
Assessing the Overhead of ML Exceptions by Selective CPS TransformationJung-taek Kim, Kwangkeun YiProgramming Languages Lab. �Department of Computer ScienceKAIST y Olivier DanvyBRICS zDepartment of Computer ScienceUniversity of Aarhus x
AbstractML's exception handling makes it possible to describe ex-ceptional execution ows conveniently, but it also forms aperformance bottleneck. Our goal is to reduce this overheadby source-level transformation.To this end, we transform source programs into continu-ation-passing style (CPS), replacing handle and raise expr-essions by continuation-catching and throwing expressions,respectively. CPS-transforming every expression, however,introduces a new cost. We therefore use an exception anal-ysis to transform expressions selectively: if an expression isstatically determined to involve exceptions then it is CPS-transformed; otherwise, it is left in direct style.In this article, we formalize this selective CPS transfor-mation, prove its correctness, and present early experimen-tal data indicating its e�ect on ML programs.1 IntroductionProgramming with exceptions is an expensive a�air in ML,since it involves installing and uninstalling exceptions han-dlers at run time. This dynamic nesting of handlers canbe a performance bottleneck if it is frequent, e.g., when thehandler exists in the body of a recursive function.1.1 An exampleFor example, let us consider the problem of substituting aclosed expression for a variable in another expression. Theexpression is either a variable, a lambda abstraction, or anapplication (see Figure 1). In a na��ve implementation of�http://pllab.kaist.ac.krThis work is supported in part by Korea Science and EngineeringFoundation grant KOSEF 961-0100-001-2 and by Korea Ministry ofInformation and Communication grant 96151-IT2-12.yDepartment of Computer Science (http://cs.kaist.ac.kr),Korea Advanced Institute of Science & Technology,Taejon 305-701, Korea.E-mail: fjudaigi,kwangg@cs.kaist.ac.krzBasic Research in Computer Science (http://www.brics.dk),Centre of the Danish National Research Foundation.xNy Munkegade, Building 540, DK-8000 Aarhus C, Denmark.E-mail: danvy@brics.dk

structure Exp= structdatatype exp = VAR of string| LAM of string * exp| APP of exp * expendFigure 1: A sample de�nition of expressionssubstitution, the source expression is entirely copied. In aneconomical implementation, the subexpressions una�ectedby the substitution (i.e., those where the variable to sub-stitute does not occur free) are shared between the sourceexpression and the resulting expression. This economicalimplementation is an instance of what G�erard Huet, in themid-80's, called \sharing transducers."We measured the performances of two sharing transduc-ers: one using exceptions (Figure 2) and the other usingcontinuations (Figure 3). Figure 4 displays two extremecases: (a) one where the source expression yields much ex-ception raising and handling; and (b) one where the sourceexpression yields no exception raising and handling at all.In Case (a), the continuation-based version is about twiceas fast as the exception-based version.1 In Case (b), thecontinuation-based version runs in about the same time asthe exception-based version.We also implemented a third sharing transducer, usinga disjoint sum instead of an exception or two continuations.In performance, it matches the continuation-based one, thusshowing that at least for sharing transducers, continuationsform a viable alternative solution to disjoint sums.Figure 4 shows that there is considerable room for im-provement, particularly when the input program uses excep-tions frequently. Our goal is to achieve this optimization bysource-level transformation(s). Since exceptions a�ect thecontrol ow of programs, we choose to translate the raiseand handle constructs into continuation-based idioms.1.2 This workWe remove raise and handle from ML programs by trans-forming them into continuation-passing style (CPS). Specif-ically, we pass two continuations: one for the normal courseof execution, and one for exceptional situations.1The peaks in the graph reect the situations where the programshit the memory thresholds that make the garbage collector increaseits heap size (which causes some overhead).

structure Subst_exn= structlocal open Expexception samein fun subst (x, e, b)= let fun walk (VAR x')= if x' = x then e else raise same| walk (LAM (x', b'))= if x' = x then raise same else LAM (x', walk b')| walk (APP (e0, e1))= let val e0' = walk e0in APP (e0', walk e1handle same => e1)endhandle same => APP (e0, walk e1)in walk bhandle same => bendendend Figure 2: Economical substitution using exceptionsstructure Subst_cps =structlocal open Expin fun subst (x, e, b)= let fun walk (VAR x') k h= if x' = x then k e else h ()| walk (LAM (x', b')) k h= if x' = x then h () else walk b' (fn b'' => k (LAM (x', b''))) h| walk (APP (e0, e1)) k h= walk e0(fn e0' => walk e1 (fn e1' => k (APP (e0', e1'))) (fn () => k (APP (e0', e1))))(fn () => walk e1 (fn e1' => k (APP (e0, e1'))) h)in walk b (fn b' => b') (fn () => b)endendend Figure 3: Economical substitution using continuationsX coordinate: the input expression size.Y coordinate: execution time in ms, using SML/NJ 110 on a Sun UltraSPARC 2 (user time + system time + gc time).
0

50

100

150

200

250

300

350

400

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS

(a) Exceptions are frequently raised. 0

100

200

300

400

500

600

700

800

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS

(b) No exceptions are raised.Figure 4: Performance di�erence: exception-based (Figure 2) versus continuation-based (Figure 3) versions

