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Abstract: We present a hierarchical framework for zero-shot human-activity recognition that recognizes unseen activities
by the combinations of preliminarily learned basic actions and involved objects. The presented framework
consists of gaze-guided object recognition module, myo-armband based action recognition module, and the
activity recognition module, which combines results from both action and object module to detect complex
activities. Both object and action recognition modules are based on deep neural network. Unlike conventional
models, the proposed framework does not need retraining for recognition of an unseen activity, if the activity
can be represented by a combination of the predefined basic actions and objects. This framework brings
competitive advantage to industry in terms of the service-deployment cost. The experimental results showed
that the proposed model could recognize three types of activities with precision of 77% and recall rate of 82%,
which is comparable to a baseline method based on supervised learning.

1 INTRODUCTION

Human activity recognition is important technology
for many applications such as video surveillance sys-
tems, patient monitoring systems, and work support
systems. A large body of works have investigated this
technology especially in computer vision field (Ag-
garwal, 1999; Turaga et al., 2008; Lavee et al., 2009;
Aggarwal and Ryoo, 2011).

The target of this study is workers’ activities in
factories. The conventional systems are designed to
recognize particular set of activities by using super-
vised learning methods. Such systems, however, are
not suitable for practical deployment because of the
diversity of the activities in a practical field. It is usual
in industrial situation that different factories have dif-
ferent demand for the target activities. In addition, the
way an activity is performed may be different from
factory to factory even though the name of the activity
is identical. In these cases, the conventional systems
need costly customization since they require retraining
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of the whole model for a new activity.
The goal of this research is to design a framework

for zero-shot human activity recognition that over-
comes this drawback and realize an easy-to-deploy
system. The key idea is to recognize complex activi-
ties based on the combinations of simpler components,
like the actions and objects involved in the activities.

Two wearable sensors, namely eye-tracking glass
(ETG) and armband sensor, are utilized to recognize
the basic objects and basic actions, respectively (Fig-
ure 1). Although many conventional systems use fixed
cameras as sensors, wearable sensors are more appro-
priate especially in complex industrial environment
because fixed cameras often suffer from the occlusion
problem.

This framework enables to recognize a new activity
without time-consuming retraining process if a new
activity can be represented by a combination of pre-
defined basic actions and objects. Figure 1 shows the
overview of the proposed model. (Here, “action” is
defined as a simple motion of body parts such as “raise
arm” and “bend down”, while “activity” is defined as
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Figure 1: System overview. Object recognition module takes gaze-guided egocentric video and output the probabilities of basic
objects. Action recognition module takes multi-modal armband signals and output the probabilities of basic actions. Activity
recognition module process these probabilities to output the activity label.

a complex behavior such as “check manual” and “look
for parts”.)

This study introduces a deep neural network
(DNN) based action recognition method based on
armband sensor and a gaze-guided object recognition
method using ETG. The experimental result showed
the accuracy of these two basic recognition methods
are reasonably high. Moreover, the activity recognition
method based on these two basic modules achieved
about 80% both in precision and recall rate, which is
comparable to the baseline method based on super-
vised learning.

2 RELATED WORK AND
CONTRIBUTION OF THIS
STUDY

2.1 Related Work

Significant amount of studies has worked on the activ-
ity recognition problem. One of the most common and
well-studied methods is the one based on video data
obtained from a fixed camera (Wang et al., 2011; Wang
and Schmid, 2013; Tran et al., 2015; Donahue et al.,
2015). Especially a hierarchical model that uses two-
stream DNN have achieved the state-of-the-art accu-
racy in various publicly available datasets (Simonyan
and Zisserman, 2014; Wang et al., 2016; Peng and
Schmid, 2016). The two-stream networks extract ap-
pearance based features (spatial features) and motion
based features (temporal features) separately.

For example, Peng et al. (Peng and Schmid, 2016)
introduced a method that extracts region of interest
(ROI) by using a two-stream network that consists
of RGB based faster R-CNN to extract appearance

features and optical flow based faster R-CNN to ex-
tract motion features. Next to these region proposal
networks, they added a multi-region generation layer
to extract more detailed information. Their method
achieved the best accuracy of 95.8% on the UCF sports
dataset. However, the video data obtained from a fixed
camera easily suffer from an occlusion problem espe-
cially in a practical environment such as in a factory.

