often confined with worship, a conviction of the occurrence
of a decay from a glorious, golden past. The works of Euclid, Apollonius, Archimedes
were considered unsurpassable models by many Renaissance mathematicians. The
question that often emerged was: how could the Greeks have achieved such a wealth
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of results? In the decades following the publication of the Collection the belief in the
existence of a lost, or hidden, ‘Treasure of analysis’ promoted many efforts aimed at
‘restoring’ the ancients’ method of discovery. Not everybody trod in the steps of the
classicists. Typically, many promoters of the new symbolic algebra were proud to
define themselves as innovators, rather than as restorers. It was common, however,
even among creative algebraists such as François Viète, John Wallis and Isaac New-
ton, to relate symbolic algebra to the ancient analysis, to the hidden problem solving
techniques of the ancients.

3. Descartes’ method of problem solving and problem construction

Newton was deeply embedded in the conceptual space defined by Pappus and by
his readers, interpreters and critics. Mainly he referred his views on mathematical
method to Descartes’ Géométrie (1637), an early source of inspiration for him and
soon a target of his fierce criticisms ([5]). From this tradition Newton derived the
idea that a problem, once analyzed (resolved), must be synthesized (composed or
constructed).

How did Descartes define his canon of problem solving and the role of algebra in
the analysis and synthesis of geometrical problems? The historian who has done most
to clarify this issue is Henk Bos. It is to his work that we now turn for advice ([6]).

In book 1 of the Géométrie Descartes explained how one could translate a ge-
ometric problem into an equation. Descartes was able to do so by a revolutionary
departure from tradition. In fact he interpreted algebraic operations as closed opera-
tions on segments. For instance, if a and b represent lengths of segments the product
ab is not conceived by Descartes as representing an area but rather another length.
As he wrote: ‘it must be observed that by a2, b3, and similar expressions, I ordinarily
mean any simple lines’, while before the Géométrie such expressions represented an
area and a volume respectively (see Figure 3).

Descartes’ interpretation of algebraic operations was indeed a gigantic innovation,
but he proceeded wholly in line with Pappus’ method of analysis and synthesis, to
which he explicitly referred. In fact, according to Descartes, one has – following
Pappus’prescriptions– to ‘start by assuming that the problem was solved and consider
a figure incorporating the solution’.3 The segments in the figure are then denoted by
letters, a, b, c, . . . , for segments which are given, x, y, z, . . . , for segments which are
unknown. Geometrical relationships holding between the segments are then translated
into corresponding equations. It is thus that one obtains a system of equations which
symbolically express the assumption that the problem is solved. In fact, here we are at
the very beginning of the analytic process: the unknown segments are treated as if they
were known and manipulated in the equations on a par with the givens of the problem.
The resolution of the equation allows the expression of the unknown x in terms of
given segments. We have thus moved from the assumption that the problem is solved

3[6] on p. 303.
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Figure 3. Descartes’ geometric interpretation of algebraic operations. He writes: ‘For example,
let AB be taken as unity, and let it be required to multiply BD by BC. I have only to join the
points A and C, and draw DE parallel to CA; and then BE is the product of BD and BC’. So,
given a unit segment, the product of two segments is represented by another segment, not by a
surface. The second diagram is the construction of the square root of GH . Given GH and a
unit segment FG, one draws the circle of diameter FG + GH and erects GI , the required root.
Source: [5], 4.
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(the first step of the analysis) to a reduction of the unknown, sought magnitude to
the givens. This is why Descartes, and the other early-modern promoters of algebra,
associated algebra with the method of analysis.

The resolution of the equation is not, however, the solution of the problem. In
fact, the solution of the problem must be a geometrical construction of the sought
magnitude in terms of legitimate geometrical operations performed on the givens
(‘Q.E.F.’!). We now have to move from algebra back to geometry again. Descartes
understood this process from algebra to geometry as follows: the real roots of the
equation (for him if there are no real roots, then the problem admits no solution)
must be geometrically constructed. After Descartes, this process was known as the
‘construction of the equation’. This is where the synthetic, compositive part of the
whole process begins.

Descartes accepted from tradition the idea that such constructions must be per-
formed by intersection of curves. That is to say, the real roots are geometrically
represented by segments, and such segments are to be constructed by intersection of
curves. As a matter of fact, the construction of the equation presented the geometer
with a new problem: not always an easy one. One had to choose two curves, position
and scale them, such that their intersections determine points from which segments –
whose lengths geometrically represent the roots of the equation – can be drawn (see
Figure 4).

