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Motivation 

• Basel II recognizes diversification benefits within op risk.

Diversification benefits= (Simple Sum) - (Capital estimated with dependence 
structure)

• No convergence to date on how to estimate diversification benefits. 

E.g., U.S. experience: diversification benefits range widely -- from 20% to 70%.
Most banks use ad hoc correlation factors among Event Types (ETs) /Business 
Lines (BLs) (10%, 20%) and then apply correlation matrix approach.
Copula approach.
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Unit of Measure

"A bank's risk measurement system must be 
sufficiently 'granular' to capture the major drivers of 
operational risk affecting the shape of the tail of the 
loss estimates." (Basel II paragraph 669(c))

S27. The bank must employ a unit of measure that is 
appropriate for the bank’s range of business activities 
and the variety of operational loss events to which it is 
exposed, and that does not combine business activities 
or operational loss events with different risk profiles 
within the same loss distribution. 
(Proposed U.S. Supervisory Guidance on AMA, p219, 
February 2007)
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Identifying the appropriate unit of measure
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Range of U.S. Banks’ Unit of Measure

• Single Unit (Pooling all data in one unit)
Allocation Issue 

(See paragraph Basel II  666(b))

• 1 dimensional 
Either by BL or ET

e.g. 5 ETs (Excluding BSDF and DPA)

• 2 dimensional BL/ET
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Aggregation of units:

“Risk measures for different operational risk 
estimates must be added for purposes of 
calculating the regulatory minimum capital 
requirement. However, the bank may be 
permitted to use internally determined 
correlations in operational risk losses across 
individual operational risk estimates, provided it 
can demonstrate to the satisfaction of the 
national supervisor…”
(Basel II paragraph 669(d))

A.K.A. Correlation/Dependence
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• Recall that in market risk, 
correlations are described as 
“equal-time correlations”.

• E.g. for two assets:

r2nr1ntn

...

...

...
r23r13t3

r22r12t2

r21r11t1

ASSET 2ASSET 1TIME

L7nN/Atn

...
L7kL4ktk

...
L73N/At3

L72,1, L72,2N/At2

L71N/At1

ET7ET4TIME

Aggregation: A brief detour on correlation…

• Correlation of op risk loss 
severities in the market-risk 
manner is “ill-defined”.
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• In market risk, correlation boils down to correlating 
the returns of assets.

• In op risk, the modeler has to decide on what to 
correlate, i.e.; 

Frequencies (minimal effect on capital)
Severities (ill-defined)
Aggregate Losses

• Some previous work which touched base with this fact:
Powojowski, and et al (2002)
Frachot, and et al (2005)

Dependence Structure: A technical problem
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Modeling Dependence Structure

• Limitations of linear correlation
• Interest in “joint extreme values”
• Facilitate multivariate modeling
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Extremal Dependence Measures:

Chi and Chibar

Dependence Structure at Various Quantiles
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Modeling Dependence Structure:
Copula Approach

1 1
( ) ( ( ), ..., ( )),  d

F d d
F x C F x F x x= ∈

Multivariate 
Distribution Function

Copula Function Marginal Distribution 
Functions

•Sklar’s Theorem:

•Choice of copula: t-copula

1

1 1
, ( ( ), ..., ( )),  u [0,1]d

F dPC u ut t tν ν ν
− − ∈=

Multivariate Student t
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Our Data

• Of the banks that participated in the 2004 
LDCE, we will focus on one institution only.

• Data Range:
Aggregated Weekly Data (2001-1 to 2004-9) for 
losses 
196 weekly observations for each of 5 Event 
Types
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Exploratory Data Analysis
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•Hill Plot (Graphical Method)

•Optimization in terms of bias-variance trade-off

•Combined likelihood function (Cibele, et al. 2004)

Fitting the Tail

Total Loss Amount

Pr
ob

ab
ili

ty
 D

en
si

ty
?

Threshold choice:  Dividing the body from the tail

Previous Literature
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• Treat threshold as a parameter.

• Estimate the threshold in addition to distribution 
parameters within the MLE process.

Combined Likelihood Function
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Fitting Severities (ET4)

Tail Histogram & Fitted GPD
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Fitting Severities (ET3)
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Results:
Value at Risks and Expected Shortfalls*

• Aggregation of “units” using t-copula

*in $ US billions,

0.7630.4420.3350.5510.3540.283Without 4 outliers, with EVT

0.4610.3120.2580.3670.2710.230Without 5 outliers, with EVT

2.8691.1480.6781.7210.7310.481Without 3 outliers, with EVT

119.33021.8557.47828.4076.5612.795All data, with EVT

ES99.9%ES99%ES95%VaR99.9%VaR99%VaR95%Model

0.4240.2590.1920.3270.2080.160All data, lognormal only
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Results:
Diversification Effects

7.1%0.5900.551Without 4 outliers, with EVT

8.9%0.3990.367Without 5 outliers, with EVT

2.3%1.7611.721Without 3 outliers, with EVT

0.5%28.53528.407All data, with EVT

10.7%0.3620.327All data, lognormal only

Diversification Effect“Simple Sum”
VaR99.9%

t-copula
VaR99.9%

Model

•Assuming perfect correlation for VaR99.9% across “units of measure”
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Conclusions and Future Work:

• Use EVT judiciously.
• Complement the analysis with Bayesian Methods for outliers.

Log-Normal GPD Bayesian 
Methods

Body Losses Extreme Losses Outliers

Different Distributional Assumptions

Different Types of Losses

PD
F
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Conclusions continued:

• Use test

“The bank’s internal operational risk measurement 
system must be closely integrated into the day-to-
day risk management processes of the bank. Its 
output must be an integral part of the process of 
monitoring and controlling the bank’s operational risk 
profile…”
(Basel II paragraph 666(b))


