TWO CARDINALS MODELS
WITH GAP ONE REVISITED
SH824

SAHARON SHELAH
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Rutgers University
Mathematics Department
New Brunswick, NJ USA

Abstract. We succeed to say something on the identities of \((\mu^+, \mu)\) when \(\mu > \theta > \text{cf}(\mu), \mu\) strong limit \(\theta\)-compact or even \(\mu\) limit of compact cardinals.

The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 242/03).
I would like to thank Alice Leonhardt for the beautiful typing.
First Typed - 03/Nov/5
Latest Revision - 07/May/22
Note: F556 copied and revised here to make Sh824

Typeset by \LaTeX
§0 Introduction

[We give the basic definitions.]

§1 2-simplicity for gap one

[We prove that if $\mu = 2^{<\mu}$ then the family of identities of (μ^+, μ) is 2-simple. So this applies to μ singular strong limit but also, e.g., to triples $(\mu^+, \mu, \kappa), \mu = 2^{<\mu} > \kappa$.]

§2 Successor of strong limit above supercompact: 2-identities

[Consider a pair (μ^+, μ) with μ strong limit singular $> \theta > \text{cf}(\mu), \theta$ a compact cardinal. We point out quite simply 2-identities which belong to $\text{ID}_2(\mu^+, \mu)$ but not to $\text{ID}_2(\aleph_1, \aleph_0)$.]
§0 Introduction

There has been much work on κ-compactness of pairs (λ, μ) of cardinals, i.e., when: if T is a set of first order sentences of cardinality $\leq \kappa$ and every finite subset has a (λ, μ)-model (i.e., a model M of cardinality λ, $|P^M| = \mu$ for a fixed unary P). Then T has a (λ, μ)-model.

A particularly important case is $\lambda = \mu^+$ in which case this can be represented as a problem on the κ-compactness of the logic $\mathbb{L}(\mathbb{Q}_{\lambda}^{\text{card}})$, i.e., $(\mathbb{Q}_{\geq \lambda}^{\text{card}} x) \varphi$ says that there are at least λ element x satisfying φ. We deal here only with this case. See Furfken [Fu65], Morley and Vaught [MoVa62], Keisler [Ke70], Mitchel [Mi72]; for more history see [Sh 604].

Now two cardinal theorems can be translated to partition problems so-called identities (0.2): see [Sh 8], [Sh:E17], lately Shelah and Vaananan [ShVa 790] or [ShVa:E47].

Restricting ourselves to pairs (μ^+, μ), the identities of (\aleph_1, \aleph_0) were sorted out in [Sh 74], but we do not know of the identities of any really different pair (μ^+, μ), i.e., one for which $(\aleph_1, \aleph_0) \not\rightarrow (\mu^+, \mu)$. We know that (consistently) some pairs (μ^+, μ) have a different set of identities than (\aleph_1, \aleph_0) but we do not have a characterization in any of those cases. By Mitchel [Mi72] this applies to (\aleph_2, \aleph_1) in the universe gotten by forcing: suitably collapsing of a Mahlo strongly inaccessible to \aleph_2. The other such case is when there is a compact cardinal in the interval (cf (μ)) by Litman and Shelah. So it would be nice to know (taking the extreme case):

0.1 Question: Assume μ is a singular cardinal the limit of compact and even super-compact cardinals.

1) What are the identities of (μ^+, μ)?
2) Is (μ^+, μ) \aleph_0-compact (equivalently μ-compact)?

Note that though we already know that there are some identities of (μ^+, μ) which are not identities of (\aleph_1, \aleph_0) we have no explicit example. We give here a partial solution to 0.1(1) by finding families of such identities.

Another problem is consistency of failure of compactness. In [Sh 604] we have dealt with the simplest case for pairs (λ, μ) by a reasonable criterion: including no use of large cardinals. From another perspective the simplest case is the consistency of non-compactness of $\mathbb{L}(\mathbb{Q})$, \mathbb{Q} one cardinality quantifier, and the simplest one is $\mathbb{Q} = \exists \geq \mu^+$. So we are again drawn to pairs (μ^+, μ), that is gap one instead of gap 2 as in [Sh 604], so necessarily we need to use large cardinals as if, e.g., $\neg 0^#$ then every such pair is compact.

0.2 Definition. 1) A partial identity $^1 s$ is a pair $(a, e) = (\text{Dom}_s, e_s)$ where a is a

\[^1\text{identification in the terminology of [Sh 8]}\]
finite set and e is an equivalence relation on a subfamily of the family of the finite subsets of a, having the property

$$b e c \Rightarrow |b| = |c|.$$

The equivalence class of b with respect to e will be denoted b/e.

1A) We say s is a full identity or identity if $\text{Dom}(e) = \mathcal{P}(a)$.

1B) We say that partial identities $s_1 = (a_1, e_1), s_2 = (a_2, e_2)$ are isomorphic if there is an isomorphism h from s_1 onto s_2 which mean that h is a one-to-one function from a_1 onto a_2 such that for every $b_1, c_1 \subseteq a_1$ we have $(b_1 e_1 c_1) \equiv h(b_1) e_2 h(c_1)$ (so h maps $\text{Dom}(e_1)$ onto $\text{Dom}(e_2)$). We define similarly “h is an embedding of s_1 into s_2” when $b_1 e_1 c_1 \Rightarrow h(b_1) e_2 h(c_1)$.

2) We say that $\lambda \rightarrow (a, e)_\mu$, if (a, e) is an identity or a partial identity and for every function $f : [\lambda]^{<\aleph_0} \rightarrow \mu$, there is a one-to-one function $h : a \rightarrow \lambda$ such that

$$b e c \Rightarrow f(h''(b)) = f(h''(c)).$$

(Instead $\text{Rang}(f) \subseteq \mu$ we may just require $|\text{Rang}(f)| \leq \mu$, this is equivalent).

3) We define

$$\text{ID}(\lambda, \mu) =: \{(n, e) : n < \omega \& (n, e) \text{ is an identity and } \lambda \rightarrow (n, e)_\mu\}$$

and for $f : [\lambda]^{<\aleph_0} \rightarrow X$ we let

$$\text{ID}(f) =: \{(n, e) : (n, e) \text{ is an identity such that for some one-to-one function } h \text{ from } n = \{0, \ldots, n - 1\} \text{ to } \lambda \text{ we have } (\forall b, c \subseteq n)(b e c \Rightarrow f(h''(b)) = f(h''(c)))\}.$$

Clearly two-place functions are easier to understand; this motivates:

0.3 Definition. 1) A two-identity or 2-identity\(^2\) is a pair (a, e) where a is a finite set and e is an equivalence relation on $[a]^2$. Let $\lambda \rightarrow (a, e)_\mu$ mean $\lambda \rightarrow (a, e^+)_\mu$ where $b e^+ c \rightarrow [(b e c) \lor (b = c \subseteq a)]$ for any $b, c \subseteq a$.