Figure 4. Construction of a third-degree equation in Descartes’ Géométrie. The problem of
trisecting angle NOP is resolved (‘resolutio’ is the Latin translation of the Greek ‘analysis’) by
a third-degree equation. Descartes constructs the roots (‘constructio’ or ‘compositio’ translate
‘synthesis’) via intersection of circle and parabola. The segments kg, KG and LF represent two
positive and one negative root. The smaller of the two positive roots kg must be ‘taken as the
length of the required line NQ’. KG is equal to NV , ‘the chord subtended by one-third the arc
NV P ’. Source: [5], 208.

The synthetic part of Descartes’ process of problem-solving gave rise to two ques-
tions: which curves are admissible in the construction of equations? which curves,
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among the admissible, are to be preferred in terms of simplicity? In asking him-
self these questions Descartes was continuing a long debate concerning the role and
classification of curves in the solution of problems. A tradition that, once again,
stems from Pappus, and the interpretations of Pappus given by mathematicians such
as Viète, Ghetaldi, Kepler, and Fermat. His answer was that only ‘geometrical curves’
(we would say ‘algebraic curves’) are admissible in the construction of the roots of
equations and that one has to choose the curves of the lowest possible degree as
these are the simplest. Descartes instead excluded ‘mechanical curves’ (we would
say transcendental curves) as legitimate tools of construction.

Notice that Descartes presented his canon of problem resolution and construction
in aggressively anti-classicist terms. His algebraic method, he claimed, was superior
to the ones followed by the ancients. He gave pride of place to a problem discussed
in Pappus’ Mathematical Collection that – according to Descartes – neither Euclid
nor Apollonius could solve. He proudly showed to the readers of the slim Géométrie
that, by applying algebra to geometry, he could easily achieve a solution not included
in the ponderous Pappusian tomes.4

4. Newton versus Descartes

Newton sharply criticized Descartes’canon of problematic analysis and construction.5

Newton’s point was that geometrical constructions have to be carried on in terms in-
dependent from algebra. Newton elaborated his criticism to Descartes in his Lucasian
Lectures on Algebra which were held before 1684 and which, in somewhat modified
form, appeared in 1707 as Arithmetica Universalis ([8], vol. 2, 3–135). The Arith-
metica Universalis ends with an Appendix devoted to the ‘construction of equations’
which abounds with oft-quoted statements in favour of pure geometry and against the
‘Moderns’ (read Descartes) who have lost the ‘Elegance’ of geometry:

Geometry was invented that we might expeditiously avoid, by drawing Lines,
the Tediousness of Computation. Therefore these two sciences [Geometry
and Arithmetical Computation] ought not be confounded. The Ancients did
so industriously distinguish them from one another, that they never introduced
Arithmetical Terms into Geometry. And the Moderns, by confounding both,
have lost the Simplicity in which all the Elegance of Geometry consists.6

4Briefly said, Pappus problem requires the determination of the locus of points P such that their distances
di (i = 1, 2, 3, 4) from four lines given in position are such that d1d2 = k(d3d4). In the Géométrie Descartes
introduces a system of oblique coordinates, and notices that the distance of a point from a line is given by an
expression of the form ax + by + c. Therefore Pappus 4-lines locus has a second-degree defining equation:
namely it will be a conic section. The algebraic approach immediately allowed Descartes to generalize Pappus
problem for any number of lines.

5Further information on Newton’s criticisms to Descartes can be gained from [7].
6[8], vol. 2, 228.
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Such statements have often puzzled commentators since they occur in a work devoted
to algebra and in which the advantage of algebraic analysis is displayed in a long
section on the resolution of geometrical problems. Why was Newton turning his
back to ‘arithmetic’7 now saying that algebra and geometry should be kept apart?
In order to understand this seemingly paradoxical position we have to briefly recall
that according to Descartes the demarcation between admissible and inadmissible
curves as means of construction was that between geometrical and mechanical curves.
Ultimately, Descartes was forced to make recourse to algebraic criteria of demarcation
and simplicity: in fact, algebraic curves coincided for him with the loci of polynomial
equations, and the degree of the equation allowed him to rank curves in terms of their
simplicity.

