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Abstract
Despite the push towards evidence-based health policy, decisions about how to allocate health resources are all too often made on the basis of 
political forces or a continuation of the status quo. This results in wastage in health systems and loss of potential population health. However, 
if health systems are to serve people best, then they must operate efficiently and equitably, and appropriate valuation methods are needed to 
determine how to do this. With the advances in computing power over the past few decades, advanced mathematical optimization algorithms 
can now be run on personal computers and can be used to provide comprehensive, evidence-based recommendations for policymakers on how 
to prioritize health spending considering policy objectives, interactions of interventions, real-world system constraints and budget envelopes. 
Such methods provide an invaluable complement to traditional or extended cost-effectiveness analyses or league tables. In this paper, we 
describe how such methods work, how policymakers and programme managers can access them and implement their recommendations and 
how they have changed health spending in the world to date.
Keywords: Resource allocation, cost-effectiveness analysis

Key messages 

• The realities of finite resources mean that health-care pack-
ages need to be prioritized. Traditional methods such as 
cost-effectiveness analysis are one way to do this but have 
limitations.

• Here we outline how mathematical optimization algorithms 
can be used to provide comprehensive, evidence-based rec-
ommendations for policymakers on how to prioritize health 
spending and provide an accessible summary of how they 
work.

Introduction
As one of the largest components of national budgets, health 
portfolios receive considerable public and political scrutiny, 
with plenty of debate around how they should be spent. 
Whilst many governments and agencies have voiced support 
for the goal of providing universal health coverage (UHC), it 

is impossible to consider UHC separately from the realities of 
finite resources. This means that health-care packages need 
to be prioritized. Health systems are so complex that, his-
torically, the process of prioritization has often been broken 
down into discrete, binary decisions. Health interventions are 
assessed one at a time by comparing the marginal cost of the 
intervention to the marginal benefits it would deliver—either 
health-only benefits in a cost-effectiveness analysis (CEA) or 
also including non-health benefits such as financial risk pro-
tection in an extended CEA (Edejer et al., 2003; Chalkidou 
et al., 2016; Jamison et al., 2018). Intuitively, interventions 
that deliver the greatest benefits per dollar spent should be 
implemented first, although the exact criteria that determine 
whether interventions are in or out are still subject to debate 
(Marseille et al., 2015; Woods et al., 2016; Glassman et al., 
2017; Ochalek et al., 2018).

The problem with assessing health-care interventions one 
at a time is that they are generally not independent of one 
another. Even the definition of independence is debated: in 
a study dedicated to this topic, Dakin and Gray (2018) 
found ‘substantial variation among 14 published definitions of 
“independent” in the context of health-care decision-making’.
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In any case where interaction effects are present, World 
Health Organization (WHO) guidelines recommend that the 
combinations of interventions (e.g. no intervention, A, B and 
A + B) should be compared incrementally (Edejer et al., 2003), 
following the methods for a 2 × 2 factorial trial. This has 
been termed generalized cost-effectiveness analysis or GCEA 
(Murray et al., 2000). The same guidelines also recommend 
calculating health gains under different levels of intervention 
coverage. If we were to follow this advice to compare six inter-
ventions, each with five possible coverage levels, there would 
be more than 15 000 combinations to consider. In view of this 
complexity and the data required to inform it, it is perhaps 
not surprising that many studies and advisory bodies ignore 
interaction effects altogether, even when doing so means miss-
ing out on potential health gains (Evans et al., 2006; Dakin 
and Gray, 2018). The practice of evaluating a proposed new 
intervention against a no-intervention standard of care sce-
nario is still a pervasive, if not the dominant, method used 
today (Verguet et al., 2021).

But comparing many thousands of scenarios is exactly the 
kind of task that computers are built for, and optimization 
algorithms are capable of efficiently estimating the ‘best’ alter-
native when there are a large number of variables and poten-
tial constraints on the solutions (e.g. budget constraints). 
The task force on Optimization Methods Emerging Good 
Practices established by the Professional Society for Health 
Economics and Outcomes Research (ISPOR) published two 
reports in which they surveyed a range of optimization meth-
ods that had been applied to decision-making problems in 
health and concluded that ‘the application of constrained 
optimization methods to health-care decision-making offers 
substantial potential benefits’ (Crown et al., 2017; Crown 
et al., 2018).