2) We define

$$\text{ID}_2(\lambda, \mu) =: \{(n, e) : (n, e) \text{ is a 2-identity and } \lambda \rightarrow (n, e)_\mu\}$$

\(^2\)it is not an identity as e is an equivalence relation on too small set but it is a partial identity
we define $\text{ID}_2(f)$ when $f : [\lambda]^2 \to X$ as

$$\{(n, e) : (n, e) \text{ is a two-identity such that for some } h, \text{ a one-to-one function from } \{0, \ldots, n-1\} \text{ into } \lambda \text{ we have } \{\ell_1, \ell_2\} e \{k_1, k_2\} \text{ implies that } \ell_1 \neq \ell_2 \in \{0, \ldots, n-1\}, \ k_1 \neq k_2 \in \{0, \ldots, n-1\} \text{ and } f(\{h(\ell_1), h(\ell_2)\}) = f(\{h(k_1), h(k_2)\})\}.$$

3) Let us define $\text{ID}^\circ_2 =: \{(^{n}2, e) : (^{n}2, e) \text{ is a two-identity and if } \{\eta_1, \eta_2\} \neq \{\nu_1, \nu_2\} \text{ are } \subseteq ^n2, \text{ then } \{\eta_1, \eta_2\} e \{\nu_1, \nu_2\} \Rightarrow \eta_1 \cap \eta_2 = \nu_1 \cap \nu_2\}.$

4) In parts (1) and (2) we may replace 2 by $k < \omega$ (only $k < |a_s|$ is interesting) and by $(\leq k)$.

0.4 Discussion: By [Sh 49], under the assumption $\aleph_\omega < 2^{\aleph_0}$, the families $\text{ID}_2(\aleph_\omega, \aleph_0)$ and ID°_2 coincide (up to an isomorphism of identities). In Gilchrist and Shelah [GcSh 491] and [GcSh 583] we considered the question of the equality between these $\text{ID}_2(2^{\aleph_0}, \aleph_0)$ and ID°_2 under the assumption $2^{\aleph_0} = \aleph_2$. We showed that consistently the answer may be “yes” and may be “no”.

Note that $(\aleph_n, \aleph_0) \not\rightarrow (\aleph_\omega, \aleph_0)$ so $\text{ID}(\aleph_2, \aleph_0) \neq \text{ID}(\aleph_\omega, \aleph_0)$, but for identities for pairs (i.e. ID_2) the question is meaningful.

We can look more at ordered identities

0.5 Definition. 1) An ord-identity or order identity is an identity s such that $a_s \subseteq \text{Ord}$ or just: a is an ordered set.

2) $\lambda \rightarrow^{\text{ord}} (s)_\mu$ if s is an ord-identity and for every $c : [\lambda]^{< \aleph_0} \to \mu$ we have $s \in \text{OID}(c)$, see below (equivalently Dom$(c) = [\lambda]^{< \aleph_0}, |\text{Rang}(c)| \leq \mu$).

3) For $c : [\lambda]^{< \aleph_0} \to \mu$ let $\text{OID}(c) = \{(a, e) : a \text{ is a set of ordinals and there is an order preserving function } f : a \to \lambda \text{ such that } b_1 e b_2 \Rightarrow c(f''(b_1)) = c(f''(b_2))\}$.

4) $\text{OID}(\lambda, \mu) = \{(n, e) : (n, e) \in \text{OID}(c) \text{ for every } c : [\lambda]^{< \aleph_0} \to \mu\}$.

5) Similarly OID_2, OID_k, $\text{OID}_{\leq k}$.

Of course,
0.6 Claim. 1) $\text{ID}(\lambda, \mu)$ can be computed from $\text{OID}(\lambda, \mu)$.
2) Let a be a finite set of ordinals and e an equivalence relation. If (a, e) is an identity, a a set of ordinals and $\lambda > \mu$, then $(a, e) \in \text{ID}(\lambda, \mu)$ iff for some permutation π of a we have $(a, e^\pi) \in \text{OID}(\lambda, \mu)$ where $e^\pi = \{(b, c) : (\pi''(b), \pi''(c)) \in e\}$.
3) Let A be a set of ordinals, (a, e) an ord-identity and c a function with domain $[A]^{<\aleph_0}$. Then $(a, e) \in \text{ID}(c)$ iff for some permutation π of a, $(a, e^\pi) \in \text{OID}(c)$.
4) Similarly for 2-identities and k-identities and $(\leq k)$-identities and partial identities.

0.7 Claim. If $n \in [1, \omega)$ and s an ordered partial identity then there is a first order sentence ψ_s such that: ψ_s has a $(\mu^+ + n, \mu)$-model iff $s \not\in \text{OID}(\mu^+ + n, \mu)$.

Proof. Easy as for some first order ψ sentence if M is a $(\mu^+ + n, \mu)$-model of ψ then $<_M$ is a linear order of M (of cardinality $\mu^+ + n$) which is $\mu^+ + n$-like (i.e. every initial segment has cardinality). $\square_{0.7}$

We define simplicity:

0.8 Definition. 1) For $k < \aleph_0$, we say (λ, μ) has k-simple identities when $(a, e) \in \text{ID}(\lambda, \mu) \Rightarrow (a, e') \in \text{ID}(\lambda, \mu)$ whenever:

\[(*)_k \quad a \subseteq \omega, (a, e) \text{ is an identity of } (\lambda, \mu) \text{ and } e' \text{ is defined by } \]

\[b'c \iff |b| = |c| \text{ and } (\forall b'c)[b' \subseteq b \text{ and } |b'| \leq k \text{ and } c' = \text{OP}_{c,b'}(b') \Rightarrow b'ec'] \text{;} \]

recall $\text{OP}_{A,B}(\alpha) = \beta$ iff $\alpha \in A$ and $\beta \in B$ and otp($\alpha \cap A$) = otp($\beta \cap B$).

2) We define “(λ, μ) has k-simple ordered identities”, similarly.

We can ask

0.9 Question: 1) Define reasonably a pair (λ, μ) such that consistently

- \oplus $\text{ID}(\lambda, \mu)$ is not recursive
- \otimes' $\text{ID}(\lambda, \mu)$ is not, in a reasonable way, finitely generated.

2) Similarly for $\text{ID}_2(\lambda, \mu)$.
3) Restrict yourself to (μ^+, μ).
1.1 Claim. 1) If μ is strong limit singular then $\text{ID}_2(\mu^+, \mu)$ is 2-simple.

2) If $\mu = 2^{<\mu}$ and $c_0 : [\mu^+]^{<\aleph_0} \to \mu$ then we can find $c^* : [\mu^+]^2 \to \mu$ such that:

 (a) if $n \in [2, \omega)$ and $\alpha_0, \ldots, \alpha_{n-1} < \mu^+$ are with no repetitions and $\beta_0, \ldots, \beta_{n-1} < \mu^+$ are with no repetitions and $\ell < k < n \Rightarrow c^*\{\alpha_\ell, \alpha_k\} = c^*\{\beta_\ell, \beta_k\}$

 $c_0\{\alpha_0, \ldots, \alpha_{n-1}\} = c_0\{\beta_0, \ldots, \beta_{n-1}\}$

 (b) if in addition $\alpha_0 < \alpha_1 < \ldots < \alpha_{n-1} < \mu^+$ are with no repetitions and $\beta_0 < \beta_1 < \ldots < \beta_{n-3} < \beta_{n-2} < \beta_{n-1}$

1.2 Remark. 1) We may wonder what is the gain in 1.1(2) as compared to 1.1(1), as if $\mu = 2^{<\mu}$ is regular then we know all relevant theory on (μ^+, μ)? The answer is that it clarifies identities of triples (μ^+, μ, κ), e.g.

 (a) $(\mu^+, \mu, \kappa), \mu$ strong limit singular $> \kappa \geq \text{cf}(\mu)$

 (b) $(\mu^+, \mu, \kappa), \mu = \mu^{\beth_\omega(\kappa)}$.