To overcome this occlusion problem, the meth-
ods based on ego-centric video data have been stud-
ied. Ego-centric video data (or first-person-view video
data) are obtained using a wearable camera devices
such as Google glass. Recent surveys can be found in
(Nguyen et al., 2016; Betancourt et al., 2015). Pioneer-
ing works (Ma et al., 2016; Li et al., 2015) showed
the combination of motion and object cues computed
from ego-centric video to infer the human activities.
Ma et al. ’s method (Ma et al., 2016) is also based
on two-stream network. One network was designed to
detect objects by using hand location as a cue of ROI,
and the other network recognize actions. Then the
two networks are fine-tuned jointly to recognize ob-
jects, actions, and activities. This model outperformed
state-of-the-are methods in average 6.6%.

Another way to overcome the occlusion problem
of fixed-camera is to utilize data from other modalities.
Spriggs et al. (Spriggs et al., 2009) used an egocentric
camera, inertial measurement units (IMU) to classify
kitchen activities. Maekawa et al. (Maekawa et al.,
2010) used a wrist-mounted camera and sensors to de-
tect activities in daily living (ADL). Fathi et al. (Fathi
et al., 2012) and Li et al. (Li et al., 2015) use gaze
information with egocentric video to recognize activi-
ties. It becomes easier to recognize certain activities
by enriching the data source using multiple modalities,
especially the data from different body parts such as
head and arms.
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Although the studies mentioned above have shown
the very good performance in recognizing human activ-
ities, there is one more barrier for the practical deploy-
ment. It is the diversity of the activities and difficulty
of collecting training data of those activities. It is usual
in industrial situation that different factories have dif-
ferent demand for the target activities. In addition, the
way an activity is performed may be different from
factory to factory even though the name of the activ-
ity is identical. Those previous studies are designed
to recognize activities that have been preliminarily
learned. In other words, they require training-data col-
lection and retraining of the model for recognizing a
new activity.

Zero-shot learning (Palatucci et al., 2009; Socher
et al., 2013) has a potential to address this challenge.
Some works such as Lie et al.(Liu et al., 2011) and
Cheng et al.(Cheng et al., 2013) have applied the con-
cept of zero-shot learning to recognize a new activity
on the basis of preliminarily learned attributes.

2.2 Contribution of This Study

As reviewed in section 2.1, there have been many re-
searches on human activity recognition. This study
takes the findings of all of those previous researches
and tries to extend the previous researches toward prac-
tical deployment in the real world.

To do so, we decided to utilize ego-centric data
to avoid the occlusion problem of fixed-cameras and
zero-shot learning based approach to deal with the ac-
tivities that are not preliminarily learned. Our activity
recognition model is a hierarchical model. It recog-
nizes the activity by a combination of objects involved
in the activity and basic actions that compose the activ-
ity. It is known that the objects play an important role
for activity recognition since it conveys contextual in-
formation (Jain et al., 2015; Yao et al., 2011; Ma et al.,
2016). Although the basic components, namely, the
object recognition module and the action recognition
module need to be preliminarily trained, activities can
be recognized without any training if the activity is
represented as a combination of the predefined objects
and actions.

We use SMI eye-tracking glass (ETG) and Myo
armband sensor for our system. ETG is very useful
to recognize an object that a target person is handling.
The armband sensor measures IMU and electric myo-
genic data (EMG) and useful for recognizing an arm’s
movement, which is especially important for in an
industrial situation,

To the best of our knowledge, this is the first study
working on zero-shot activity recognition based on
ego-centric video data and data from an armband. We

will give a detailed description of the architecture to re-
alize this concept as well as the quantitative evaluation
results.

3 THE PROPOSED APPROACH
FOR ACTIVITY RECOGNITION

The overview of the proposed model is shown in Fig-
ure 1. The model consists of three main components
a) gaze-guided object detection module (Section 3.1),
which is based on deep neural networks and is capable
of recognizing objects, b) action recognition module
(Section 3.2), which is also based on deep learning and
uses Myo armband for detection of actions data, and c)
activity recognition (Section 3.3), which can recognize
complex activities, based on basic actions and objects
detected by object and action detection modules.

3.1 Gaze-guided Object Recognition

The object recognition in the real world, especially in
an industrial environment, is a challenging problem
because of the complexity of the background. There
are two ways of acquiring visual data by wearable
sensors: attach a camera on head or on body, typically
on chest. Since people sometimes look at something in
the direction to which the body is not facing, on-head
cameras capture more information on the wearer’s
view, or so-called 1st person view. In addition to the
1st person view video, eye-tracking glasses can capture
which point the wearer is gazing at within the view
(“gaze point"). This information is very useful because
the gaze point is usually the point of interest for the
user, and the system can easily focus of detecting the
objects around the point of interest. In addition, SMI
Eye-Tracking glass ETG 2 has 0.5 error degree and
weighs 47 grams, which is the lightest on-head type
vision sensors.