Passing two continuations to process exceptions is not anew idea: for example, Appel mentions it in his book oncompiling with continuations [App92]. However, and eventhough his ML compiler uses a CPS transformation, it doesnot remove raise and handle: these two constructs remainas primitive operators (sethdlr and gethdlr). We conjecturethat it was not cost-e�ective to pass two continuations toevery function as speci�ed, e.g., by Biagioni et al. [BCL+98,Figure 2].The new idea here is a cost-e�ective CPS transformationusing two continuations: we exploit the static informationfrom Yi and Ryu's exception analysis [YR97] to reduce thecontinuation-passing tra�c to where it is actually needed.To this end, we present a selective CPS transformation thatonly introduces continuations where they are needed, basedon the static information gathered by the exception analy-sis. Our selective CPS transformation thus generalizes boththe CPS transformation with two continuations (for expres-sions using exceptions) and the identity transformation (forexception-free expressions).We prove that this selective CPS transformation is cor-rect, and present some early experimental data that showits e�ectiveness for exception-intensive programs.1.3 Related workWe know of three earlier works using the idea of exploitingstatic information to perform a selective CPS transforma-tion. This has been done for strictness analysis [DH93a],for totality analysis [DH93b], and for binding-time analy-sis [DD95]. None of these selective CPS transformations,however, has been integrated in an actual compiler. Onlythe latter transformation has been integrated in a partialevaluator [Dus97]. In their work on \selective thunki�ca-tion," Steckler and Wand use a similar idea to reduce thenumber of thunks when converting a call-by-name programinto a call-by-value program, after strictness analysis [HD97,SW94].1.4 OverviewThe rest of this article is organized as follows. Section 2de�nes the syntax and semantics of our source language, asubset of the ML's core. Section 3 presents a na��ve CPStransformation that blindly passes continuations to everyexpression. Section 4 de�nes the annotation process of se-lecting candidate expressions for our selective transforma-tion. Section 5 formalizes our selective transformation andproves its correctness. Section 6 shows our preliminary ex-perimental data and discusses some more selective transfor-mations which we will consider if the ongoing experimentswith the selective transformation turn out to be not eco-nomical enough.2 Source Language2.1 Abstract syntaxWe consider ML's core language, which is call-by-value andhigher-order. Its abstract syntax reads as follows. (� de-notes a constructor.)

e ::= 1 unitj x variablej �x: e functionj fix f �x: e recursive functionj e1 e2 applicationj con � e exception constructionj decon e deconstructionj case e1 � e2 e3 switchj handle e1 � �x: e2 handle expressionj raise e raise exceptionAn exception value � �v is constructed by \con � e" whereevaluating e yields v. Symmetrically, an exception value� � v denoted by e is deconstructed into v by evaluating\decon e." Evaluating the case expression \case e1 � e2 e3"yields the value of e2 if the value of e1 is ��v; otherwise, ityields the value of e3. When evaluating the raise expression\raise e" e is �rst evaluated, yielding an exception value��v. The exception associated to � is then raised. The handleexpression \handle e1 � �x:e2" evaluates e1 �rst. If e1 yieldsan exception value ��v, this exception value is passed to�x:e2. Otherwise, the value of the handle expression is thevalue yielded by e1.For brevity, we omit datatype values, strings, and mem-ory operations (assignment, reference, and dereference) here.In reality, we work on the complete core language of Stan-dard ML.2.2 Operational semanticsWe de�ne the semantics of expressions with a structural op-erational semantics [Plo81] using Felleisen's evaluation con-texts [Fel87]. In doing so, we need to extend the expressionsto contain a set of values v and raised exceptions p thatrepresent terminated computations:v ::= 1 unitj �x: e functionj fix f �x: e recursive functionj ��v exception value with argument vp ::= ��v raised exceptionThe evaluation context C is de�ned byC ::= [] holej con � Cj decon Cj C ej v Cj case C � e1 e2j handle C � �x: ej raise CThis context de�nes a left-to-right, call-by-value reduction.As usual, we write C[e] if the hole in context C is �lledwith e. We use this context to de�ne the reduction rule forarbitrary expressions: e! e0C[e] ! C[e0]The single reduction step e! e0 for a redex e is de�ned inFigure 5. As usual, the notation [v=x]e denotes the newexpression that results from substituting v for every freeoccurrence of x in e.

Normal reduction steps:con � v ! ��vdecon ��v ! v(�x: e) v ! [v=x]e(fix f �x: e) v ! [v=x][fix f �x: e=f]ecase ��v � e1 e2 ! e1case ��v �0 e1 e2 ! e2 (�0 6= �)handle v � �x: e ! v
Exceptional reduction steps:raise ��v ! ��vraise ��v ! ��vhandle ��v � �x: e ! (�x: e) ��vhandle ��v �0 �x: e ! ��v (�0 6= �)con � ��v ! ��vdecon ��v ! ��vcase ��v �0 e1 e2 ! ��v��v e ! ��v(�x: e) ��v ! ��v(fix f �x: e) ��v ! ��vFigure 5: Reduction stepsT (1) = �hK;Hi: K(1)T (x) = �hK;Hi: K(x)T (con � e) = �hK;Hi: T (e) h�v: K (con � v); HiT (decon e) = �hK;Hi: T (e) h�v: K (decon v); HiT (�x: e) = �hK;Hi: K(�x: T (e))T (fix f �x: e) = �hK;Hi: K(fix f �x: T (e))T (e1 e2) = �hK;Hi: T (e1) h�f: T (e2) h�v: f v hK;Hi; Hi;HiT (case e1 � e2 e3) = �hK;Hi: T (e1) h�v: case v � (T (e2)hK;Hi) (T (e3)hK;Hi);HiT (handle e1 � �x: e2) = �hK;Hi: T (e1) hK;�v: case v � ((�x: T (e2)) v hK;Hi) (H v)iT (raise e) = �hK;Hi: T (e) hH;HiFigure 6: Na��ve CPS transformation TDe�nition 1 The semantics of a closed expression e is de-�ned to be the sequence of reduction stepse! e1 ! e2 ! � � � :If the sequence terminates with a value v (with an uncaughtexception ��v, respectively) after zero or more reductions,we write e �! v (e �! ��v; respectively)3 Na��ve CPS TransformationWe can remove the raise and handle expressions by passingtwo continuations to each expression. Consider, for example,the following handle expressionhandle e1 � �x: e2:The handler �x: e2 is installed prior to evaluating e1. There-fore, if an exception ��v is raised during this evaluation,then it is caught by the handler and �x: e2 is applied to ��v,yielding the value of the handle expression.The CPS transformation encodes both how to handle araised exception and how to proceed thereafter, with a han-dler continuation. This handler continuation is passed tothe sub-expressions of e1. Accordingly, a raise expressionis CPS-transformed with the current handler continuationin place of the current continuation. Note that, because ahandler continuation needs to encode how to continue afterthe handling, we also have to make the normal continuationready to be captured by a handler continuation. Thus we