As far as demarcation is concerned, in the Arithmetica Universalis Newton main-
tained that it would be wrong to think that a curve can be accepted or rejected in terms
of its defining equation. He wrote:

It is not the Equation, but the Description that makes the Curve to be a Geomet-
rical one. The Circle is a Geometrical Line, not because it may be expressed
by an Equation, but because its Description is a Postulate.8

Further, Descartes’ classification of curves in function of the degree of the equation
– Newton claimed – is not relevant for the geometrician, who will choose curves in
function of the simplicity of their description. Newton, for instance, observed that
the equation of a parabola is simpler than the equation of the circle. However, it is
the circle which is simpler and to be preferred in the construction of problems:

It is not the simplicity of its equation, but the ease of its description, which pri-
marily indicates that a line is to be admitted into the construction of problems.
[…] On the simplicity, indeed, of a construction the algebraic representation
has no bearing. Here the descriptions of curves alone come into the reckoning.9

Newton observed that from this point of view, the conchoid, a fourth degree curve,
is quite simple. Independently of considerations about its equation, its mechanical
description – he claimed – is one of the simplest and most elegant; only the circle is
simpler. Descartes’ algebraic criterion of simplicity is thus deemed alien to the con-
structive, synthetical, stage of problem solving. The weakness of Newton’s position
is that the concepts of simplicity of tracing, or of elegance, to which he continuously
refers are qualitative and subjective. One should be aware that no compelling reason
is given in support of Newton’s evaluations on the simplicity of his preferred con-
structions: his are largely aesthetic criteria. Considering them is however crucial for
our understanding of Newton’s views concerning mathematical method.

7Notice that Newton employed the term ‘universal arithmetic’ for algebra, since it is concerned with the
doctrine of operations, not applied to numbers, but to general symbols.

8[8], vol. 2, 226.
9[9], vol. 5, 425–7.
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As a matter of fact, Newton – this master of algebraic manipulations – in the
mid 1670s developed a deep distaste for symbolism and distanced himself from the
mathematics of the ‘moderns’. He wrote:

The Modern Geometers are too fond of the Speculation of Equations. The
Simplicity of these is of an Analytick Consideration. [in the Appendix to the
Arithmetica Universalis] [w]e treat of Composition, and Laws are not given to
Composition from Analysis. Analysis does lead to Composition: but it is not
true Composition before it is freed from Analysis. If there be never so little
Analysis in Composition, that Composition is not yet real. Composition in it
self is perfect, and far from a Mixture of Analytick Speculations.10

This position, let me restate it, does not exclude the use of algebra in the analysis;
it does, however, rule out algebraic criteria of demarcation and simplicity from the
synthesis. As Newton was to affirm in a manuscript dating from the early 1690s:

if a question be answered […] that question is resolved by the discovery of
the equation and composed by its construction, but it is not solved before the
construction’s enunciation and its complete demonstration is, with the equation
now neglected, composed.11

But, around 1680, Newton moved a step forward in his opposition to the method
proposed in the Géométrie: not only Cartesian synthesis, but also Cartesian analysis
fell under his fierce attack. He developed a deep admiration for the ancient Greek
mathematicians, while he criticized in bitter terms the symbolical analysis pursued
by the moderns. He began to doubt that the analysis of the Greeks was algebraical, he
rather suspected that Euclid and Apollonius possessed a more powerful geometrical
analysis displayed in the three lost books on Porisms attributed to Euclid and described
in Book 7 of the Mathematical Collection. So not only the composition (the synthesis)
had to be freed from algebra, the algebraic calculus had to be avoided also in the
process of resolution (the analysis). His target was often Descartes. For instance in
the late 1670s, commenting on Descartes’ solution of Pappus problem, he stated with
vehemence:

To be sure, their [the Ancients’] method is more elegant by far than the Carte-
sian one. For he [Descartes] achieved the result by an algebraic calculus
which, when transposed into words (following the practice of the Ancients
in their writings), would prove to be so tedious and entangled as to provoke
nausea, nor might it be understood. But they accomplished it by certain simple
propositions, judging that nothing written in a different style was worthy to be
read, and in consequence concealing the analysis by which they found their
constructions.12

10[8], vol. 2, 250.
11[9], vol. 7, 307.
12[9], vol. 4, 277.
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Newton was not alone in his battle against the algebraists. Similar statements can be
found in the polemic works of Thomas Hobbes. But probably the deepest influence
on Newton in this matter was played by his mentor Isaac Barrow. Newton’s quest
for the ancient, non-algebraical, porismatic analysis led him to develop an interest in
projective geometry (see Figure 5).