Since the gaze point usually indicates the point
of interest of the wearer of the ETG, we assume that
only the region around the gaze point is important and
the other region in the image is not important. By
cropping an image around the gaze point, a sub image
that contains only a target object in reasonably large
size can be obtained. Figure 2 shows an example of
the cropped images.

The gaze-based cropping is applied not only in real-
time recognition, but also in creating a training data
set. Training data set is very important for building a
good machine learning method. Especially for DNN
models, which usually contain vast amount of param-
eters, acquiring enough amounts of data and diverse
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Figure 2: An example of cropped images. Left: The image
from fixed camera. Center: The original image of the ETG.
Right: The cropped image.

enough data is crucial to avoid the over-fitting prob-
lem. When cropping images around the gaze point, we
randomly change the size of the cropping as well as
the degree of rotation of the cropping area. By using
this scheme, we can obtain (60 ∗ f ps ∗Ns ∗Nr) data
in 1 minute, where f ps denotes the frame rate of the
ETG video data, Ns denotes the number of different
cropping sizes, and Nr denotes the number of different
degrees of the rotation.

To deal with the case where no object is included
in the cropped image, we defined “reject class” in ad-
dition to the target object categories. The reject class
preferably includes all the possible objects and back-
ground scene other than the target objects. By training
the model with this reject class, the model significantly
becomes robust against the false positives.

We use GoogLeNet (Szegedy et al., 2015) as the
initial model of the object recognition and fine-tune it
with the collected training data using above-mentioned
cropping method. GoogLeNet has 27 layers including
Inception, CNN, and pooling layers. We fine-tuned
the last two layers using our own training data.

3.2 Action Recognition

For industrial application, it is desireble to let the work-
ers attach as less sensors as possible so as not to disturb
them. We therefore decided to attach a sensor only
on an arm, which is supposed to be one of the most
important parts in many cases. We decided to use Myo
armband because it is light weight (93 grams), has long
battery life (more than 8 hours), and has good sensors
(IMU sensors and electro-myogenic (EMG) sensors)
that can be used for recognizing different types of arm
actions.

DNN is used also for action recognition because of
its overwhelming performance on most of the recog-
nition tasks. As input, all the sensor data that can
be collected with Myo armband, namely, quaternion,
acceleration, gyro, and EMG data are utilized. The
sensor data can be augmented if the number of train-
ing is not enough (Ohashi et al., 2017). Quaternion
data are useful for representing the angle of an arm.
Acceleration and gyro data are good for understanding
the movement of the arm. EMG data well indicate the
force of muscle contraction.

Features are firstly extracted from the raw sensor
data by using a sliding window in order to deal with
the time-sequential information of the actions. Statisti-
cal features such as maximum, minimum, mean and
standard deviation as well as the features in frequency
domain, namely, amplitude spectrum obtained by ap-
plying fast Fourier transform (FFT), are utilized in this
research. The statistical features are good indicators
for the intensity of the actions as well as how it changes
within the sliding window, and the frequency-domain
features are good for understanding the periodicity of
the actions.

The “reject class” is defined in the action recogni-
tion model as well to deal with the case when no target
action is performed.

3.3 Activity Recognition

One of the most common ways in hierarchical activity
recognition model is to take the outputs of the action
recognition module and the object recognition module
as input, and build some classifier that automatically
learns the mapping from the them to the target activity
categories. However, reasonably big amount of train-
ing data is required in order to train a model that does
this mapping well. In addition, if a new activity is
added to the target activities, additional training data
for the new activity needs to be collected.

In order to avoid this time-consuming data collec-
tion procedure, this study proposes a zero-shot recog-
nition scheme. We define activities using name of
objects, name of actions, and the conjunction words,
which defines the relationship between the objects and
actions. “And”, and “Then” are used as the concrete
conjunction words. If an activity defined as <“B1”,
“And”, “B2”>, its period is defined as the period when
both B1 and B2 are observed. Here, B1 and B2 de-
note either object name or action name. Figure 3 (a)
shows the image of the period that “And” represents.
As shown in the figure, the time between ts2 and te1
are recognized as the period when the target activity
occurred. Similarly, if an activity is defined as <“B1”,
“Then”, “B2”>, its period is defined as the period when
B2 is observed after B1 is observed. As shown in Fig-
ure 3 (b), the time between ts2 and te2 are recognized
as the period when the target activity occurred. For
example, the activity “Tightening a screw” can be de-
fined as <”Screw driver”, “And”, “Twisting”>, and
"Opening a lid of a bottle" can be defined as <"Bottle",
"Then", "Twisting"> As explained in these examples,
one basic class (in this case, "Twisting") can be used
to represent multiple activities.