The ISPOR Task Force provides an invaluable introduc-
tion to the application of constrained optimization methods 
to health-care problems and also addresses several of the key 
barriers that have historically prevented widespread uptake, 
including data availability and quality and the challenges of 
model validation, among others. Another noteworthy limita-
tion is that implementing one of these methods typically still 
requires considerable mathematical and programming abili-
ties and as such can provide a significant barrier to uptake in 
most policy settings. However, these barriers are increasingly 
unnecessary: the enormous advances in human–computer 
interaction over recent years mean that it is now possible to 
integrate advanced algorithms into easy-to-use software tools, 
including WebApps, thus empowering people at all levels of 
technical/mathematical ability to access them.

In this paper, we focus on the question of how to allocate 
health resources optimally. We start by defining constrained 
optimization and then discuss how to solve a constrained 
optimization problem to prioritize health-care interventions. 
We then discuss when and why such methods are needed. 
Finally, we discuss how policymakers can access these meth-
ods and use them to guide decision-making on health resource 
allocation.

What is constrained optimization?
Constrained optimization can be defined as maximizing or 
minimizing an objective function by changing some vari-
ables, subject to some constraints. We can break down this 
rather broad definition into three components: the objective 

function, the decision variables and the constraints. Let us 
consider two motivating examples to illustrate what form 
these components can take.

Allocative efficiency among programmes
We first consider an example where the goal is to maximize 
the health outcomes of a population by varying the allocation 
of funding, constrained so that the overall spending stays the 
same. In this case, the objective function is the population 
health outcomes, the decision variables relate to how this 
funding should be allocated and the constraint is the over-
all budget. More precisely, suppose that a country’s health 
response consists of n programmes each with a budget of Bi
for i = 1,…,n. The set of decision variables in this case are 
the budgets that are allocated to each programme, {B1,…,Bn}. 
We also denote the total budget by 𝑇 = ∑𝑛

𝑖=1 𝐵𝑖, i.e. the 
sum of the budgets to each programme. Mathematically, a 
constrained optimization problem could be expressed as 

max𝐻(𝐵1,…,𝐵𝑛)𝑠.𝑡. 𝑇 ≤ 𝐶

where H(𝐵1,…,𝐵𝑛) represents the health outcomes under 
budget allocation {B1,…,Bn} and C is some overall budget 
constraint. In words, this equation states that we wish to 
maximize the health outcomes H, which will result from a 
particular budget allocation {B1,…,Bn}, such that our total 
budget T is equal to or less than our budget constraint C.

To illustrate this, let us consider a hypothetical exam-
ple where we have a total budget of US$1 million (m) to 
allocate towards type 2 diabetes, which can either be allo-
cated to a screening programme or to a treatment adherence 
programme. The screening programme is estimated to avert 
100 disability-adjusted life years (DALYs), while the treat-
ment adherence programme is estimated to avert 200 DALYs. 
Using the mathematical notation that we defined above, we 
have two possibilities: under the first budget allocation {$1 m, 
$0 m} we have H($1 m, $0 m) = 100 and under the second 
we have H($0 m, $1 m) = 200. In this case, funding the treat-
ment adherence programme would be identified as the optimal 
choice using a constrained optimization framework, and this 
corresponds to the choice that would be found by a CEA. 
The problem becomes more complex, however, if we consider 
options for partially funding each programme; we will explore 
this more in a later example.

This general form of a constrained optimization can be 
extended in various ways. For example, it may not be possible 
to defund an existing programme a below its current level 𝐵0

𝑎, 
in which case the problem could be written as 

max𝐻(𝐵1,…,𝐵𝑛) 𝑠.𝑡. 𝑇 ≤ 𝐶 𝑎𝑛𝑑 𝐵𝑎 ≥ 𝐵0
𝑎.

Alternatively, it may be possible to disaggregate the health 
outcome among separate subgroups of the population (e.g. 
children vs adults) and impose a constraint that the health 
outcome for some population must meet a certain target. For 
example, suppose that the health outcomes of interest are the 
number of people with controlled diabetes, and there are spe-
cific targets for population k (e.g. at least M adolescents with 
controlled diabetes). This can be done by writing 

max𝐻(𝐵1,…,𝐵𝑛) 𝑠.𝑡. 𝑇 ≤ 𝐶 𝑎𝑛𝑑 𝐻𝑘 (𝐵1,…,𝐵𝑛) ≥ 𝑀,

where 𝐻𝑘 (𝐵1,…,𝐵𝑛) are the health outcomes for 
population k.
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Optimal vaccine distribution
For this next example, the goal is to minimize the number of 
cases of an infectious disease by varying the distribution of 
vaccines among a population, subject to a constraint on the 
overall number of doses available. For example, if distributing 
a vaccine between people over vs under 65, we could write 
V = {V<65, V65+} to represent the number of doses allocated to 
each age cohort and then write the constrained optimization 
problem as:

min 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑉) 𝑠.𝑡. 𝑉<65 + 𝑉65+ ≤ 𝑉 ∗,

where infections (V) represents the total number of infections 
under vaccine allocation V and V* is the total number of doses 
available. As with the previous example, this can be general-
ized in various ways; e.g. infections could be replaced by some 
other objective like deaths.