Figure 5. Newton was interested in using projective transformations as a heuristic analytic tool.
Here we reproduce the diagram for Lemma 22, Book 1, of the Principia. In this Lemma we are
taught how ‘To change figures into other figures of the same class’ (namely, algebraic curves
of the same degree). The figure to be transmuted is the curve HGI . Draw the straight parallel
lines AO and BL cutting any given third line AB in A and B. Then from some point O in the
line AO draw the straight line OD. From the point d erect the ordinate dg (you can choose any
angle between the ‘new ordinate’ dg and the ‘new abscissa’ ad). The new ordinate and abscissa
have to satisfy the following conditions: AD = (AO × AB)/ad and DG = (AO × dg)/ad.
These transformations are exactly those occurring between figures projected from one plane into
another. Now suppose that point G ‘be running through all the points in the first figure [HGI]
with a continual motion; then point g – also with a continual motion – will run through all the
points in the new figure [hgi]’. Source: [11], 162.]

He convinced himself that the ancients had used projective properties of conic
sections in order to achieve their results. Moving along these lines he classified
cubics into five projective classes.13

13From his work on cubics ([8], vol. 2, 137–161) Newton derived two lessons. First, Descartes’ classification
of curves by degree is an algebraic criterion which has little to do with simplicity. Indeed, cubics have rather
complex shapes compared to mechanical (transcendental) curves such as the Archimedean spiral. Second, it is
by making recourse to projective classification that one achieves order and generality.
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5. Newton’s new analysis

Now that we know more about Newton’s views concerning the role of algebraic
symbolism in the method of problem solving, we are in the position to step back
to Newton’s memorandum on his early mathematical discoveries that I quoted in
Section 1. There he mentions the direct and the inverse methods of fluxions. The
direct method allowed the determination of tangents (and curvature) to plane curves.
Newton approached this problem by conceiving curves as generated by the continuous
‘flow’ of a point. He called the geometric magnitudes generated by motion ‘fluents’,
while ‘fluxions’ are the instantaneous rates of flow. In the 1690s he denoted fluxions
with overdots, so that the fluxion of x is ẋ. He deployed a variety of strategies in order
to determine tangents. Some of them are algorithmic, but in many cases Newton made
recourse to kinematic methods. In Newton’s mathematical writings the algorithm is
indeed deeply intertwined with geometrical speculations.

By resolving motion into rectilinear components Newton could determine the
tangent by composition of motions, even in the case of mechanical lines (see Figure 6).
Indeed, the possibility to deal with transcendental curves (as the spiral and the cycloid)
was top in Newton’s agenda. Or one could focus attention on the ‘moment of the arc’
generated in a very short interval of time (Newton termed the infinitesimal increment
acquired in an infinitesimal interval of time a ‘moment’) and establish a proportion
between the moment of the abscissa and the moment of the ordinate and other finite
lines embedded in the figure. When the curve was expressed symbolically via an
equation Newton had ‘rules’which allowed him to calculate the tangent (see Figure 7).
One recognizes here rules which are ‘equivalent’ to those of the differential calculus;
but the reader should be reminded that this equivalence was, and still is, object of
debate.

The inverse method of fluxions was Newton’s masterpiece. It is this method that
allowed him to approach the problem of ‘squaring curves’. By conceiving a surface t as
generated by the flow of the ordinate y which slides at a right angle over the abscissa z,
he understood that the rate of flow of the surface’s area is equal to the ordinate (he
stated ṫ/ż = y/1). This is how the idea of integration as anti-differentiation was born
in Newton’s mind. His approach consisted in applying the direct method to ‘equations
at will [which] define the relationship of t to z’. One thus obtains an equation for ṫ

and ż, and so ‘two equations will be had, the latter of which will define the curve, the
former its area’.14 Following this strategy Newton constructed a ‘Catalogue of curves’
which can be squared by means of ‘finite equations’ (see Figure 8). In Leibnizian
terms, he built the first integral tables in the history of mathematics.

Newton attached much importance to the inverse method. With almost visionary
mathematical understanding of what is truly revolutionary, while still in his early
years, he wrote:

If two Bodys A & B, by their velocitys p & q describe ye lines x & y.