A probabilistic framework is employed for the ac-
tivity recognition model to enhance and stabilize the
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(a) "And"

(b) "Then"
Figure 3: Periods that the conjunction word “And” and
“Then” represent.

performance. First, the activity recognition module re-
ceives the array of probabilities from basis recognition
module, each of which represent the likelihood of each
target object or action. Then the probability of the ac-
tivity can be calculated as the conditional probabilities
as follows.

p(activity | s;de f (activity))
= p(activity | ob ject,action;de f (activity))

p(ob ject | s)p(action | s) (1)

, where de f (activity) denotes the definition of the
activity and s denotes the sensor data. This framework
provides more robust and stable activity recognition
results even if the basis recognition results are not very
accurate.

4 EVALUATION

4.1 Experimental Data

The experimental data were collected in a laboratory.
Table 1 shows the details of the data for evaluating the
activity recognition method. The target activities are
defined to be “Putting a bag on a table”, “Opening a lid
of a bottle”, and “Tightening a screw”. The definition
of the activities is shown in Table 2. The data collec-
tion procedure was as follows. (1) Start recording data.
(2) A subject performs one activity 3 to 5 times in a
row with short interval between each performance. (3)
Stop recording data. (4) Restart recording data. (5)
The subject performs the 2nd activity 3 to 5 times in
a row. (6) Stop recording data. (7) Iterate the same
procedure for the last activity. (8) Iterate the same
procedure for the other subjects.

Table 3 summarizes the data collected for evaluat-
ing the object recognition method. The basic objects

(a) Bag (b) Bottle (c) Screw driver
Figure 4: Target objects.

involved in these activities are “a bag”, “a bottle” and
“a screw driver” (see Figure 4). In addition, “Reject
class” is added to the target object classes in order to
deal with the case of “no target object”. An ETG was
used to collect the training data. In order to acquire
good amount of diverse data, a subject kept looking
at an object from different angles and from different
distances. Then a sub-image around the gaze point
was cropped as explained in the section 3.1. Training
data and test data were separately collected.

Table 4 summarizes the data collected for evaluat-
ing the action recognition method. The basic actions to
compose the above-mentioned activities are “holding”
and “twisting”.

In addition, “Reject class” is included in order to
deal with the case of “no target action”. Training
data and test data were separately collected. Only one
subject participated in the both of data collection for
action recognition and activity recognition.

4.2 Results

Table 5 shows the confusion matrix of the object recog-
nition result. As shown in the figure, "bag" was often
misclassified as "reject", and as a result, the recall rate
of the "bag" class and the precision of the "reject" class
was low. On the other hand, both precision and recall
rate were high for "bottle" and "screw driver" class.

Table 6 shows the confusion matrix of the action
recognition result. As shown in the figure, both preci-
sion and recall rate were high for all of the classes.

In order to compare the proposed zero-shot activity
recognition model, a baseline method that utilizes nor-
mal supervised learning method (sometimes it’s called
"many-shots" learning as opposed to zero-shot learn-
ing) was implemented. The baseline method takes the
output from the basis recognition modules, namely,
the array of probabilities as an input and trained to
output the corresponding activity. SVM was selected
for the model. DNN was not selected simply because
of the amount of available training data.

Table 7 shows the evaluation result of the activity
recognition method. Intersection over union (IOU)
based on ground truth and estimated results are calcu-
lated for the evaluation. Each estimation result was
regarded as correct if the IOU is more than a threshold.

Figure 5 shows the precision and recall rate of the
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Table 1: Evaluation data for activity recognition method.

Number of subject 12
Number of target classes 4
Target classes Putting a bag on a table, Opening a lid of a bottle, Tightening a screw, Others(reject

class)
Number of data Total: 131

Putting a bag on a table: 39, Opening a lid of a bottle: 50, Tightening a screw: 42

Table 2: Definition of the activities.

Putting a bag on a table <“Bag”, “Then”,
“Holding”>

Opening a lid of a bottle <“Bottle”, “Then”,
“Twisting”>

Tightening a screw <“Screw driver”,
“And”, “Twisting”>

(a) Proposed (zero-shot)

(b) Baseline (many-shots)
Figure 5: Precision and recall rate for different IOU thresh-
olds.

proposed method and the baseline method for different
IOU thresholds. Figure 6 shows an example of the
output from the proposed method.

5 DISCUSSION

In this section we will discuss the evaluation results,
limitation, and also the future work.