keep passing two continuations (normal and handler contin-uations) to every expression.Figure 6 shows the de�nition of this CPS-transformationfunction T . The T function transforms expressions of type� to expressions of type (� ! Ans)� (Exn ! Ans) ! Ans.Theorem 1 (Correctness of T) For any program }} �! v =) T (}) hK;Hi �! K((v))} �! ��v =) T (}) hK;Hi �! H((��v))where the auxiliary function 	 coerces direct-style values toCPS values: 	(1) = 1	(�x: e) = �x: T (e)	(fix f �x: e) = fix f �x: T (e)	(��v) = ��	(v)Proof. Analogous to the proof of Plotkin's simulation theo-rem [Plo75]. In the proof we need to extend T to be de�nedfor values and raised exceptions:T (v) = �hK;Hi: K((v))T (��v) = �hK;Hi: H((��v))2 Transforming every expression into this CPS-form, asdone by T , however, o�sets the bene�t of removing raise-handle expressions. Indeed, every expression becomes ahigher-order function application that receives two functions(continuations).At this stage, two orthogonal optimizations can takeplace:

� We can perform administrative reductions, e.g., duringthe CPS transformation [DF92].� We can selectively apply the CPS transformation byexploiting the results of Yi and Ryu's exception anal-ysis [YR97]. The point is that an exception analy-sis tells us a conservative approximation of which ex-pressions may raise an uncaught exception when theyare evaluated and of which functions may raise an un-caught exception when they are applied. Therefore,such an analysis also tells us a safe approximation ofwhich expressions do not raise any uncaught excep-tions when they are evaluated and of which functionsdo not raise any uncaught exceptions when they areapplied. These latter expressions and functions neednot be CPS-transformed.4 AnnotationWe pass two continuations to an expression e to cater forthe case where uncaught exceptions raised while evaluatinge (in the future) are caught by a surrounding handler (thatwas installed in the past). The raise expression will call ahandler continuation that was passed to it from the outercontext. If we know that evaluating an expression will notyield an uncaught exception, there is no need to pass it anycontinuations since we know statically that these continua-tions would be of no use. Three cases occur:� If evaluating e cannot yield any uncaught exceptions(i.e., it can only yield normal values), then e needs nocontinuations.� If evaluating e may yield an uncaught exception whichis not handled in the complete program, then e needsno continuations either: we can just call an abort func-tion instead of raising this uncaught exception.� If evaluating e may yield an uncaught exception whichis handled in the complete program, then e needs twocontinuations.The expressions of the third kind are candidates to our se-lective CPS transformation. The other ones can be kept indirect style.Our selective CPS transformation therefore needs twopieces of information per source expression: whether the ex-pression is protected by a handler and which exceptions,if any, may be raised when the expression is evaluated.The �rst condition dee� is checked by scanning the sub-expressions in the scope of a handler (i.e., sub-expressionsof e in \handle e � �x: e0"), referencing a safe closure anal-ysis [YR97].2 The second condition bec� checks whetherevaluating e raises an exception �. It is based on Yi andRyu's exception analysis [YR97].If both the conditions dee� and bec�, for the same excep-tion �, hold for an expression e, the exceptional expressione becomes the candidate �e of our CPS transformation. Oth-erwise, the expression e is marked _e as normal.Figure 7 displays the rulesR(Exn analysis};Closure analysis})2For languages with exceptions that can carry functions, existingworks [Shi91, HM97, JW96, Ses89] cannot be used because exceptionanalysis and closure analysis are interdependent in ML. We thereforehad to devise our own closure analysis.

� 2 Exn analysis}(e)bec�handle e1 � �x: e2de1e�dcon �0 ee�dee� ddecon ee�dee� draise ee�dee�de1 e2e� �x: e 2 Closure analysis}(e1)de1e� de2e� dee�dcase e1 � e2 e3e�de1e� de2e� de3e�dee� bec��ebec� is read as \evaluating e may raise a �-exception."dee� is read as \a �-handler protects e."Once the analysis is completed,any expression e that is not marked as exceptional �eis marked as normal _e.Figure 7: Rules R(Exn analysis};Closure analysis}) for de-ciding whether an expression e in a program } is exceptional(�e) or normal (_e).for determining which expressions are exceptional in pro-gram }. The �rst analysis, Exn analysis}, maps each ex-pression of the program } to the set of exceptions thatmay be uncaught in the expression. The second analysis,Closure analysis}, maps each function expression to the setof lambda-abstractions that can ow into it. These two aux-iliary analyses are assumed correct. In our implementationwe use the ones developed by Yi and Ryu [YR97].De�nition 2 The annotated version Annotate(}) of a pro-gram } is the one resulting from marking each sub-expressione either as exceptional (�e) or as normal (_e), based on therules R(Exn analysis};Closure analysis}) in Figure 7.Theorem 2 (Safety of Annotation) If an expression eof a program is marked normal _e, then evaluating it yieldseither a normal value or an uncaught exception that abortsthe program.Proof. Assume for contradiction that an expression e evalu-ates into an uncaught exception that will be handled insidethe program. Then it must be marked exceptional �e becausebec� and dee� hold and are based on annotation rules thatuse Exn analysis} and Closure analysis}, both of which aresafe. 2Figure 8 shows the syntax of well-formed sets of normalexpressions _e and exceptional expressions �e, respectively.Let us list some noteworthy cases:� An application expression _e1 _e2 with all normal sub-expressions can be exceptional if a function that owsinto _e1 has an exceptional body.