14[9], vol. 3, 197.
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& an Equation bee given expressing ye relation twixt one of ye lines x,
& ye ratio q/p of their motions q & p; To find ye other line y. Could
this ever bee done all problems whatever might bee resolved.15

Figure 6. Newton’s early work (November 1666) on tangents to ‘mechanicall lines’ (i.e. tran-
scendental plane curves). His technique consisted in conceiving curves as generated by motion
and resolving motion into components. Source: [9], vol. 1, 378.

15[9], vol. 1, 403.
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Figure 7. Newton’s algorithm for the direct method of fluxions. In this example he calculates
the relation between fluxions (instantaneous speeds) ẋ and ẏ of fluent quantities (magnitudes
changing continuously in time) x and y related by the equation x3 − ax2 + axy − y3 = 0.
Source: [8], vol. 1, 50.

In this context Newton developed techniques equivalent to integration by parts and
substitution.

Newton labelled the techniques of series expansion, tangent determination and
squaring of curves as the ‘method of series and fluxions’. This was, he proudly
stated, a ‘new analysis’ which extended itself to objects that Descartes had banished
from his ‘common analysis’– such as mechanical curves – thanks to the use of infinite
series:

And whatever common analysis performs by equations made up of a finite
number of terms (whenever it may be possible), this method may always
perform by infinite equations: in consequence, I have never hesitated to
bestow on it also the name of analysis.16

According to Newton, the ‘limits of analysis are enlarged by […] infinite equations:
[…] by their help analysis reaches to all problems’.17

16[9], vol. 2, 241.
17[10]
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Figure 8. The beginning of Newton’s table of curves (an integral table, in Leibnizian terms),
obtained thanks to understanding of what we call the ‘fundamental theorem of calculus’. Here
Newton lists the first four ‘orders’. z is the abscissa, y the ordinate, t the area. In Newton’s
notation ṫ/ż = y/1. Notice that d, e, f, g, h are constants (d is a constant!), η is integer or
fractional, and R stands for

√
e + f zη or

√
e + f zη + gz2η. Source: [8], vol. 1, 105.

6. Newton’s synthetical method

One should recall that the ‘new analysis’ occupied in Newton’s agenda a place which,
according to the Pappusian canon, was subsidiary to the synthesis or construction, and
that the construction had to be carried on in terms independent of algebraic criteria.
For instance, as to the squaring of curves (in Leibnizian terms, integration) he wrote:

After the area of some curve has thus been found, careful considerations
should be given to fabricating a demonstration of the construction which
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as far as permissible has no algebraic calculation, so that the theorem
embellished with it may turn out worthy of public utterance.18

Newton therefore devoted great efforts to providing geometrical demonstrations,
somewhat reminiscent of Archimedean exhaustion techniques, of his ‘analytical’
quadratures. Only such demonstrations were deemed by him ‘worthy of public utter-
ance’.

It is in this context that Newton in the 1670s began reworking his early discoveries
in ‘new analysis’ in terms that he conceived concordant with the constructive geomet-
rical methods of the ancients. He termed this more rigorous approach the ‘synthetical
method of fluxions’ and codified it around 1680 in a treatise entitled Geometria curvi-
linea ([9], vol. 4, 420–521). In this method no infinitesimals, or ‘moments’, occurred
and no algebraic symbols were deployed. Everything was based upon geometric limit
procedures that Newton termed the ‘method of first ratios of nascent quantities and
last ratios of vanishing quantities’. It is this method that was widely deployed in the
Principia (1687) (see Figure 9). It is somewhat astonishing to see one of the most

Figure 9. In Section 1, Book 1 of the Principia Newton lays down his ‘method of first and last
ratios’, a geometric limit procedure that allows him to avoid infinitesimals. In Lemma 2 Newton
shows that a curvilinear area AabcdE can be approached as the limit of inscribed AKbLcMdD

or circumscribed AalbmcndoE rectilinear areas. Each rectilinear surface is composed of a
finite number of rectangles with equal bases AB, BC, CD, etc. The proof is magisterial in
its simplicity. Its structure is still retained in present day calculus textbooks in the definition
of the Riemann integral. It consists in showing that the difference between the areas of the
circumscribed and the inscribed figures tends to zero, as the number of rectangles is ‘increased
in infinitum’. In fact this difference is equal to the area of rectangle ABla which, ‘because its
width AB is diminished in infinitum, becomes less than any given rectangle’. In Newton’s terms
AB is a ‘vanishing quantity’. Source: [11], 74.