In both examples presented, the optimal allocation of 
resources depends in a complex way on the decision variables. 
For example, targeting influenza vaccines towards people over 
65 may avert more deaths, since influenza mortality is higher 
for those over 65. But on the other hand, if the majority of 
transmission occurs in people under 65, then having a well-
vaccinated adult cohort may prevent secondary infections in 
the over 65 cohort and thus end up averting more infections.

A conceptual framework for optimally 
allocating health resources
Step 1: clearly identify the problem
The previous section highlighted that constrained optimiza-
tion consists of an objective function, one or more decision 
variables and one or more constraints. In practice, the first 
step in carrying out a constrained optimization is to identify 
these three components. This is often formulated in plain lan-
guage, e.g. ‘where should facilities be located to ensure travel 
times are minimized, whilst also making sure that no-one 
needs to travel more than 2 hours?’ or ‘how can I arrange my 
roster to get the most out of my staff, whilst respecting every-
one’s availability?’. This step can be deceptively complex; 
although it is the least technical of the steps to follow, none of 
the following step can be completed without a clear under-
standing of the problem at hand. Furthermore, the choice 
of objective depends on what one considers most important 
(e.g. minimizing infections or deaths), while the choice of 
constraints can depend on many things, including financial 
considerations (such as budget available, although this too 
might not be fixed, but rather determined in dialogue with 
other government departments) and equity considerations. 
This is perhaps the most important step and the one where 
policymakers are most involved.

Step 2: determining how outcomes depend on the 
allocation of resources
If you knew what outcome would result from each possible 
allocation of resources, then you would be in a good posi-
tion to determine which allocation was the best. In practice, 
estimating the outcomes for each budget allocation generally 
requires data and/or a model. A motivating example is pro-
vided in the inset Box 1, where the four feasible allocations 
are assessed during pilot trials to determine their associated 
outcomes.

Box 1. How outcomes depend on the allocation of 
resources 

Suppose you are the manager of a local health centre and 
you wish to provide support for osteoarthritis (OA) patients in 
your district. Currently, OA patients are provided with leaflets 
containing advice on self-management, as well as four 60-min 
classes teaching joint protection principles at a total cost of 
$92/patient. Your overall budget cap is $150/patient. You are 
considering expanding the classes to 90 min to teach hand 
exercises as well as joint protection. This will cost additional 
$30/patient. However, a pilot trial shows that patients struggle to 
follow both the joint protection and hand exercises, so there is a 
small decrease in quality-adjusted life years (QALYs) when both 
are taught in the same class. You therefore decide not to provide 
hand exercises. However, the occupational therapist in charge of 
the sessions suggests that she try replacing the joint protection 
lessons with hand exercises, rather than providing both. She 
tells you that making this change will decrease the cost/patient 
by $60 relative to providing both. This time, you find that QALYs 
are maximized by providing hand exercises alone, compared 
with providing joint protection classes alone, providing neither 
joint protection nor hand exercises or providing both.
 This example is based on the results reported in a 2015 
study (Oppong et al., 2015) that found providing hand exercises 
without joint protection was the most cost-effective option. 
However, hand exercises would not appear cost-effective if 
measured relative to a baseline that included joint protection.
 In this example, there are four feasible allocations (hand 
exercises, joint protection, both or neither), and the outcomes 
for each allocation are determined by pilot trials. These are 
summarized below.

• Highest QALYs: provide hand exercises
∘ Cost: $32/patient

• Second-highest QALYs: provide joint protection
∘ Cost: $92/patient
∘ QALYs: medium–high

• Third-highest QALYs: provide both joint protection and hand 
exercises

∘ Cost: $122/patient
∘ QALYs: medium

• Baseline (no QALYs): provide neither joint protection nor 
hand exercises

∘ Cost: $0/patient
∘ QALYs: none

The decision variables in the problem are which programmes to 
provide (hand exercises, joint protection, both or neither). The 
objective is to maximize QALYs. The constraint is the overall bud-
get cap of $150/patient, and since none of the options exceeds 
this, all four are feasible.

