

Biological evaluation of 3-[18F]fluoro-α-methyl-D-tyrosine (D-[18F]FAMT) as a novel amino acid tracer for positron emission tomography

Y. Ohshima¹, H. Hanaoka², H. Tominaga³, Y. Kanai⁴, K. Kaira³, A. Yamaguchi³, S. Nagamori⁴, N. Oriuchi³, Y. Tsushima³, K. Endo³, N. S. Ishioka¹

¹Quantum Beam Science Directorate, Japan Atomic Energy Agency

²Graduate School of Pharmaceutical Sciences, Chiba University,

³Graduate School of Medicine, Gunma University

⁴Graduate School of Medicine, Osaka University

1. Background and purpose

1-1 L-[18F]FAMT and positron emission tomography (PET)

L-[18F]FAMT (3-[18F]fluoro-α-methyl-L-tyrosine)

- Amino acid tracer for PET imaging of tumors
- Higher specificity to tumor than [18F]FDG (Low accumulation in brain or inflammatory site)

However...,

- Body clearance of L-[¹⁸F]FAMT is slower than that of [¹⁸F]FDG.
- L-[18F]FAMT is highly accumulated and retained in the kidney.

Decrease of diagnostic accuracy

1-2 Development of a novel PET tracer using D-amino acid

L-amino acids

(unnatural amino acids)

- Previous reports have shown some favorable properties of p-amino acids for PET tracers.
 - Advantages of D-amino acids
 - Rapid clearance from kidney to urine
 - Low retention in non-target organs
 - Accumulative in tumors

Thus, we expected that the D-isomer of FAMT (D-[18F]FAMT) could facilitate body clearance and reduce renal accumulation of L-isomer.

In this study, D-[18F]FAMT was synthesized and evaluated its usefulness.

2. Experiments and Results

2-1 Experimental design

To evaluate usefulness of D-[18F]FAMT as a novel PET tracer, we carried out following experiments.

Experiments

- 1. Production of D- or L-[18F]FAMT
- 2. In vitro and in vivo stability
- 3. Cellular uptake studies (Time-course)
- 4. Cellular uptake studies (mechanism of cellular uptake)
- 5. Biodistribution studies
- 6. Urinary excretion
- 7. PET imaging
- 8. Dosimetry

2. Experiments and Results

2-1 Experimental design

To evaluate usefulness of D-[18F]FAMT as a novel PET tracer, we carried out following experiments.

Experiments

- 1. Production of D- or L-[18F]FAMT (Briefly)
- 2. In vitro and in vivo stability (Briefly)
- 3. Cellular uptake studies (Time-course)
- 4. Cellular uptake studies (mechanism of cellular uptake)
- 5. Biodistribution studies
- 6. Urinary excretion
- 7. PET imaging
- 8. Dosimetry

2.2 ¹⁸F production and synthesis of [¹⁸F]FAMT

Production of ¹⁸F

Nuclear reaction	20 Ne (d, $lpha$) 18 F	
Target	²⁰ Ne gas	
lon	Deuteron (10 MeV)	
Irradiation	30 min	

Synthesis of D- or L-[18F]FAMT

(FAMT automatic synthesizer)

Direct fluorination of a-methyltyrosine.

Reference: Nucl. Med. Commun. 1997; 18: 169-175.

- ➤ Radiolabeling yield: approximately 10%
- ➤ Radiochemical purity: 96 ~ 99%
- ➤ Specific activity: 120 GBq/mmol
- > No contamination with each enantiomer
- ➤ Stability: High (in vitro and in vivo) (Over 95% of FAMT remained intact.)

2.3 Cellular uptake of D- or L- [18F]FAMT

2.4 Biodistribution in tumor-bearing mice

D-[18F]FAMT showed

- Rapid clearance from the blood
- ◆ Low distribution to normal organ (especially kidney)
- Low distribution to tumor

2.5 Tumor-to-blood (T/B) and tumor-to-muscle (T/M) ratios

To expect the contrast of tumor to background in PET image, T/B and T/M ratios were calculated from radioactivity in the organs.