2) Replacing $\mu + 2$ by $\mu + k, k + 1 \geq 2$ is similar and easier.

Proof. 1) By part (2).

2) By subclaims 1.3 - 1.7 below the claim is easy (see details in the end).

1.3 Subclaim. There is $c_1 : [\mu^+]^2 \to \mu$ such that if $\alpha_0 < \alpha_1 < \alpha_2 < \mu^+$ and $\beta_0, \beta_1, \beta_2 < \mu^+$ are with no repetitions and $c_1\{\beta_\ell, \beta_k\} = c_1\{\alpha_\ell, \alpha_k\}$ for $\ell < k < 3$ then at least two of the following holds $\beta_0 < \beta_1, \beta_0 < \beta_2, \beta_1 < \beta_2$.

Notice, that we have only three possibilities (not four):

(i) $\beta_0 < \beta_1 < \beta_2$

(ii) $\beta_1 < \beta_0 < \beta_2$

(iii) $\beta_0 < \beta_2 < \beta_1$.

Proof. Let $\eta_\alpha \in 2^{\mu^+}$ for $\alpha < \mu^+$ be pairwise distinct and for $\alpha \neq \beta < \mu^+$ let $\varepsilon\{\alpha, \beta\} = \text{Min}\{\varepsilon : \eta_\alpha \upharpoonright \varepsilon \neq \eta_\beta \upharpoonright \varepsilon\}$ and define the function c_1' with domain $[\mu^+]^2$ by $c_1'\{\alpha, \beta\} = \{\eta_\alpha \upharpoonright \varepsilon\{\alpha, \beta\}, \eta_\beta \upharpoonright \varepsilon\{\alpha, \beta\}\}$, now $|\text{Rang}(c_1')| \leq \mu$ holds because $\mu = 2^{<\mu}$. For $\alpha \neq \beta$, let $c_1'\{\alpha, \beta\}$ be 1 if $(\eta_\alpha <_{\text{lex}} \eta_\beta) \equiv (\alpha < \beta)$ and 0 otherwise (the Sierpinski colouring). Lastly, define c_1 by: $c_1\{\alpha, \beta\} = (c_1'\{\alpha, \beta\}, c_1''\{\alpha, \beta\})$, it is a function with domain $[\mu^+]^2$ and range of cardinality $\leq \mu$ and easily it is as required. \hfill $\square_{1.3}$
1.4 Subclaim. For every $c : [\mu^+]^{<\aleph_0} \to \mu$ there is $c_2 : [\mu^+]^2 \to \mu$ such that: if $n \geq 2, \alpha_0 < \alpha_1 < \ldots < \alpha_{n-1} < \mu^+, \beta_0 < \beta_1 < \ldots < \beta_{n-1} < \mu^+$ and $\ell < k < n \Rightarrow c_2(\alpha_\ell, \alpha_k) = c_2(\beta_\ell, \beta_k)$ then $c(\alpha_0, \ldots, \alpha_{n-1}) = c(\beta_0, \ldots, \beta_{n-1})$.

Proof. We are given $c : [\mu^+]^{<\aleph_0} \to \mu$ and for each $\alpha < \mu^+$ let f_α be a one-to-one function from α onto the ordinal $|\alpha| \leq \mu$ and we shall use those f_α's also later. We define an equivalence relation E on $[\mu^+]^2$ such that:

(*) for $\alpha_1 < \beta_1 < \mu^+$ and $\alpha_2 < \beta_2 < \mu^+$ we have $\{\alpha_1, \beta_1\}E\{\alpha_2, \beta_2\}$ iff
\begin{enumerate}
 \item\ (a) $f_{\beta_1}(\alpha_1) = f_{\beta_2}(\alpha_2)$ and
 \item\ (b) for any $n < \omega$ and $\gamma_0 < \ldots < \gamma_{n-1} < f_{\beta_1}(\alpha_1)$ we have
\end{enumerate}

$$c(\alpha_1, \beta_1, f_{\beta_1}^{-1}(\gamma_0), \ldots, f_{\beta_1}^{-1}(\gamma_{n-1})) = c(\alpha_2, \beta_2, f_{\beta_2}^{-1}(\gamma_0), \ldots, f_{\beta_2}^{-1}(\gamma_{n-1}))$$

and similarly if we omit α_1, α_2 and/or β_1, β_2.

So $[\mu^+]^2/E$ has cardinality $\leq \mu^>2 = \mu$ and let $c_2 : [\mu^+]^2 \to \mu$ be such that $c_2(\alpha_1, \beta_1) = c_2(\alpha_2, \beta_2)$ iff $\{\alpha_1, \beta_1\}/E = \{\alpha_2, \beta_2\}/E$. We now check that it is as required in 1.4. Let $n, (\alpha_\ell : \ell < n), (\beta_\ell : \ell < n)$ be as in 1.4; so $\ell < k < n \Rightarrow c_2(\alpha_\ell, \alpha_k) = c_2(\beta_\ell, \beta_k)$, hence by (*)(a) above (for $k = n - 1$) we have $\ell < n - 1 \Rightarrow f_{\alpha_{n-1}}(\alpha_\ell) = f_{\beta_{n-1}}(\beta_\ell)$, call it γ_ℓ; as $f_{\alpha_{n-1}}$ is one to one, clearly $(\gamma_\ell : \ell < n - 2)$ is with no repetitions. Let $\ell(\ast) < n$ be such that $\gamma_{\ell(\ast)}$ is maximal and for $\ell < n - 2$ let γ'_ℓ be γ_ℓ if $\ell < \ell(\ast)$ and by $\gamma'_{\ell+1}$ if $\ell \in [\ell(\ast), n - 1)$. Now apply (*)(b) with $\alpha_{\ell(\ast)}, \alpha_{n-1}, \beta_{\ell(\ast)}, \beta_{n-2}, (\gamma'_\ell : \ell < n - 2)$ here standing for $\alpha_1, \beta_1, \alpha_2, \beta_2, (\gamma_\ell : \ell < n - 2)$ there and we get the desired result. \(1.4\)

1.5 Subclaim. In 1.4, using $f_\alpha : \alpha \to \mu$ as in its proof, we have $c(\alpha_0, \ldots, \alpha_{n-1}) = c(\beta_0, \ldots, \beta_{n-2})$ also when

(*) $n \geq 2, \alpha_0 < \alpha_1 < \ldots < \alpha_{n-3} < \alpha_{n-2} < \alpha_{n-1} < \mu^+, \beta_0 < \beta_1 < \ldots < \beta_{n-3} < \beta_{n-2} < \beta_{n-1}$ and $\ell < n - 2 \Rightarrow f_{\alpha_{n-1}}(\alpha_\ell) = f_{\alpha_{n-2}}(\alpha_\ell)$ and $\ell < k < n \Rightarrow c_2(\alpha_\ell, \alpha_k) = c_2(\beta_\ell, \beta_k)$.

Proof. Just the same proof. \(1.5\)
1.6 Subclaim. There is $c_4 : [\mu^+]^2 \to \mu$ such that if $\alpha_0 < \alpha_1 < \alpha_2 < \mu^+$ and $\beta_0, \beta_1, \beta_2 < \mu^+$ with no repetitions and $c_4(\beta_\ell, \beta_k) = c_4(\alpha_\ell, \alpha_k)$ for $\ell < k < 3$ then $\beta_0 < \beta_1 \& \beta_0 < \beta_2$.