In practice, pilot trials quickly become infeasible when 
there is a larger or more complex set of feasible allocations, 
especially if we consider different implementation options for 
each intervention, such as varying coverage levels or delivery 
platforms. Instead of a binary choice to either include or 
exclude each intervention, we now have a continuum of 
options for each one. Figure 1 illustrates an example where 
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Figure 1. Deciding between two programmes when each one can be 
implemented at a varying scale

we are choosing between two programmes, each of which 
cost $10 m at full scale. If Programme 1 is implemented at 
full scale we project 100 000 cases, and if Programme 2 is 
implemented at full scale we project 80 000 cases. If the only 
options are to implement at full scale or not at all, then we 
would select Programme 2. However, it is possible that par-
tially funding the programmes may deliver greater benefits; 
for instance, funding Programme 1 at 30% scale may deliver 
>30% of the associated benefits, particularly if combined 
with a partial funding of Programme 2. Figure 1 presents 
an illustrative full budget curve, where we find that the opti-
mal allocation of $10 m is a 30/70 split between Programmes
1 and 2.

For the example provided in Figure 1, it would generally 
not be possible to evaluate each allocation using pilot trials. 
Instead, a model could be used to help estimate the outcomes 
under different allocations.

Our group has worked extensively with resource alloca-
tion questions around infectious diseases, for which we have 
used compartmental disease models combined with costing 
modules that map spending to model parameters (Kerr et al., 
2015). Other types of constrained optimization call for dif-
ferent model types; Crown et al., (2017) give an overview of 
several common types. The fundamental feature of these mod-
els is that they formalize the relationship between resource 
allocations and outcomes.

Step 3: determining the optimal allocation of 
resources
Optimization algorithms are designed to search for the opti-
mal solution when there are many options. The use of such 
algorithms has a long history in health decision sciences 
(Stinnett and Paltiel, 1996), and there are numerous different 
types of algorithm that can be applied to different prob-
lems, from resource allocation to patient scheduling to facility 
location planning.

In Figure 2 we present another example illustrating how 
optimization algorithms can help determine the optimal 
allocation of funding between prevention and treatment pro-
grammes. The case numbers resulting from each level of 

funding are made up for the purposes of this example but 
would typically be calculated using a model and data as 
outlined in the previous section. In this example, when very 
little funding (US$1 m) is available, it is better to allocate it 
all to treatment programmes, which would result in 5700 
cases (Figure 2a). With a budget of US$2 m, the best strat-
egy is still to allocate it all to treatment for a total of 5510 
cases (Figure 2b), but as the budget increases and treatment 
programmes are established, it is best to start scaling up pre-
vention programmes—a budget of US$3 m would result in 
5300 cases if it was all allocated to treatment, vs 5200 if 
US$1 m was allocated to prevention programmes (Figure 2c). 
As the overall budget increases, the number of projected cases 
decreases, and the optimal allocation between prevention and 
treatment changes (Figure 2d). There may be several reasons 
for such non-linear scale effects: there can be a non-linear 
relationship between the overall expenditure on a programme 
and programmatic coverage (e.g. if the marginal cost per per-
son covered increases or decreases as the programme scales 
up), or there can be a non-linear relationship between the 
magnitude of the programmatic interaction effects as pro-
gramme coverage increases (e.g. prevention efforts may be 
more effective if treatment programmes are operating), or 
there can be non-linear epidemiological effects, especially 
in the case of infectious diseases, due to herd immunity
effects.

To understand how such algorithms work, consider the 
example presented in Figure 2d. Suppose we initially con-
sidered allocating US$10 m to treatment programmes, which 
would result in 2250 cases. Next, we ask what would happen 
if we reallocated US$1 m of the total budget to prevention pro-
grammes. We calculate that this would lead to 2200 cases—a 
small improvement. We could then keep scaling up prevention 
programmes until it no longer improved things. In this exam-
ple, with a budget of US$10 m the optimal split is US$5 m on 
treatment and US$5 m on prevention. Further shifts towards 
prevention would result in too little being spent on treatment, 
so the total number of cases would increase again from 1900 
to 2100. Optimization algorithms automate this search pro-
cess and often also include features to improve the speed and 
performance of the search.

Optimally allocating health resources in 
practice
Constrained optimization methods have been in existence for 
many decades, but they are still very much the exception 
rather than the rule for determining how resources are allo-
cated in health (Crown et al., 2018). There are several reasons 
for this. Firstly, the data requirements for running a con-
strained optimization analysis can be extensive. Secondly, the 
technical knowledge required to set up a constrained opti-
mization analysis can present a significant barrier. Thirdly, 
constrained optimization needs to be embedded within a 
broader decision-making framework. We address each of 
these points in the following sections.