18[9], vol. 3, 279.
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creative algebraists of the history of mathematics spend so much time and effort in
reformulating his analytical results in geometric terms, but Newton had compelling
reasons to do so.

First, Newton in his programme of reformation of natural philosophy attributed
an important role to mathematics as a source of certainty. From the early 1670s he
expressed his distaste for the probabilism and hypotheticism that was characteristic of
the natural philosophy19 practiced at the Royal Society by people like Robert Hooke
and Robert Boyle. His recipe was to inject mathematics into natural philosophy. As
he stated:

by the help of philosophical geometers and geometrical philosophers,
instead of the conjectures and probabilities that are being blazoned about
everywhere, we shall finally achieve a science of nature supported by the
highest evidence. ([12])

But if mathematics has to provide certainty to natural philosophy her methods must
be above dispute, and Newton was keenly aware of the fact that the new analysis was
far from being rigorous.

Second, Newton soon developed a deep anti-Cartesianism associated with a con-
viction of the superiority of the ancients over the moderns. From his point of view
Descartes was the champion of an impious mechanistic philosophy which, conceiving
nature as an autonomous mechanism, denied any role to God’s providence. Newton
conceived himself as a restorer of an ancient, forgotten philosophy according to which
nature is always open to the providential intervention of God. Indeed, he thought that,
according to the theory of gravitation – which he was convinced the ancient Hebrews
possessed–, the quantity of motion in the universe was bound to decline if divine inter-
vention had not prevented the ‘corruption of the heavens’. The modern philosophers
were dangerous from a theological point of view and had to be opposed on all grounds.
Therefore, also in mathematics Newton looked with admiration to ancient exemplars
and conceived himself as a restorer of their glory. It goes without saying that the
above reasons led Newton into a condition of strain, since his philosophical values
were at odds with his mathematical practice, which was innovative, symbolical, and
– pace Newton – deeply Cartesian.

Several hitherto unexplained aspects of Newton’s mathematical work are related
to this condition of stress and strain that characterizes his thoughts on mathematical
method. Why did Newton fail to print his method of series and fluxions before the
inception of the priority dispute with Leibniz? Why did he hide his competence
in quadratures when writing the Principia, which are written mostly in geometrical
style? Even though there is no single answer to these vexed questions, I believe that
Newton’s conviction that the analytical symbolical method is only a heuristic tool,

19For Newton the aim of ‘natural philosophy’is to deduce the forces from phenomena established by experiment,
and – once established the forces – to deduce new phenomena from them. Nowadays we would call this enterprise
‘physics’.
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not ‘worthy of public utterance’, can in part explain a policy of publication which was
to have momentous consequences in the polemic with Leibniz.

7. Leibniz’s views

When the war with Leibniz exploded in 1710 Newton had to confront an opponent
who not only advanced mathematical results equivalent to his, but was promoting a
different view concerning mathematics.20

The rhetoric on the novelty of the calculus pervades Leibniz’s writings. Reference
to the ancient mathematicians generally took the rather abused form of a tribute to
Archimedes’ ‘method of exhaustion’. Leibniz in most of his declarations concerning
the calculus wished to highlight the novelty and the revolutionary character of his
algorithm, rather than continuity with ancient exemplars. This approach is quite at
odds with Newton’s ‘classicism’. Furthermore, Leibniz often referred to the heuristic
character of the calculus understood as an algorithm independent from geometrical
interpretation. It is exactly this independence that would render the calculus so effica-
cious in the process of discovery. The calculus, according to Leibniz, should also be
seen as an ars inveniendi (an art of discovery): as such it should be valued by its fruit-
fulness, rather than by its referential content. We can calculate, according to Leibniz,
with symbols devoid of referential content (for instance, with

√−1), provided the
calculus is structured in such a way as to lead to correct results.21

Writing to Christiaan Huygens in September 1691, Leibniz affirmed with pride:

It is true, Sir, as you correctly believe, that what is better and more
useful in my new calculus is that it yields truths by means of a kind of
analysis, and without any effort of the imagination, which often works
as by chance. ([13])