Proof. For $\alpha < \beta < \mu^+$ we let $c'(\alpha, \beta) = \{f_\beta(\gamma) : \gamma < \alpha \& f_\beta(\gamma) < f_\beta(\alpha)\}$ and let $c_4(\alpha, \beta) = (c'(\alpha, \beta), c_1(\alpha, \beta), f_\beta(\alpha))$ where c_1 is from 1.3 and $\langle f_\gamma : \gamma < \mu^+ \rangle$ is from the proof of 1.4. Clearly $\|\text{Rang}(c')\| \leq \sum_{\zeta < \mu} 2^{[\zeta]} = \mu$ hence $\|\text{Rang}(c_4)\| \leq \mu^3 = \mu$.

If $\alpha_\ell, \beta_\ell (\ell < 3)$ form a counterexample, then $c_4(\alpha_\ell, \alpha_k) = c_4(\beta_\ell, \beta_k)$ for $\ell < k < 3$ hence by 1.3 we have three cases according to which one of the inequalities $\beta_\ell < \beta_k, \ell < k < 3$ fail.

Case (ii): $\beta_0 < \beta_1 < \beta_2$.

Trivial: the desired conclusion holds.

Case (ii): $\beta_1 < \beta_0$ so $\beta_1 < \beta_0 < \beta_2$.

Let $\zeta_\ell = f_{\alpha_2}(\alpha_\ell)$ for $\ell = 0, 1$ hence $\zeta_0 \neq \zeta_1$ as f_{α_2} is one to one and $\zeta_\ell = f_{\beta_2}(\beta_\ell)$.

Now on the one hand if $\zeta_0 < \zeta_1$ then $c'(\alpha_1, \alpha_2) \neq c'(\beta_1, \beta_2)$ (as $\zeta_0 \in c'(\alpha_1, \alpha_2)$, $\zeta_0 \notin c'(\beta_1, \beta_2)$), contradiction. On the other hand if $\zeta_1 < \zeta_0$ then $c'(\alpha_0, \alpha_2) \neq c'(\beta_0, \beta_2)$ (as $\zeta_1 \in c'(\beta_0, \beta_2)$, $\zeta_1 \notin c'(\alpha_0, \alpha_2)$), a contradiction, too.

Case (iii): $\beta_2 < \beta_1$.

By Subclaim 1.3 we have $\beta_0 < \beta_2 < \beta_1$.

This is O.K. for 1.6. \(\square_{1.6}\)

1.7 Subclaim. For every $c : [\mu^+]^2 \to \mu$ there is $c_5 : [\mu^+]^2 \to \mu$ such that

(a) $c_5(\alpha_1, \beta_1) = c_5(\alpha_2, \beta_2) \Rightarrow c_2(\alpha_1, \beta_1) = c_2(\alpha_2, \beta_2)$ where c_2 is from 1.5 (so also Subclaim 1.5)

(b) there are no $\alpha_0 < \alpha_1 < \alpha_2 < \mu^+$ and $\beta_0 < \beta_1 < \beta_2 < \mu^+$ such that $f_{\alpha_2}(\alpha_0) \neq f_{\alpha_1}(\alpha_0), c_5(\alpha_0, \alpha_1) = c_5(\beta_0, \beta_2), c_5(\alpha_0, \alpha_2) = c_5(\beta_0, \beta_1)$ and $c_5(\alpha_1, \alpha_2) = c_5(\beta_1, \beta_2)$

(c) $c_5(\alpha_1, \beta_1) = c_5(\alpha_2, \beta_2) \Rightarrow c_4(\alpha_1, \beta_1) = c_4(\alpha_2, \beta_2)$ where c_4 is from Subclaim 1.6.

Proof. Let $\kappa = \text{cf}(\mu) \leq \mu$ and $\mu = \sum_{i < \kappa} \lambda_i$ be such that if μ is a limit cardinal then λ_i is (strictly) increasing continuous and if μ is a successor cardinal then $\mu = \lambda^+, \kappa = \mu$ and $\lambda_i = \lambda$ for $i < \kappa$. We can find $d : [\mu^+]^2 \to \kappa$ and \bar{g} such that
\(\mathcal{U}_0 (i)\) for \(\beta < \mu^+, i < \kappa\) the set \(A_{\beta,i} = \{\alpha < \beta : d\{\alpha, \beta\} \leq i\}\) has cardinality \(\leq \lambda_i\).

(ii) if \(\alpha < \beta < \gamma < \mu^+\) then \(d\{\alpha, \gamma\} \leq \max\{d\{\alpha, \beta\}, d\{\beta, \gamma\}\}\)

(iii) \(\vec{g}\) is a sequence \((g_\alpha : \alpha < \mu^+)\)

(iv) \(g_\alpha : \alpha \to \mu\) is one to one and
\[\lambda_i^+ < \mu \land \ i < \kappa \land \ \alpha < \beta \Rightarrow ((g_\beta(\alpha) < \lambda_i^+) \equiv (d\{\alpha, \beta\} \leq i))\]

(v) if \(\alpha < \beta, d\{\alpha, \beta\} = i\) and \(\lambda_i^+ = \mu\) then \(g_\beta(\alpha) < d\{\alpha, \beta\}\).

[Why we can find them? By induction on \(\beta < \mu^+\) by induction on \(i < \mu\) for \(\alpha = f_{\beta}^{-1}(i)\) we choose \(d\{\alpha, \beta\}\) and \(g_\beta(\alpha)\) as required.]

Define the functions \(c'_6\) and \(c'_7\) with domain \([\mu^+]^2\) as follows: if \(\alpha < \beta\) then
\[c'_6(\alpha, \beta) = \{(t, \zeta_1, \zeta_2) : \zeta_1, \zeta_2 \leq g_\beta(\alpha), t < 2 \land t = 0 \Rightarrow g_\beta^{-1}(\zeta_1) < g_\beta^{-1}(\zeta_2) \land t = 1 \Rightarrow g_\beta^{-1}(\zeta_1) > g_\beta^{-1}(\zeta_2)\}\] and
\[c'_7(\alpha, \beta) = \{(t, \zeta, \xi) : \zeta \in \lambda_i^+ \cap \text{Rang}(g_\beta) \land \xi \in \lambda_i^+ \cap \text{Rang}(g_\beta)\} \land g_\beta^{-1}(\zeta) = g_\beta^{-1}(\xi) \land t = 0 \lor g_\beta^{-1}(\zeta) > g_\beta^{-1}(\xi) \land t = 1\].

Now for \(\alpha < \beta < \mu^+\) we define \(c'_5(\alpha, \beta) \in \Pi\{\lambda_j^+ : j \leq d\{\alpha, \beta\}\}\), we do this by induction on \(\beta\) and for a fixed \(\beta\) by induction on \(i = d\{\alpha, \beta\}\) and for a fixed \(\beta\) and \(i\) by induction on \(\alpha\).