Annotated expressions: e ::= _e j �eNormal expressions: _e ::= 1 j xj �x: _e j �x: �ej fix f �x: ej _e1 _e2j con � _e j decon _ej case _e1 � _e2 _e3j handle e1 � �x: _e2j handle _e1 � �x: �e2j raise _e
Exceptional expressions: �e ::= e1 e2j con � �ej decon �ej case �e1 � e2 e3j case e1 � �e2 e3j case e1 � e2 �e3j handle �e1 � �x: e2j raise eFigure 8: Two classes of expressions: normal or exceptionalDe�ne ?K = �x:x and ?H = �x:raise x.Transformation _T (_e) for normal expressions _e:_T (1) = 1_T (x) = x_T (�x: _e) = �x: (�hK;Hi: K(_T (_e)))_T (�x: �e) = �x: �T (�e)_T (fix f �x: _e) = fix f �x: �hK;Hi: K(_T (_e))_T (fix f �x: �e) = fix f �x: �T (�e)_T (_e1 _e2) = _T (_e1) _T (_e2) h?K ;?Hi_T (con � _e) = con � _T (_e)_T (decon _e) = decon _T (_e)_T (case _e1 � _e2 _e3) = case _T (_e1) � _T (_e2) _T (_e3)_T (handle _e1 � �x: _e2) = _T (_e1)_T (handle _e1 � �x: �e2) = _T (_e1)_T (handle �e1 � �x: _e2) = �T (�e1) h?K; �v: case v � ((�x: _T (_e2)) v) (?H v)i_T (raise _e) = ?H(_T (_e))Transformation �T (�e) for exceptional expressions �e:�T (_e1 _e2) = �hK;Hi: _T (_e1) _T (_e2) hK;Hi�T (�e1 _e2) = �hK;Hi: �T (�e1) h�f: (f _T (_e2) hK;Hi);Hi�T (_e1 �e2) = �hK;Hi: (�f: �T (�e2) h�v: (f v hK;Hi); Hi) _T (_e1)�T (�e1 �e2) = �hK;Hi: �T (�e1) h�f: �T (�e2) h�v: (f v hK;Hi);Hi; Hi�T (con � �e) = �hK;Hi: �T (�e)h�v: K(��v); Hi�T (decon �e) = �hK;Hi: �T (�e)h���v: K(v); Hi�T (case �e1 � _e2 _e3) = �hK;Hi: �T (�e1) h�v: case v � K(_T (_e2))K(_T (_e3));Hi�T (case _e1 � �e2 _e3) = �hK;Hi: case _T (_e1) � (�T (�e2)hK;Hi)K(_T (_e3))�T (case _e1 � _e2 �e3) = �hK;Hi: case _T (_e1) � K(_T (_e2)) (�T (�e3) hK;Hi)�T (case �e1 � �e2 _e3) = �hK;Hi: �T (�e1) h�v: case v � (�T (�e2) hK;Hi)K(_T (_e3));Hi�T (case �e1 � _e2 �e3) = �hK;Hi: �T (�e1) h�v: case v � K(_T (_e2)) (�T (�e3) hK;Hi);Hi�T (case _e1 � �e2 �e3) = �hK;Hi: case _T (_e1) � (�T (�e2) hK;Hi) (�T (�e3) hK;Hi)�T (case �e1 � �e2 �e3) = �hK;Hi: �T (�e1) h�v: case v � (�T (�e2)hK;Hi) (�T (�e3)hK;Hi);Hi�T (handle �e1 � �x: _e2) = �hK;Hi: �T (�e1) hK;�v: case v � K((�x: _T (_e2)) v) (H v)i�T (handle �e1 � �x: �e2) = �hK;Hi: �T (�e1) hK;�v: case v � ((�x: �T (�e2)) v hK;Hi) (H v)i�T (raise _e) = �hK;Hi: H(_T (_e))�T (raise �e) = �hK;Hi: �T (�e) hH;HiFigure 9: Selective CPS transformation