	30 min	1 h	3 h
T/B ratio			
D-[¹⁸ F]FAMT	1.45 ± 0.47	4.35 ± 0.82	* Not calculated
L-[¹⁸ F]FAMT	2.37 ± 0.51	5.13 ± 1.17	13.13 ± 3.92
T/M ratio			
D-[¹⁸ F]FAMT	3.19 ± 1.96	3.72 ± 2.36	2.12 ± 0.46
L-[18F]FAMT	3.61 ± 1.06	3.37 ± 0.25	2.54 ± 0.36

^{*}Because the radioactivity of D-[18F]FAMT was decreased to the background level.

The contrast of D-[18F]FAMT would be similar to that of L-[18F]FAMT in PET imaging.

2.6 PET imaging using D- or L- [18F]FAMT

Accumulation and retention in the kidney: D-[18F]FAMT << L-[18F]FAMT PET using D-[18F]FAMT enabled clear visualization of the tumors.

3. Conclusions

Summary of D-[18F]FAMT in this study

- (1) D-[18F]FAMT was successfully synthesized.
- (2) D-[18F]FAMT was highly stable.
- (3) Cellular uptake of D-[18F]FAMT was low and slow.
- (4) D-[18F]FAMT was rapidly cleared from the body.
- (5) D-[18F]FAMT was rarely distributed and retained in normal organs.
- (6) Tumor accumulation of D-[18F]FAMT was low, but T/B and T/M ratios were similar to those of L-[18F]FAMT.
- (7) PET using D-[18F]FAMT provided a clear visualization of tumor.

D-[18F]FAMT could potentially serve as a novel PET tracer for imaging of malignant tumors.

4. Perspectives

The future studies of D-[18F]FAMT are shown as follows.

- Differences of the mechanism in renal accumulation between D- and L- [18F]FAMT.
- PET imaging of renal or urological tumor using D-[18F]FAMT.

5. Acknowledgements

This work was supported by Funding Program for Next Generation World-Leading Researchers (NEXT program) from Cabinet Office, Government of Japan.

I'd like to express my great appreciation to my co-workers.

Supplemental slide 1 Fluorination of α -methyltyrosine

Fluorination step of α -methyltyrosine

1 [18F]Fluorine(18F₂) + F₂
$$\longrightarrow$$
 18F/F₂

2
$$^{18}F/F_2 + CH_3COOK/CH_3COOH \longrightarrow CH_3COO^{18}F$$

Ref., Tomiyoshi K, et al. Nucl Med Commun. 1997;18:169-75.

Synthesis of isomers of ¹⁸F-labelled amino acid radiopharmaceutical: position 2- and 3-L-¹⁸F-alpha-methyltyrosine using a separation and purification system.

Supplemental slide 2 Mechanism of cellular uptake

- •α-Methyl-L-tyrosine: selective inhibitor of LAT1
- BCH: selective inhibitor of system L
- MeAIB: selective inhibitor of system ASC

LAT1 is involved in cellular uptake of D-[18F]FAMT.

The expression of LAT1 is also confirmed by RT-PCR and immunoblotting.

Supplemental slide 3 Mechanism of cellular uptake

Proposed model for the substrate-binding site of LAT1.

Reference: Uchino H. et al. Mol. Pharmacol. 61:729-737, 2002

There are two interactions involved in L-amino acid recognition by LAT1.

① Electronic interaction

2 Hydrophobic interaction

Both interactions would be difficult with the D-isomers because of the conformational differences

Supplemental slide 4 Urinary excretion

To confirm rapid excretion of D-[18F]FAMT, radioactivity in the urine was measured.

Urinary excretion D-[18F]FAMT >> L-[18F]FAMT

Supplemental slide 5 Dosimetry

Since D-[18F]FAMT was rapidly cleared from the body, we estimated exposure dose of D- or L-[18F]FAMT using calculation code.

Calculation code

Organ Level Internal Dose Assessment (OLINDA)

Nuclide: F-18

Model: Adult Male

Kinetics: Biodistribution data, such as time, % injected dose, and target organ

masses were substituted for kinetic model and fit them to a function.

L-[18F]FAMT: Effective Dose: 2.73 x 10⁻³ mSv/MBq

D-[18F]FAMT: Effective Dose: 7.74 x 10⁻⁴ mSv/MBq

D-[18F]FAMT decreases exposure dose to approximately 1/4 of L-[18F]FAMT.