Arriving to \(\alpha < \beta\), for each \(j \leq d\{\alpha, \beta\}\), let \((c'_5(\alpha, \beta))(j)\) be the first ordinal \(\xi < \lambda_j^+\) such that:

\(\mathcal{U}_1 (i)\) if \(\gamma < \beta \land d\{\gamma, \beta\} \leq j \land (d\{\gamma, \beta\} = d\{\alpha, \beta\} \Rightarrow \gamma < \alpha)\) then
\[(c'_5(\alpha, \gamma))(j) < \xi.\]

Clearly possible. The colouring we use is \(c_5\) where for \(\alpha < \beta < \mu^+\) we let \(c_5(\alpha, \beta) = (d\{\alpha, \beta\}, g_\beta(\alpha), f_\beta(\alpha), c_2(\alpha, \beta), c'_5(\alpha, \beta), c'_6(\alpha, \beta), c'_7(\alpha, \beta), c_4(\alpha, \beta))\), recalling \(c_4\) is from Subclaim 1.6 and \(c_2\) is from Subclaim 1.4. Obviously, \(|\text{Rang}(c_5)| \leq \mu\) and clauses \((a) + (c)\) of Subclaim 1.7 holds. So assume \(\alpha_0 < \alpha_1 < \alpha_2, \beta_0 < \beta_1 < \beta_2\) form a counterexample to clause \((b)\) of Subclaim 1.7 and we shall eventually derive a contradiction.

Clearly

\(\mathcal{U}_2 (i)\) if \(d\{\alpha_0, \alpha_2\} = d\{\beta_0, \beta_1\}, d\{\alpha_0, \alpha_1\} = d\{\beta_0, \beta_2\}, d\{\alpha_1, \alpha_2\} = d\{\beta_1, \beta_2\}\)

(ii) similarly for \(c_4, c'_5, c'_6, c'_7\).
By clause $\otimes_0(ii)$ above we have $d(\alpha_0, \alpha_2) \leq \max\{d(\alpha_0, \alpha_1), d(\alpha_1, \alpha_2)\}$, and applying clause $\otimes_0(ii)$ to $\beta_0 < \beta_1 < \beta_2$ and using \otimes_2 we have $d(\alpha_0, \alpha_1) = d(\beta_0, \beta_2) \leq \max\{d(\beta_0, \beta_1), d(\beta_1, \beta_2)\} = \max\{d(\alpha_0, \alpha_2), d(\alpha_1, \alpha_2)\}$. Hence $d(\alpha_0, \alpha_1) = d(\alpha_0, \alpha_2) > d(\omega_{\alpha_0, \alpha_2})$ or $\bigwedge_{\ell=1}^2 [d(\omega_{\alpha_0, \alpha_2}) < d(\alpha_1, \alpha_2)]$; we deal with those two cases separately.

Case 1: $\delta = d(\alpha_0, \alpha_1) = d(\alpha_0, \alpha_2) > d(\alpha_1, \alpha_2)$.

So (see the definition of c_5, with $\alpha_0, \alpha_2, \alpha_1, \delta$ here standing for $\alpha, \beta, \gamma, \xi$ there recalling that $\alpha_0 < \alpha_1 < \alpha_2$ we have $\lambda_+^\beta > (c_5(\alpha_0, \alpha_2))(\delta) > (c_5(\alpha_0, \alpha_1))(\delta)$. Similarly, $\lambda_+^\beta > (c_5(\beta_0, \beta_2))(\delta) > (c_5(\beta_0, \beta_1))(\delta)$. This contradicts $c_5(\alpha_0, \alpha_2) = c_5(\beta_0, \beta_{3-\ell})$ for $\ell = 1, 2$.

Case 2: $d(\alpha_0, \alpha_2) \leq d(\alpha_1, \alpha_2)$ for $\ell = 1, 2$.

Let $\delta = d(\alpha_1, \alpha_2)$. Let $\gamma_\ell = g_{\alpha_\ell}(\alpha_0)$ for $\ell = 1, 2$ so $\gamma_\ell = g_{\beta_{3-\ell}}(\beta_0)$ for $\ell = 1, 2$. By the assumption toward contradiction, i.e., by a demand in clause (b) of 1.7 we have $\gamma_1 \neq \gamma_2$. Clearly $\gamma_\ell < \lambda_+^\beta(d(\alpha_0, \alpha_2)) \leq \lambda_+^\beta(d(\alpha_1, \alpha_2)) = \lambda_+^\beta(\mu) \Rightarrow \gamma_\ell < d(\alpha_0, \alpha_\ell) \leq d(\alpha_1, \alpha_2) = \epsilon$.

As $c_5(\alpha_0, \alpha_2) = c_5(\beta_1, \beta_2)$ and $g_{\alpha_1}^{-1}(\gamma_1) = \alpha_0 = g_{\alpha_2}^{-1}(\gamma_2)$ clearly $g_{\beta_1}^{-1}(\gamma_1) = g_{\beta_2}^{-1}(\gamma_2)$ and they are well defined.

For $\ell = 1, 2$ as $c_5(\alpha_0, \alpha_\ell) = c_5(\beta_0, \beta_{3-\ell})$ by the choice of γ_ℓ (that is $\gamma_\ell = g_{\alpha_\ell}(\alpha_0)$) we have $g_{\beta_1}(\beta_0) = \gamma_3 - \ell$ so $g_{\beta_1}^{-1}(\gamma_3 - \ell) = \beta_0$ for $\ell = 1, 2$ hence $g_{\beta_1}^{-1}(\gamma_2) = g_{\beta_2}^{-1}(\gamma_1)$. As $c_5(\alpha_0, \alpha_2) = c_5(\beta_0, \beta_2)$ we have $c_5(\alpha_0, \alpha_2) = c_5(\beta_1, \beta_2)$ but $\gamma_1, \gamma_2 \leq g_{\alpha_2}(\alpha_1)$ hence $g_{\beta_1}^{-1}(\gamma_1) = g_{\beta_2}^{-1}(\gamma_2)$ for $\ell = 1, 2$.

As $\gamma_1 \neq \gamma_2$ we have $g_{\alpha_2}^{-1}(\gamma_1) \neq g_{\alpha_2}^{-1}(\gamma_2)$.

By symmetry without loss of generality $\gamma_1 > \gamma_2$. We can form an equivalence chain, starting with $g_{\beta_1}^{-1}(\gamma_1) < g_{\beta_1}^{-1}(\gamma_2)$ and arriving to $g_{\beta_1}^{-1}(\gamma_2) < g_{\beta_1}^{-1}(\gamma_1)$, a clear contradiction. Well, $g_{\beta_1}^{-1}(\gamma_1) < g_{\beta_1}^{-1}(\gamma_2)$ iff $g_{\beta_1}^{-1}(\gamma_2) < g_{\beta_1}^{-1}(\gamma_1)$ (by the equalities above) iff $g_{\beta_1}^{-1}(\gamma_2) < g_{\beta_2}^{-1}(\gamma_1)$ (by $\oplus 3$) iff $g_{\beta_1}^{-1}(\gamma_2) < g_{\beta_1}^{-1}(\gamma_1)$ (by $\oplus 5$) iff $g_{\beta_1}^{-1}(\gamma_2) < g_{\beta_1}^{-1}(\gamma_1) = c_5(\beta_0, \beta_1)$ and use the parameter ℓ in the triple (t, γ_1, γ_2)).

So we have proved Subclaim 1.7. $\square_{1.7}$

We can now sum up, i.e.:

Proof of 1.1(2) from Subclaims 1.3-1.7. We are given $c_0 : [\mu^+]^{<K_0} \rightarrow \mu$. First we apply Subclaim 1.4 for $c = c_0$ and get $c_2 : [\mu^+]^2 \rightarrow \mu$ as there and let c_4 be as in 1.6.