Data requirements
We saw in the previous section that evaluating the best 
allocation of resources involves understanding the potential 
outcomes under each feasible allocation. This either requires 
substantial data gathering (which may be impractical when 
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Figure 2. Deciding between preventions and treatment programmes when each one can be implemented at a varying scale, and the optimal allocation 
between them depends on the total budget available

there are more than a handful of feasible options) or con-
structing a model to estimate outcomes.

Software and modelling support
Historically, setting up a constrained optimization analysis 
has required a substantial amount of coding and university-
level mathematics. In recent years this has been evolving, 
however. The technological revolution of the past few decades 
has meant that people interact with extremely complex and 
technically involved algorithms on an everyday basis, but 
without requiring any knowledge about them because the 
interfaces for accessing these algorithms are so simple. Sim-
ilarly, a number of software applications have been helping 
to put optimization algorithms into the hands of health-
care decision-makers. For some optimization problems, the 
software available has already been commercialized and/or 
widely adopted (e.g. supply chain management software, 
various clinical management tools and roster optimization 
software). For other kinds of problems, software capac-
ity has been increasing steadily but is yet to be widely 
adopted; e.g., although several tools exist to help optimize 
the location of health-care facilities (e.g. OptiDX, ArcGIS 
and AccessMod), actual decisions are often made by town 
planners or due to political reasons rather than with rigor-
ous analysis. For the allocation of health-care budgets, our 
group developed the Optima suite of decision support tools, 
which includes web-based applications for optimizing budgets 

for HIV (Stuart et al., 2018; Kerr, et al., 2015), tuberculosis 
(Goscé et al., 2021) and nutrition (Pearson et al., 2018).

Constrained optimization within decision processes
Decisions within health care are often made without explicit 
consideration of budget constraints, in which case cost-
effectiveness analyses are an effective means of decision sup-
port; in this sense, constrained optimization methods can be 
considered as a useful complement to CEA methods (Wilson 
and Görgens, 2020). Both CEA and constrained optimization 
methods can be used to inform decisions within the context 
of a more holistic health system review, which may also assess 
factors such as purchasing/procurement arrangements, supply 
chain management, the funding landscape, equipment alloca-
tion and use and overall patient satisfaction, among others 
(Crown et al., 2018; Verguet et al., 2021; Karsu and Morton, 
2021).

Conclusions
Constrained optimization methods provide a structured 
framework for answering a very broad class of problems: 
namely, how to best achieve a particular outcome, given a 
set of constraints. There are many health resource allocation 
problems where constrained optimization methods can help. 
If the problem consists of a goal, a set of possible strategies 
for attaining this goal and a set of constraints that must be 
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fulfilled, then constrained optimization may be an appropri-
ate method. If it is, then the next steps are to determine the 
expected outcome from each possible strategy and then to use 
constrained optimization algorithms to search among all pos-
sible strategies to find the one that leads to the best possible 
outcome.

Although all countries in the world have ostensibly com-
mitted to the United Nation’s Sustainable Development Goal 
of providing UHC, for many countries this was always going 
to be a difficult target to hit and has become even more dif-
ficult in the wake of the COVID-19 pandemic (Verguet et 
al., 2021). Moving beyond the immediate crisis presented 
by COVID-19, the detrimental impacts of the pandemic on 
countries’ health budgets, development assistance budgets 
and overall prosperity mean that it will be more critical 
than ever to identify methods for achieving the best out-
comes possible with constrained means. The focus of this 
paper was on the ‘how’ of constrained optimization methods, 
but we also presented arguments for why such methods are
useful.

Although there has been a proliferation of software for 
readily accessing constrained optimization methods, as well 
as a rapid escalation in the quantities and granularity of 
health data that are routinely collected (Murdoch and Allan, 
2013), there are still barriers to using constrained optimiza-
tion methods in practice. These barriers can partly be ascribed 
to the limitations of such methods, including their reliance 
on model-based estimates of the relationship between policies 
and health outcomes. Unfortunately, the limitations of con-
strained optimization methods can be particularly dangerous 
when they are hidden behind user-friendly interfaces, which 
often obscure the underlying processes and assumptions. In 
that sense, the increased availability of software for running 
constrained optimizations is a double-edged sword, making it 
both easier to apply such methods and more likely that they 
will be misapplied.

In this paper, we have tried to outline the steps for under-
taking a constrained optimization analysis as simply as possi-
ble, as well as presenting arguments for why such an analysis 
is useful. With greater understanding of the methods, we hope 
that they might be applied more widely—and, even more cru-
cially, accurately—over the years to come. Interested readers 
are referred to the excellent papers by the ISPOR Task Force 
(Crown et al., 2017; Crown et al., 2018) for examples of 
specific constrained optimization problems in health.
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