� raise _e can be normal3 if no handler exists that catchesthe exception _e.� handle �e1 � �x: _e2 can be normal or exceptional de-pending on whether an uncaught exception from �e1 ishandled by �x: _e2 or not.� The toplevel expression of the program is always mark-ed normal because it evaluates either into a normalvalue or into an uncaught exception.5 Selective CPS TransformationOur selective CPS transformation is de�ned by two trans-formation functions _T and �T , which transform normal andexceptional expressions, respectively. We transform a pro-gram } by applying _T to its annotated version Annotate(}):_T (Annotate(})):Each sub-expression of } is transformed by either _T or �T ,depending on its annotation. Figure 9 displays the de�ni-tions.�T transforms exceptional expressions of type � into ex-pressions of type (� ! �) � (Exn ! �) ! �. The type� is determined by the context where the transformation �Toccurs. If �T (�e1) occurs where �e1 is a sub-expression of anormal expression _e, then the result type � of the continua-tions becomes the type of _e. If �e1 is a sub-expression of anexceptional expression �e, then the � is determined by thecontext where �T (�e) occurs, and so on._T transforms normal expressions of type � into expres-sions of the same type, except for one case: _T always trans-form lambda-abstractions (�x: e and fix f �x: e) to receivecontinuations. This coercion is necessary when an excep-tional application can execute a normal body, which is pos-sible as follows. For an application _e1 _e2, let us assume thattwo lambda-abstraction �x: �e and �y: _e can ow into _e1. Be-cause of the exceptional body �e the application expressioncan be marked exceptional, hence is transformed by �T to�hK;Hi: _T (_e1) _T (_e2) hK;Hi:Then it is necessary to coerce the other function �y: _e toexpect continuations:�y: �hK;Hi: K(_T (_e)):Because of this coercion, if an application e1 e2 is trans-formed we must always pass two continuations. In caseof the normal transformation _T (e1 e2) we pass a dummypair h?K;?Hi. In case of the exceptional transformation�T (e1 e2) we pass the continuation pair hK;Hi received fromthe context.Note that even though the transformed program can stillhave raise expressions because of (�x: raise x), which is our?H function, such raise expressions are evaluated if and onlyif the input program raises exceptions that abort the pro-gram execution.3The word \normal" is slightly misleading here because such anexpression aborts the whole execution of the program|in fact, wereplace it by an abort operation. But since this operation does notneed to be passed any continuation, we can mark the expression asnormal.

Let us consider several examples. Their basic theme isthat an exceptional expression �e is transformed with �T toreceive a pair of continuations, whereas a normal expression_e is transformed with _T to yield its value in the usual directstyle.� Case of normal handle-expression whose �rst sub-expr-ession is exceptional:_T (handle �e1 � �x: _e2) =�T (�e1) h?K; �v: case v � ((�x: _T (_e2)) v) (?H v)iThe exceptional sub-expression �e1 is transformed with�T to receive two continuations. The normal contin-uation is the identity function ?K, because the nor-mal value of �e1 is the value of the handle expression.The handler continuation is a case expression that, ifthe exception v is unmatched, aborts the program byraising the exception (?H v), and otherwise, handlesit normally ((�x: _T (_e2)) v). The abortion case takesplace when �e1 raises an exception the program cannothandle.� Similar case, but when the handle-expression is excep-tional:�T (handle �e1 � �x: _e2) =�hK;Hi: �T (�e1) hK;�v: case v � K((�x: _T (_e2)) v) (H v)iThe di�erence from the previous case is that the trans-formed expression expects continuations hK;Hi fromthe context and uses them in de�ning continuationsto pass to subexpression �T (�e1). Continuations to passto �T (�e1) are de�ned using the continuations hK;Hipassed from the context.� Case of exceptional application-expression whose sec-ond expression is normal.�T (�e1 _e2) = �hK;Hi: �T (�e1) h�f: (f _T (_e2) hK;Hi); HiThe exceptional sub-expression �e1 is transformed with�T to receive two continuations. We pass two contin-uations to it: the normal continuation part �f: (f :::)is to apply the resulting function f to argument _T (_e2)with the current continuations hK;Hi, and the handlercontinuation part is the H from the context.Theorem 3 (Correctness of _T and �T) For any program}, } �! v =) _T (Annotate(})) �! _	(v)} �! ��v =) _T (Annotate(})) �! _	(��v)where the auxiliary function _	 coerces direct-style values toselective-CPS values:_	(1) = 1_	(��v) = �� _	(v)_	(�x: _e) = �x: �hK;Hi: K(_T (e))_	(�x: �e) = �x: �T (e)_	(fix f �x: _e) = fix f �x: �hK;Hi: K(_T (e))_	(fix f �x: �e) = fix f �x: �hK;Hi: K(�T (e))The proof uses the following three lemmas, which are anal-ogous to those used in Plotkin's simulation theorem [Plo75].

Lemma 1 � [_	(v)=x] _T (_e) = _T ([v=x] _e)[_	(v)=x] �T (�e) = �T ([v=x]�e)Proof. By induction on size of e. 2Now the following two lemmas prove two vital propertiesabout the in�x operator \:", which is de�ned analogously toPlotkin's one. (See Figure 12, in appendix, for the de�ni-tion.) Particular to our case is the de�nition of e: Return,which denotes that the term e needs no continuations to�nish.For the proofs, we need to extend the _T and �T functions,which were de�ned only for a program, to be de�ned alsofor all terms in the reduction sequence of the program:_T (��v) = _	(��v)_T (��v) = _	(��v)�T (v) = �hK;Hi: K(_	(v))�T (��v) = �hK;Hi: H(_	(��v))Although our annotation is de�ned only for programs not forthe terms that occur during reductions, we �nd it convenientin the proofs that the terms also have annotations inheritedfrom their original expressions:_e1; e1 ! e2_e2 �e1; e1 ! e2�e2Lemma 2 � _T (_e) +! _e : Return�T (�e) hK;Hi +! �e : hK;HiProof. By induction on size of e. 2Lemma 3� _e ! _e0 =) e : Return +! e0 : Return�e ! �e0 =) e : hK;Hi +! e0 : hK;HiProof.� _e = handle ���v1 � _e2 ! [���v1=x] _e2handle ���v1 � _e2 : Return= case _	(���v1) � (?K (�x: _T (_e2) _	(���v1))) (?H _	(���v1))(by def. of :)+! ?K (�x: _T (_e2) _	(���v1))+! [_	(���v1)=x] _T (_e2)(by reduction rule)= _T ([���v1=x] _e2)(by Lemma1)= [���v1=x] _e2 : Return(by Lemma2)� �e = raise _e1 ! raise _v1raise _e1 : hK;Hi= H (_e1 : Return)(by def. of :)+! H (_v1 : Return)(by I.H.)= H _	(_v1)(by def. of :)+! _	(_v1)(by reduction rule)= raise _v1 : hK;Hi(by def. of :)� _e = handle _e1 � �x: _e2 ! handle _��v1 � �x: _e2Impossible by annotation rule.