Second, we apply Subclaim 1.7 for $c = c_2$ and get c_5 as there. Let us check that c_5 is as required on c^* in 1.1(2). So assume (*)$a_0 + (*)_1$ below and (as the case $n = 2$ is trivial) assume $n \geq 3$ where
\((**)_0\) \(\{\alpha_0, \ldots, \alpha_{n-1}\} \in [\mu^+]^n\) and \(\{\beta_0, \ldots, \beta_{n-1}\} \in [\mu^+]^n\) and
\((**)_1\) \(\ell < k < n \Rightarrow c_5\{\alpha_\ell, \alpha_k\} = c_5\{\beta_\ell, \beta_k\}\).

Without loss of generality (by renaming)
\((**)_2\) \(\alpha_0 < \ldots < \alpha_{n-1}\).

and it is enough to prove that \(c_0\{\alpha_0, \ldots, \alpha_{n-1}\} = c_0\{\beta_0, \ldots, \beta_{n-1}\}\). By clause (a) of Subclaim 1.7 we have
\((**)_3\) \(\ell < k < n \Rightarrow c_2\{\alpha_\ell, \alpha_k\} = c_2\{\beta_\ell, \beta_k\}\).

By clause (c) of Subclaim 1.7 we have
\((**)_4\) \(\ell < k < n \Rightarrow c_4\{\alpha_\ell, \alpha_k\} = c_4\{\beta_\ell, \beta_k\}\).

Hence by Subclaim 1.6 we have
\((**)_5\) if \(\ell < k < n\) and \(\ell < n - 2\) then \(\beta_\ell < \beta_k\).

[Why? Apply Subclaim 1.6 to \(\alpha_\ell, \alpha_{\ell+1}, \alpha_k; \beta_\ell, \beta_{\ell+1}, \beta_k\) if \(\ell + 1 < k\), and apply 1.6 to \(\alpha_\ell, \alpha_{\ell+1}, \alpha_{\ell+2}; \beta_\ell, \beta_{\ell+1}, \beta_{\ell+2}\) if \(\ell + 1 = k\).]

So
\((**)_6(i)\) \(\beta_0 < \beta_1 < \ldots < \beta_{n-3} < \beta_{n-2} < \beta_{n-1}\) or
\((**)_6(ii)\) \(\beta_0 < \beta_1 < \ldots < \beta_{n-3} < \beta_{n-1} < \beta_{n-2}\).

So clause (\(\beta\)) of 1.1 holds.

If (i) of \((**)_6\) holds, then the choice of \(c_2\), i.e., by Subclaim 1.4 and \((**)_3\) above we get \(c_0\{\alpha_0, \ldots, \alpha_{n-1}\} = c_0\{\beta_0, \ldots, \beta_{n-1}\}\) so we are done. Otherwise we have (ii) of \((**)_6\) so by clause (b) of Subclaim 1.7 we have
\((**)_7\) if \(\ell < n - 2\) then \(f_{\alpha_{n-1}}(\alpha_\ell) = f_{\alpha_{n-2}}(\alpha_\ell)\).

[Why? Apply clause (b) of Subclaim 1.7 to \(\alpha_\ell, \alpha_{n-2}, \alpha_{n-1}; \beta_\ell, \beta_{n-1}, \beta_{n-2}\).]

So by Subclaim 1.5 we get \(c_0\{\alpha_0, \ldots, \alpha_{n-1}\} = c_0\{\beta_0, \ldots, \beta_{n-1}\}\) finishing. \(\square_{1.1}\)

1.8 Claim. Defining \(\text{ID}(\lambda, \mu)\), we can restrict ourselves to \(c : [\lambda]^{<\aleph_0} \to \mu\) such that \(c \upharpoonright [\lambda]^1\) is constant if \(\text{cf}(\lambda) > \mu\).

1.9 Claim. Assume \(\mu = 2^{<\mu}\) and \(n \in [1, \omega)\). The identities of \(\text{ID}(\mu^+^n, \mu)\) are \((n + 1)\)-simple (and also \(\text{OID}(\mu^+, \mu)\)).

Proof. As in 1.1, only easier in the additional cases. \(\square_{2.1}\)
§2 Successor of strong limit above supercompact: 2-identities

So we know that if μ is strong limit singular and there is a compact cardinal in $(\text{cf}(\mu), \mu)$ then $\text{ID}_2(\mu^+, \mu) \neq \text{ID}_2(\aleph_1, \aleph_0)$. It seems desirable to find explicitly such 2-identities.

The proof of the following does much more.

2.1 Claim. Assume

(a) $s_k = (k + {k \choose 2}, e_{s_k})$ where the non-singleton e_{s_k}-equivalence classes are the sets:

\[
\{\{\ell_0, \ell_2\} : \ell_0 < k \text{ and for some } \ell_1 \in \{\ell_0 + 1, \ldots, k - 1\} \text{ we have } \\
\ell_2 = k + {\ell_1 \choose 2} + \ell_0\} \text{ and } \{\{\ell_1, \ell_2\} : \ell_1 < k \text{ and for some } \ell_0 < \ell_1 \text{ we have } \\
\ell_2 = k + {\ell_1 \choose 2} + \ell_0\}.
\]

We stipulate $\left({k \choose 2}\right) = 0$ here.

(b) μ is strong limit, θ a compact cardinal and $\text{cf}(\mu) < \theta < \mu$.

Then

1) $s_k \in \text{ID}_2(\mu^+, \mu)$, moreover $s_k \in \text{OID}_2(\mu^+, \mu)$.

2) $s_k \notin \text{ID}_2(\aleph_1, \aleph_0)$ for $k \geq 3$ so for $k = 3$ we have $s_k = (6, e_{s_k})$ and the non-singleton equivalence classes, after permuting $\{3, 5\}$ are $\{\{1, 3\}, \{0, 4\}, \{0, 5\}\}$ and $\{\{1, 5\}, \{2, 3\}, \{2, 4\}\}$.

Proof. Part (1) follows from subclaim 2.2(3) below and part (2) follows from 2.3 below. \(\Box_{2.1}\)

2.2 Claim. Assume

(a) μ is strong limit,

(b) θ is compact and $\text{cf}(\mu) < \theta < \mu$

(c) $\kappa = \text{cf}(\mu), \langle \lambda_i : i < \kappa \rangle$ is increasing with limit μ

(d) $c : [\mu^+]^2 \to \mu$

(e) $d\{\alpha, \beta\} = \text{Min}\{i : c\{\alpha, \beta\} < \lambda_i\}$.

1) We can find $i(*)$, A, f such that

\[
(*) \quad i(*) < \kappa, A \in [\mu^+]^{\mu^+} \text{ and } i(*) < \kappa
\]

(ii) for every set $B \subseteq A$ of cardinality $< \theta$ there are μ^+ ordinals $\gamma \in A$ satisfying $\forall \alpha \in B \exists d\{\alpha, \gamma\} = i(*)$.

Proof. Part (1) follows from subclaim 2.2(3) below and part (2) follows from 2.3 below. \(\Box_{2.1}\)
2) In part (1) we also have: if $A_1 \subseteq A, |A_1| \geq \beth_n(\lambda)^+$ and $\lambda_{i(\ast)} \leq \lambda < \mu$, then there are $\langle \gamma_\ell : \ell < n \rangle \in \beth_n(\lambda_{i(\ast)})$ and $B \in |A_1|^\lambda$ such that for every $\alpha_0 < \ldots < \alpha_{n-1}$ from B for arbitrarily large $\beta < \lambda$ we have $\ell < n \Rightarrow c(\alpha_\ell, \beta) = \gamma_\ell$.