20The circumstances surrounding the controversy between Newton and Leibniz have been analysed in detail
by Rupert Hall [15] and Tom Whiteside [9], vol.8. In broad outlines let me recall a few bare facts. Newton
formulated his method of series and fluxions between 1665 and 1669. Leibniz had worked out the differential
and integral calculus around 1675 and printed it in a series of papers from 1684. It is clear from manuscript
evidence that he arrived at his results independently from Newton. It is only in part in Wallis’ Algebra in 1685
and Works in 1693 and 1699, and in full in an appendix to the Opticks in 1704, however, that Newton printed
his method. In 1710 a British mathematician, John Keill, stated in the Philosophical Transactions of the Royal
Society that Leibniz had plagiarized Newton. After Leibniz’s protest a committee of the Royal Society secretly
guided by its President, Isaac Newton, produced a publication – the so-called Commercium epistolicum (1713)
– in which it was maintained that Newton was the ‘first inventor’ and that ‘[Leibniz’s] Differential Method is
one and the same with [Newton’s] Method of Fluxions’. It was also suggested that Leibniz, after his visits to
London in 1673 and 1676, and after receiving letters from Newton’s friends, and from Newton himself (in fact
Newton addressed two letters to Leibniz in 1676) had gained sufficient information about Newton’s method to
allow him to publish the calculus as his own discovery, after changing the symbols. It is only after the work of
historians such as Fleckenstein, Hofmann, Hall and Whiteside that we have the proof that this accusation was
unjust. Newton and Leibniz arrived at equivalent results independently and following different paths of discovery.

21Complex numbers received a geometric interpretation only around 1800 thanks to Jean Robert Argand, Carl
Friedrich Gauss, and Caspar Wessel.
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Leibniz was thus praising the calculus as a cogitatio caeca and promoted the ‘blind
use of reasoning’ among his disciples. Nobody, according to Leibniz, could follow a
long reasoning without freeing the mind from the ‘effort of imagination’.22

Leibniz conceived of himself as the promoter of new methods of reasoning, rather
than ‘just’a mathematician. The calculus was just one successful example of the power
of algorithmic thinking. The German diplomat was interested in promoting in Europe
the formation of a group of intellectuals who could extend a universal knowledge
achieved thanks to a new algorithm that he termed universal characteristic. He thus
helped to form a school of mathematicians who distinguished themselves by their
ability in handling the differentials and the integrals and by their innovative publication
strategy. Thanks to Leibniz’s recommendation, they colonized chairs of mathematics
all over Europe. The efficacy of this new algorithm was affirmed to be independent
from metaphysical or cosmological questions. The persons who practised it had to
be professional mathematicians, rather than ‘geometrical philosophers’, able to teach
and propagate knowledge of calculus.

A typical Leibnizian attitude emerges in the context of the vexed question of
the existence of infinitesimals. The new calculus was often attacked, since – it was
maintained – it employed symbols devoid of meaning, such as differentials ordered
into a bewildering hierarchy of orders. Newton, as we know, was particularly sensitive
to such criticisms, and tried in his synthetical method to dispense with infinitely small
quantities. Leibniz, on the other hand, repeated many times that for him the question
of the existence of infinitesimals had to be distinguished from that of their usefulness
as algorithmic devices. While he was leaning, for philosophical reasons, towards a
denial of the existence of infinitesimals, he also wanted to stress that this ontological
question was somewhat extraneous to mathematics. A typical statement, written in
the early years of the eighteenth century, is the following:

We have to make an effort in order to keep pure mathematics chaste from
metaphysical controversies. This we will achieve if, without worrying
whether the infinites and infinitely smalls in quantities, numbers and
lines are real, we use infinites and infinitely smalls as an appropriate
expression for abbreviating reasonings. ([14])

Leibniz was thus leaving to his disciples the choice of maintaining, philosophically
speaking, different approaches to the ontological question on the existence of in-
finitesimals. What he wished to defend was their utility as symbols in mathematical
calculation.