Other cases are similarly treated. 2It is now straightforward to prove Theorem 3:Proof. If } �! v, then_T (_}) +! } : Return (by Lemma 2)�! v (by Lemma 3)! _	(v) (by de�nition)Similarly when } �! ��v. 26 Preliminary Experiments and Discussion6.1 Sharing transducersWe tested our transformation for the subst function of Fig-ure 2, i.e., a sharing transducer implementing substitutionwith exceptions. Figure 10 displays the transformed pro-gram, which results from our one-pass selective CPS trans-former (�a la Danvy and Filinski [DF92]).Figure 11 shows (in solid line) that the transformed pro-gram can run with almost twice the speed of the originalexception-based substitution program. As Graph (b) shows,if the program does not raise exceptions (hence handlers arenot used) then the transformed program and the exception-based code run with about the same speed. Overall, theperformance of the transformed program is actually near-ing the performance of the CPS version (in dotted line) asspeci�ed in Figure 3, and which we consider as ideal.6.2 Non exception-intensive programsOur transformation's assumptions that all exceptions areexplicitly raised inside the program does not hold in real-ity because some exceptions (e.g., Overow) can be raisedfrom pre-de�ned functions (e.g., +). While the program canhandle such primitive exceptions, the transformed versionmisses them because our transformer doesn't see any raiseexpression which is transformed to activate the handler con-tinuation. Thus our transformation must transform onlysuch programs where uncaught exceptions from primitivefunctions are uncaught also inside the program. Meanwhile,if the input program has neither raise nor handle constructs,our transformation yields the same program.6.3 More selective CPS transformationsWe can tune our CPS transformation further. Currently, wetransform every function (and application, respectively) toreceive (to pass, respectively) two continuations. This blindtransformation provides a simple solution to the \untypeful"ow situation where both normal and exceptional functionsmay ow into exceptional applications. Because of this sit-uation, we need to coerce such normal functions to receivecontinuations. Since the coerced functions are also called atnormal applications, we also coerce the normal applicationsto pass dummy continuations.By classifying functions and applications more �nely, wecan reduce the tra�c of such dummy continuations. Twocases occur for functions:� Pure normal functions: normal functions which arealways called in normal applications.� Impure normal functions: normal functions which arecalled in exceptional applications.

exception samefun subst_trans {1=x,2=e,3=body}= let fun walk (VAR x') (k_var1,h_var2)= (case x'=xof true => k_var1 e| false => h_var2 same)| walk (LAM {1=x',2=body'}) (k_var1,h_var2)= (case x'=xof true => h_var2 same| false => walk body' ((fn a_var5 => k_var1 (LAM {2=a_var5,1=x'})),(fn b_var6 => h_var2 b_var6)))| walk (APP {1=e0,2=e1}) (k_var1,h_var2)= walk e0((fn a_var14 => walk e1((fn a_var17 => k_var1 (APP {2=a_var17,1=a_var14})),(fn b_var18 => ((fn same => k_var1 (APP {2=e1,1=a_var14})| a_var16 => raise a_var16)b_var18)))),(fn b_var15 => ((fn same => walk e1((fn a_var10 => k_var1 (APP {2=a_var10,1=e0})),(fn b_var11 => h_var2 b_var11))| a_var7 => h_var2 a_var7)b_var15)))in walk body ((fn a_var20 => a_var20),(fn b_var21 => ((fn same => body| a_var19 => raise a_var19)b_var21)))end Figure 10: The exception-based substitution of Figure 2 after selective CPS transformation
X coordinate: the input expression size.Y coordinate: execution time in ms, using SML/NJ 110 on a Sun UltraSPARC 2 (user time + system time + gc time).

0

50

100

150

200

250

300

350

400

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS
translation

(a) Exceptions are frequently raised. 0

100

200

300

400

500

600

700

800

10k 20k 30k 40k 50k 60k 70k 80k 90k100k

raise/handle
ideal CPS
translation

(b) No exceptions are raised.Figure 11: Experimental results for Figure 2 (���), Figure 3 (���), and Figure 10 (��)