3) $s_\ell \in \text{ID}_2(c)$ where s_ℓ is from clause (a) of 2.1.

Proof. 1) Let D be a uniform θ-complete ultrafilter on μ^+.

Define $f : \mu^+ \rightarrow \kappa$ by $f(\alpha) = i \iff \{ \gamma < \mu^+ : d(\alpha, \gamma) = i \} \in D$, note that the function f is well defined as D is a θ-complete ultrafilter on μ^+ and $\theta > \kappa \supseteq \text{Rang}(d)$. So for some $i(*)$, the set $A = \{ \alpha < \mu^+ : f(\alpha) = i(*) \}$ belongs to D and check that $(*)$ holds, that is (i) + (ii) hold.

2) Define $c^* : [A]^n \rightarrow \beth_n(\lambda_{i(\ast)})$ such that

$$\forall \alpha_0 < \ldots < \alpha_{n-1} \text{ are from } A \text{ then for } \mu^+ \text{ ordinals } \beta < \mu^+ \text{ we have } c(\alpha_\ell, \beta) : \ell < n = c^* \{ \alpha_0, \ldots, \alpha_{n-1} \}.$$

So $\text{Rang}(c^*)$ has cardinality $\leq (\lambda_{i(\ast)})^n = \lambda_{i(\ast)}$ hence by the Erdős-Rado theorem there is $B \subseteq A_1$ infinite (even of any pregiven cardinality $< \lambda$) such that $c^* \upharpoonright [B]^n$ is constant.

3) Straight: in part (2) use $n = 2, A_1 = A$ and get B and $\langle \gamma_0, \gamma_1 \rangle \in 2(\lambda_{i(\ast)})$ as there and choose $\alpha_0 < \ldots < \alpha_{k-1}$ from B. Next choose α_ℓ for $\ell = 0, 1, \ldots, (k_2) - 1$, choosing β_ℓ by induction on ℓ. If $\ell = (\ell_1, \ell_0)$ and $\ell_0 < \ell_1 < k$ choose $\beta_\ell \in A$ satisfying $\beta_\ell > \alpha_{\ell-1}$ and $\beta_\ell > \beta_m$ for $m < \ell$ such that $c(\alpha_\gamma, \beta_\ell) = \gamma_0, c(\alpha_\ell, \beta_\ell) = \gamma_1$.

Now let $\alpha_{k+\ell} = \beta_\ell$ for $\ell < (k_2)$, and clearly $\langle \alpha_\ell : \ell < k + (k_2) \rangle$ realize the identity s_k.

$\square_{2.2}$

2.3 Subclaim. 1) If $s \in \text{ID}_2(\aleph_1, \aleph_0)$, then we can find a function $h : |\text{Dom}_s|^2/\epsilon_s \rightarrow \omega$ respecting e_s (i.e. $\ell_1, \ell_2 \in \epsilon_s \{ \ell_3, \ell_4 \} \Rightarrow h(\ell_1, \ell_2) = h(\ell_3, \ell_4)$) and there is a linear order $< \text{ of Dom}_s$ satisfying

$$\forall \text{ for any equivalence class } a \text{ of } e_s \text{ there are } a_0, a_1 \text{ such that }$$

$$\begin{align*}
(i) & \quad a_0, a_1 \text{ are disjoint finite subsets of Dom}_s \\
(ii) & \quad \text{if } \{ \ell_0, \ell_1 \} \in a \text{ and } \ell_0 < \ell_1 \text{ then } \ell_0 \in a_0 \& \ell_1 \in a_1 \\
(iii) & \quad \text{if } \ell_0 \neq \ell_1 \text{ are from } a_0 \cup a_1 \text{ and } \{ \ell_0, \ell_1 \} \notin a \text{ and } \{ \ell_0, \ell_1 \} \in a \text{ then } \\
& \quad h(\{ \ell_0, \ell_1 \}) > h(\{ \ell_0, \ell_1 \}).
\end{align*}$$

2) We can add in \oplus

$$\begin{align*}
(iv) & \quad \text{if } a_0, a_1 \text{ are distinct } e_s\text{-equivalence classes then for some } m \in \{ 0, 1 \} \text{ we have } |\cup a_m|^2/\epsilon_m \text{ is disjoint to } a_{1-m}.
\end{align*}$$
(v) in \oplus above a_0, a_1 can be defined as $\{\ell_0 : \{\ell_0, \ell_1\} \in a, \ell_0 < \ell_1\}$, $\{\ell_1 : \{\ell_0, \ell_1\} \in a, \ell_0 < \ell_1\}$ respectively.

3) If $k \geq 3, s_k$ from 2.1 clause (a) then s_k does not belong to ID$_2(N_1, N_0)$.

Proof. 1) Remember that by 0.6 we can deal with OID(N_1, N_0). By [Sh 74] we know what is OID(N_1, N_0), i.e., the family of identities in OID(N_1, N_0) is generated by two operations; one is called duplication and the other of restriction (see below) from the trivial identity (i.e. $[\text{dom}_s] = 1$) and we prove \oplus by induction on n, the number of times we need to apply the operations.

Recall that (a, e) is gotten by duplication if we can find sets a_0, a_1, a_2 and a function g such that

$$\oplus_1(a) \quad a_0 < a_1 < a_2 \quad \text{(i.e. } \ell_0 \in a_0, \ell_1 \in a_1, \ell_2 \in a_2 \Rightarrow \ell_0 < \ell_1 < \ell_2)$$

(a) $a = a_0 \cup a_1 \cup a_2$

(c) g a one-to-one order preserving function from $a_0 \cup a_1$ onto $a_0 \cup a_1$ (so $g \restriction a_0 = \text{id}_{a_0}$; let $g_1 = g, g_2 = g^{-1}$

(d) for $\ell_0 \neq \ell_1 \in (a_0 \cup a_1)$ we have $\{\ell_0, \ell_1\}e\{g(\ell_0), g(\ell_1)\}$

(e) if $\ell_1 \in a_1, \ell_2 \in a_2$ then $\{\ell_1, \ell_2\}/e$ is a singleton

(f) $s_\ell = (a_0 \cup a_2, e \restriction [a_0 \cup a_2]^2)$ is from a lower level (up to isomorphism), for $\ell \in \{1, 2\}$.

Recall that (a, e) is gotten by restriction from (a', e') if $a \subseteq a', e = e' \restriction [a]^2$.

Now we prove the existence of h as required by induction on the level. If $|\text{Dom}_s| = 1$ this is trivial. If s is gotten by restriction it is trivial too, (as if $s = (a, e), s' = (a', e'), a' \subseteq a, e' = e \restriction a'$ and $h : [a]^2 \to \omega$ is as guaranteed then we let $h' \langle \{\ell_0, \ell_1\} = h(\{\ell_0, \ell_1\})$ for $\ell_0 < \ell_1$. Easily h' is as required). So assume $s = (a, e)$ is gotten by duplication, so let a_0, a_1, a_2, g_1, g_2 be as in \oplus_1 and let h_1 be as required for $s_1 = (a_0 \cup a_1, e \restriction [a_0 \cup a_1]^2)$ and similarly define h_2 by $h_2\{\alpha, \beta\} = h_1\{g_2(\alpha), g_2(\beta)\}$.