8. The war against Leibniz: methodological aspects

When Newton had to confront Leibniz in the squabble over priority he was con-
cerned in building up a forensic and historical document whose purpose was to prove

22[14], 205.
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Figure 10. A portrait of Newton in old age (Source: [1], 831). He proudly opens the Principia at
a page devoted to the attraction of extended bodies. In dealing with this problem Newton made
recourse to his ‘inverse method of fluxions’ (the equivalent of Leibniz’s integral calculus) which
allowed him to ‘square curves’. As a matter of fact, only by making recourse to his tables of
curves (‘integral tables’), see Figure 8, could Newton solve several problems in the Principia.
Such analytic methods were not, however, made explicit to the reader. In the polemic with the
Leibnizians – who claimed that absence of calculus from the Principia was proof positive of
Newton’s ignorance of quadrature techniques prior to 1687 – Newton was forced to maintain,
with some exaggeration, that ‘By the help of this new Analysis Mr Newton found out most of the
Propositions in his Principia Philosophiae. But because the Ancients for making things certain
admitted nothing into Geometry before it was demonstrated synthetically, he demonstrated the
Propositions synthetically that the systeme of the heavens might be founded upon good Geometry.
And this makes it now difficult for unskillful men to see the Analysis by wch those Propositions
were found out.’ ([9], vol. 8, 599). On the issue of Newton’s use of analytic methods in the
Principia see [16].

Leibniz’s plagiarism. But he did not do only this, he also wished to highlight the
superiority of his method over Leibniz’s calculus. The mathematical programme that
Leibniz was promoting with so much success was at odds with Newton’s deeply felt
values.

There is not only mathematics in this story, of course. Leibniz had to be opposed
for a series of reasons that have to do with the Hannoverian succession. The German,
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in fact, who was employed by the Hannover family, wished to move to London as
Royal Historian. The idea of having in England such a towering intellectual who was
defending a philosophical view which contradicted Newton’s voluntarist theology
and who was promoting the unification of the Christian Churches was anathema for
Newton and his supporters.

For our purposes, it is interesting to turn to some passages that Newton penned
in 1715 contained in an anonymous ‘Account’ to a collection of letters, the Commer-
cium epistolicum, that the Royal Society produced in order to demonstrate Leibniz’s
plagiarism.

In the ‘Account’, speaking of himself in the third person, Newton made it clear
that Leibniz had only approached the analytical, heuristic part of the problem-solving
method. He wrote:

Mr. Newton’s Method is also of greater Use and Certainty, being adapted
either to the ready finding out of a Proposition by suchApproximations as
will create no Error in the Conclusion, or to the demonstrating it exactly;
Mr. Leibniz’s is only for finding it out.23

So according to Newton, Leibniz had achieved only the first stage of the Pappusian
method and had not attained the rigorous, constructive demonstration. This, as we
know, had to be carried on in purely geometric terms.

Further, Newton insisted on the fact that the emphasis with which Leibniz praised
the power of his symbolism was excessive. Algorithm is certainly important for
Newton, but it has to be viewed only as a component of the method:

Mr Newton — he wrote – doth not place his Method in Forms of Symbols,
nor confine himself to any particular Sort of Symbols.24

Finally, Newton noticed that in his method of first and last ratios no infinitesimals
occur, everything being performed according to limiting procedures. From Newton’s
point of view the avoidance of infinitesimals and the possibility of interpreting alge-
braic symbols as geometric magnitudes had the double advantage of rendering his
method endowed with referential content and consonant with ancient mathematics:

We have no ideas of infinitely little quantities & therefore Mr New-
ton introduced fluxions into his method that it might proceed by finite
quantities as much as possible. It is more natural & geometrical be-
cause founded on primae quantitatum nascentium rationes [first ratios
of nascent quantities] wch have a being in Geometry, whilst indivisibles
upon which the Differential method is founded have no being either in
Geometry or in nature. […] Nature generates quantities by continual
flux or increase, & the ancient Geometers admitted such a generation of
areas & solids […]. But the summing up of indivisibles to compose an
area or solid was never yet admitted into Geometry.25

23Cited in [15], 296.
24Cited in [15], 294.
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Nature and geometry are the two key concepts: they allow Newton to defend his
method because of its continuity with ancient tradition as well as its ontological
content.

In his polemic writings against Leibniz Newton engineered an attack which was
aimed at proving the German’s plagiarism. One of Newton’s priorities was to assemble
evidence which proved Leibniz guilty, and he did so with means that show his ability
to employ archival sources as well as his prejudice and egotism. However, Newton
also defended positions concerning mathematical method that have deep roots in his
protracted opposition against Descartes and the ‘modern mathematicians’ who, by
confounding geometry and algebra, ‘have lost the Simplicity in which all the Elegance
of Geometry consists’.
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