Dually, two cases also occur for applications:� Pure normal applications: all functions to call are purenormal functions.� Impure normal applications: some functions to call arecoerced normal functions.Only impure normal functions must be coerced to receivecontinuations and only impure normal applications must becoerced to send dummy continuations.The above �ner classi�cation is possible by adding thefollowing two annotation rules to Figure 7: let _e denote that_e is an impure normal expression.�x: _e 2 Closure analysis}(e1) �e = e1 e2�x: _e�x: _e 2 Closure analysis}(e1) _e = _e1 _e2_e1 _e2A new transformation function can easily be de�ned to ex-ploit this �ner annotation.Depending on the source programs, however, this �nertransformation can o�set the bene�t of removing raise andhandle expressions. In some cases, it may actually be prefer-able to keep some of them. Indeed, if a handler is installedlong before a matching raise expression occurs, the CPS-transformed intermediate expressions have the burden ofcarrying the two continuations for a long time. For suchcases, we would better leave the handle and raise expres-sions intact. To this end, we are currently designing a staticanalysis that estimates the interval between a handler in-stallation and its exception raise.All such tunings of our selective CPS transformation areto be applied based on our experiments with realistic appli-cation programs (e.g., Isabelle, HOL, Knuth-bendix, etc.).Currently, our transformation is not compatible with sepa-rate compilation.7 ConclusionProcessing ML exceptions forms an overhead. In SML/NJ,the overhead amounts to installing and uninstalling excep-tion handlers in a global resource. In this work, we are ex-ploring an alternative implementation based on a selectivesource-level CPS transformation. Instead of relying on oneglobal stack of exception handlers, we pass to each functionboth its conventional continuation and a handler continua-tion accounting for exceptions. Furthermore, we reduce thiscontinuation tra�c using the static information provided byYi and Ryu's exception analysis [YR97]. We have imple-mented this selective CPS transformation for Standard ML'score language and have integrated it as a separate phase inthe SML/NJ compiler. (Hence our transformed programsare CPS-transformed yet again when they are compiled.)Our selective CPS transformation has been observed to im-prove the run times of exception-intensive programs by afactor of 2. As for programs where no exceptions are raised,it leaves them in direct style and their performance is thusthe same as with SML/NJ. The more usual programs whereexceptions are occasionally raised are the most challengingones, since carrying continuations de facto forms a new over-head which is sometimes bigger than SML/NJ's. We arecurrently investigating this last issue.

AcknowledgmentIn a personal communication to the second author, AndrewAppel suggested that the results of the exception analysiscould be exploited in reducing the overhead of raise/handleexpressions. The present work originates from this sugges-tion. Thanks are also due to the anonymous referees forperceptive comments.References[App92] Andrew W. Appel. Compiling with Continua-tions. Cambridge University Press, New York,1992.[BCL+98] Edoardo Biagioni, Ken Cline, Peter Lee, ChrisOkasaki, and Chris Stone. Safe-for-space threadsin Standard ML. Higher-Order and SymbolicComputation (n�ee Lisp and Symbolic Computa-tion), 11(2), 1998.[DD95] Olivier Danvy and Dirk Dussart. CPS transfor-mation after binding-time analysis. Unpublishednote, Department of Computer Science, Univer-sity of Aarhus, April 1995.[DF92] Olivier Danvy and Andrzej Filinski. Represent-ing control, a study of the CPS transformation.Mathematical Structures in Computer Science,2(4):361{391, December 1992.[DH93a] Olivier Danvy and John Hatcli�. CPS transfor-mation after strictness analysis. ACM Letters onProgramming Languages and Systems, 1(3):195{212, 1993.[DH93b] Olivier Danvy and John Hatcli�. On the transfor-mation between direct and continuation seman-tics. In Stephen Brookes, Michael Main, AustinMelton, Michael Mislove, and David Schmidt, ed-itors, Proceedings of the 9th Conference on Math-ematical Foundations of Programming Seman-tics, number 802 in Lecture Notes in ComputerScience, pages 627{648, New Orleans, Louisiana,April 1993. Springer-Verlag.[Dus97] Dirk Dussart. Topics in program specializationand analysis for statically typed functional lan-guages. PhD thesis, Katholieke Universiteit Leu-ven, Leuven, Belgium, May 1997.[Fel87] Matthias Felleisen. The Calculi of �-v-CS Con-version: A Syntactic Theory of Control and Statein Imperative Higher-Order Programming Lan-guages. PhD thesis, Department of ComputerScience, Indiana University, Bloomington, Indi-ana, August 1987.[HD97] John Hatcli� and Olivier Danvy. Thunks and the�-calculus. Journal of Functional Programming,7(2):303{319, 1997.[HM97] Nevin Heintze and David McAllester. Linear-time subtransitive control ow analysis. InRon K. Cytron, editor, Proceedings of the ACMSIGPLAN'97 Conference on Programming Lan-guages Design and Implementation, SIGPLAN

v : Return = _	(v)v : hK;Hi = K (_	(v))v : Return = _	(v)v : hK;Hi = H (_	(v))_e1 _e2 : Return = (e1 : Return) _T (e2) h?K;?Hi_e1 _e2 : hK;Hi = (e1 : Return) _T (e2) hK;Hi�e1 _e2 : hK;Hi = e1 : h�f: f _T (e2) hK;Hi;Hi_e1 �e2 : hK;Hi =(�f: �T (e2) h�v: f v hK;Hi; Hi)(e1 : Return)�e1 �e2 : hK;Hi =e1 : h�f: �T (e2) h�v: f v hK;Hi; Hi;Hiv1 _e2 : Return = _	(v1) (e2 : Return) h?K;?Hiv1 _e2 : hK;Hi = _	(v1) (e2 : Return) hK;Hiv1 �e2 : hK;Hi = e2 : h�v: _	(v1) v hK;Hi; Hiv1 _e2 : Return = _	(v1)v1 _e2 : hK;Hi = H (_	(v1))v1 �e2 : hK;Hi = H (_	(v1))v1 v2 : Return = _	(v1) _	(v2) h?K;?Hiv1 v2 : hK;Hi = _	(v1) _	(v2) hK;Hiv1 v2 : Return = _	(v2)v1 v2 : hK;Hi = H (_	(v2))con � _e : Return = con � (e : Return)con � �e : hK;Hi = e : h�v: K (��v); Hicon � v : Return = con � _	(v)con � v : hK;Hi = K (_	(��v))con � v : Return = _	(v)con � v : hK;Hi = H (_	(v))decon _e : Return = decon (e : Return)decon �e : hK;Hi = e : h���v: K (_	(v)); Hidecon ��v : Return = _	(v)decon ��v : hK;Hi = K (_	(v))decon v : Return = _	(v)decon v : hK;Hi = H (_	(v))raise _e : Return = ?H (e : Return)raise _e : hK;Hi = H (e : Return)raise �e : hK;Hi = e : hH;Hiraise v : Return = ?H _	(v)raise v : hK;Hi = H (_	(v))raise v : Return = _	(v)raise �v : hK;Hi = H (_	(v))raise _v : hK;Hi = _	(v)