Let $n^* = \sup \text{Rang}(h_1)$ and define $h : [a_0 \cup a_1 \cup a_2]^2 \to \omega$ by $h \geq h_1, h \geq h_2$ and if $k \in a_1, \ell \in a_2$ then we let $h\{k, \ell\} = n^* + 1$. Now check.

2) By symmetry, without loss of generality $h(a_0) < h(a_1)$ and now $m = 1$ satisfies the requirement by applying \oplus_1 to the equivalence class $a = a_1$.

3) It is enough to deal with s_3. By direct checking the criterion in part (2) fails.

$\Box_{2.3}$
2.4 Claim. Assume

(a) $s'_n \in \text{OID}_2$ is $(2n + n^2, e_{s'_n})$ where the non-singleton $e_{s'_n}$-equivalence classes are
$$\{{}\ell_0, 2n + n\ell_0 + \ell_1\} : \ell_0, \ell_1 < n\} \text{ and } \{{}\ell_0, 2n + n\ell_0 + \ell_1\} : \ell_0, \ell_1 < n\}$$

(b) μ is a limit cardinal, $\mu > \theta > \text{cf}(\mu)$ and θ is a compact cardinal

(c) $s''_n \in \text{OID}_2$ is $(2^n + 2^{2^n}, e_{s''_n})$ where the non-singleton $e_{s''_n}$-equivalence classes are: for $m < n, \eta \in \mathbb{m}2, i = 0, 1$ let $a^i_\eta = \{{}\ell_i, 2^n\left(2^n\right)^\eta + \ell_1\} : \ell_0, \ell_1 < 2^n$ and for some $\nu_0, \nu_1 \in ^n2$ we have $\eta^\nu(0) \leq \nu_0, \eta^\nu(1) \leq \nu_1$ and $\ell_0 = \Sigma(\nu_0(j)2^j : j < n}$ and $\ell_1 = \Sigma(\nu_1(j)2^j : j < n}$.

Then

1) $s'_n \in \text{ID}_2(\mu^+, \mu)$, moreover $s'_n \in \text{OID}_2(\mu^+, \mu)$ similarly for s''_n.
2) $s'_n \notin \text{ID}_2(\mathbb{N}_1, \mathbb{N}_0)$ for $n \geq 2$, similarly for s''_n.

Proof. 1) Like the proof of 2.2 using [Sh 49] (or just [Sh 604, 5.13]) instead of the Erdős-Rado theorem.

2) Otherwise there is $(a, e) \in \text{ID}_2(\mathbb{N}_1, \mathbb{N}_0)$ and an embedding h of s'_n into (a, e) and by 0.6 without loss of generality $(a, e) \in \text{OID}_2(\mathbb{N}_1, \mathbb{N}_0)$. Now

$(*)_1$ if $\ell_0 < n, \ell_1 < n$ and $\ell = 2n + n\ell_0 + \ell_1$ then $h(\ell_0) < h(\ell)$.
[Why? Choose $\ell'_1 < n, \ell'_1 \neq \ell_1$, $\ell' = 2n + n\ell_0 + \ell'_1$, so $\ell \neq \ell'$ and
$\{{}\ell_0, \ell\} \not\in \ell_1, \ell'_1\} \not\in \ell_1, \ell'_1\} \text{ hence the pairs } \{{}\ell(\ell_0), h(\ell)\}, \{{}\ell(\ell_0), h(\ell')\} \text{ are e-equivalent and } h(\ell) \neq h(\ell').$ But on (a, e) we know that if $\{m_0, m_1, m_2\}$ has three members and $\{m_0, m_1\} e \{m_0, m_2\}$ then $m_2 < m_1$ and $m_2 < m_1$ are impossible (see 2.5(2) below) so we are done.]

$(*)_2$ if $\ell_0 < n, \ell_1 < n$ and $\ell = 2n + n\ell_0 + \ell_1$ then $h(\ell_1) < h(\ell)$.
[Why? Like $(*)_1$.]

Now we apply 2.3(1) (2) above so $s'_n \notin \text{ID}_2(\mathbb{N}_1, \mathbb{N}_0)$. The conclusion about s''_n follows. $\square_{2.4}$

2.5 Observation. 1) If $k \geq 2, \mathbf{s} = (n, e) \in \text{OID}_2(\mu^+, \mu)$ then we can find $s' = (n', e')$ in fact $n' = 2n - 1$ such that:

(i) $e' \upharpoonright [n]^2 = e$

(ii) $s' \in \text{ID}(\mu^+, \mu)$

(iii) for every $c : [\mu^+]^{<\mathbb{N}_0} \rightarrow \mu$ there is $c' : [\mu^+]^{<\mathbb{N}_0} \rightarrow \mu$ refining c (i.e. $c'(u_1) = c'(u_2) \Rightarrow c(u_1) = c(u_2)$) such that: if $h : \{0, \ldots, 2n - 2\} \rightarrow \mu^+$ is one to
one and satisfies $u_1 e' u_2 \Rightarrow c'(h''(u_1)) = c'(h''(u_2))$ then $h \upharpoonright \{0, \ldots, n-1\}$ is increasing.

2) There is $c : [\mu^+]^2 \rightarrow \mu$ such that:
 - if α, β, γ are distinct and $c\{\alpha, \beta\} = c\{\alpha, \gamma\}$ then $\alpha < \beta$ & $\alpha < \gamma$.
3) We can replace in (1), (μ^+, μ) by (λ, μ) if there is $s = (n, e) \in \text{ID}(\lambda, \mu)$ such that for some $c : [\lambda]^{< R_0} \rightarrow \mu$ such that
 - \oplus if $h : n \rightarrow \lambda$ induces e_s then $h(0) < h(1)$.

Proof. 1) Define $e' : u_1 e' u_2$ iff $u_1 e u_2 \vee u_1 = u_2 \vee \bigvee_{\ell < n-1} (u_1 = \{\ell, n + \ell + 1\} \& u_2 = \{\ell, \ell + 1\}) \vee \bigvee_{\ell < n-1} (u_2 = \{\ell, n + \ell + 1\} \& u_1 = \{\ell, \ell + 1\})$. Now use (2).

2) Let $f_\alpha : \alpha \rightarrow \mu$ be one to one for $\alpha < \mu^+$ and let $<^*$ a dense linear order on μ^+ with $\{\alpha : \alpha < \mu\}$ a dense subset. Now choose $c_1 : [\mu^+]^2 \rightarrow \mu$ such that $\alpha <^* \beta \Rightarrow \alpha <^* c_1\{\alpha, \beta\} <^* \beta$ and define $c_0 : [\mu^+]^2 \rightarrow \{0, 1\} \& c_0\{\alpha, \beta\} = 1 \Leftrightarrow (\alpha < \beta \equiv \alpha <^* y)$.

Lastly, let $c : [\mu^+]^2 \rightarrow \mu$ be $\alpha < \beta \Rightarrow c\{\alpha, \beta\} = \text{pr}(2f_\beta(\alpha) + c_0\{\alpha, \beta\}, c_1\{\alpha, \beta\})$ for some pairing function pr.

3) Similar to part (1) only $|\text{Dom}_s'|$ is larger. $\square_{2.5}$
REFERENCES.