handle _e1 � �x: _e2 : Return = e1 : Returnhandle �e1 � �x: _e2 : Return =e1 : h?K; �v: case v � (?K (�x: _T (e2) v)) (?H v)ihandle �e1 � �x: _e2 : hK;Hi =e1 : hK;�v: case v � (K (�x: _T (e2) v)) (H v)ihandle �e1 � �x: �e2 : hK;Hi =e1 : hK;�v: case v � (�x: �T (e2) v hK;Hi) (H v)ihandle v1 � �x: _e2 : Return = _	(v1)handle v1 � �x: _e2 : hK;Hi = K (_	(v1))handle ��v1 � �x: _e2 : Return = [_	(v1)=x]e2 : Returnhandle �0 �v1 � �x: _e2 : Return = ?H(_	(v1))handle ��v1 � �x: _e2 : hK;Hi = K([_	(v1)=x]e2 : Return)handle �0 �v1 � �x: _e2 : hK;Hi = H(_	(v1))handle ��v1 � �x: �e2 : hK;Hi = K([_	(v1)=x] �T (e2) hK;Hi)handle �0 �v1 � �x: �e2 : Return = H(_	(v1))case _e1 � _e2 _e3 : Return =case (_e1 : Return) � _T (_e2) _T (_e3)case _e1 � _e2 �e3 : hK;Hi =case (_e1 : Return) � _T (_e2) �T (_e3) hK;Hicase _e1 � �e2 _e3 : hK;Hi =case (_e1 : Return) � �T (_e2) hK;Hi _T (_e3)case �e1 � _e2 _e3 : hK;Hi =�e1 : h�v: case v � _T (_e2) _T (_e3); Hicase _e1 � �e2 �e3 : hK;Hi =case (_e1 : Return) � �T (_e2) hK;Hi �T (_e3) hK;Hicase �e1 � _e2 �e3 : hK;Hi =�e1 : h�v: case v � _T (_e2) �T (_e3) hK;Hi; Hicase �e1 � �e2 _e3 : hK;Hi =�e1 : h�v: case v � �T (_e2) hK;Hi _T (_e3); Hicase �e1 � �e2 �e3 : hK;Hi =�e1 : h�v: case v � �T (_e2) hK;Hi �T (_e3) hK;Hi;Hicase ��v1 � _e2 _e3 : Return = _e2 : Returncase ��v1 � _e2 _e3 : hK;Hi = _e2 : hK;Hicase ��v1 � �e2 _e3 : hK;Hi = _e2 : hK;Hicase ��v1 � _e2 �e3 : hK;Hi = K(_e2 : Return)case ��v1 � �e2 �e3 : hK;Hi = _e2 : hK;Hicase �0 �v1 � _e2 _e3 : Return = _e3 : Returncase �0 �v1 � _e2 _e3 : hK;Hi = _e3 : hK;Hicase �0 �v1 � �e2 _e3 : hK;Hi = K(_e3 : Return)case �0 �v1 � _e2 �e3 : hK;Hi = �e3 : hK;Hicase �0 �v1 � �e2 �e3 : hK;Hi = �e3 : hK;Hicase �0 �v1 � _e2 _e3 : Return = �0 �v1case �0 �v1 � e2 e3 : hK;Hi = K(�0 �v1)Figure 12: De�nition of the in�x operator `:'

Notices, Vol. 32, No 5, pages 261{272, Las Ve-gas, Nevada, June 1997. ACM Press.[JW96] Suresh Jagannathan and Andrew Wright. Flow-directed inlining. In Proceedings of the ACMSIGPLAN'96 Conference on Programming Lan-guages Design and Implementation, SIGPLANNotices, Vol. 31, No 5, pages 192{205. ACMPress, May 1996.[Plo75] Gordon D. Plotkin. Call-by-name, call-by-valueand the �-calculus. Theoretical Computer Sci-ence, 1:125{159, 1975.[Plo81] Gordon D. Plotkin. A structural approach tooperational semantics. Technical Report FN-19,DAIMI, Department of Computer Science, Uni-versity of Aarhus, Aarhus, Denmark, September1981.[Ses89] Peter Sestoft. Replacing function parametersby global variables. In Joseph E. Stoy, edi-tor, Proceedings of the Fourth International Con-ference on Functional Programming and Com-puter Architecture, pages 39{53, London, Eng-land, September 1989. ACM Press.[Shi91] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD the-sis, School of Computer Science, Carnegie MellonUniversity, Pittsburgh, Pennsylvania, May 1991.Technical Report CMU-CS-91-145.[SW94] Paul Steckler and Mitchell Wand. Selectivethunki�cation. In Baudouin Le Charlier, editor,Static Analysis, number 864 in Lecture Notes inComputer Science, pages 162{178, Namur, Bel-gium, September 1994. Springer-Verlag.[YR97] Kwangkeun Yi and Sukyoung Ryu. Towards acost-e�ective estimation of uncaught exceptionsin SML programs. In Pascal Van Hentenryck,editor, Static Analysis, number 1302 in LectureNotes in Computer Science, pages 98{113, Paris,France, September 1997. Springer-Verlag.