The current model can perform a real time activity
recognition of untrained activities using a combina-
tion of basic components. The impotence of real time
recognition comes from the environment where the
system can be deployed. In factories and maintenance
sites, the real time recognition can prevent the wrong

activities.
Table 7 shows that the model has a achieved a

very good accuracy for unlearned activities, with 77%
precision and 82% recall rate.

The "Putting bag" activity has lower recall rate
comparing to the other activities. This is because of
the low recall rate of the "bag" class in the object recog-
nition module. Since the bag used in the experiment
doesn’t have much texture and also its size was signifi-
cantly different from the other objects (Figure 4), the
cropped images of the bag sometimes looked like just
a black square. Another reason for this lower recall
rate is the action recognition module. Even though
the recall rate of the "Holding" action was very high
as shown in table 6, sometimes the "Holding" action
was not correctly recognized. The most dominant fea-
ture for recognizing "Holding" action is EMG data,
which is more likely to be affected by subjects. As
mentioned in section 4.1, only one subject’s data out
of 12 subjects was included in the dataset to train the
action recognition module. To develop a more robust
and subjects-independent action recognition method is
one of our future work.

On the other hand, precision of the "Opening lid"
activity and "Tightening screw" activity was relatively
low. Figure 6 shows the recognition result of "Tighten-
ing screw" activity. It shows that none of the 5 "Tight-
ening screw" activity was missed (recall is 100%). On
the other hand, the first attempt was recognized as two
activities of "tightening a screw" because the probabil-
ity dropped down bellow the threshold in the middle
of the activity. It sometimes happens because the sub-
jects stopped performing the activity for some reason,
for example, dropping the screwdriver, which was ob-
served during the experiment. This is reflected on the
number of recognized activities, which reduces the
precision. One future work is to consider a threshold
of the time between the consecutive activities to merge
them and reduce this type of false alarm.

Comparing the results of the proposed method with
that of the baseline method (Figure 5), we can see the
precision performance is close to each other, even
though the activities is untrained in our model, while
it is trained in the baseline model. On the other hand,
the recall rate of the baseline method was better (93%).
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Table 3: Evaluation data for object recognition method.

Number of target classes 4
Target classes Bag, Bottle, Screw driver, Others(reject class)
Number of training data Total: 16,000

Bag: 4,000, Bottle: 4,000, Screw driver: 4,000, Others(reject class): 4,000
Number of test data Total: 3956

Bag: 1007, Bottle: 953, Screw driver: 984, Others(reject class): 1012

Figure 6: An example of the recognition result. ("tightening a screw" activity).

Table 4: Evaluation data for action recognition method.

Number of subject 3
Number of target classes 3
Target classes Holding, Twisting,

Others(reject class)
Number of training data Total: 10814

Holding: 3583,
Twisting: 3429,
Others(reject class):
3802

Number of test data Total: 5853
Holding: 2029,
Twisting: 2025,
Others(reject class):
1799

This is due to the characteristic of the models. If an
activity is defined using the conjunction word "Then",
the proposed model can recognize the activity only
when the first target is recognized. The baseline model
recognizes the activity by combining all the probabil-
ities. It could sometimes recover even when the first
target is not recognized if the second target is recog-
nized with high probabilities. The proposed frame-
work sometimes works fine to reduce false alarm, but

sometimes leads to lower recall rate like this example.

Table 5: Confusion matrix of the object recognition method.
Bag Bottle Screw driver Reject Total Recall

Bag 443 91 15 458 1007 0.44
Bottle 0 945 1 7 953 0.99

Screw driver 0 10 949 25 984 0.96
Reject 17 16 19 960 1012 0.95
Total 460 1062 984 1450 3956 -

Precision 0.96 0.89 0.96 0.66 - 0.83

Table 6: Confusion matrix of the action recognition method.

Holding Twisting Reject Total Recall
Holding 2019 6 4 2029 0.99
Twisting 112 1872 41 2025 0.92
Reject 48 58 1693 1799 0.94
Total 2179 1936 1738 5853 -

Precision 0.93 0.97 0.94 - 0.95

Table 7: Evaluation result of the activity recognition method.
Threshold for IOU: 0.2.

Activity Precision Recall
Putting bag 0.96 ( 27 / 28 ) 0.69 ( 27 / 39 )
Opening lid 0.72 ( 44 / 61 ) 0.88 (44 / 50 )
Tightening screw 0.73 ( 43 / 59 ) 0.88 ( 37 / 42 )
Total 0.77 (114 / 148) 0.82 (108 / 131)
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6 CONCLUSIONS

A hierarchical human activity recognition model that
recognizes human activities by the combinations of the
basic actions and involved objects has been proposed
in order to realize an easy-to-deploy activity recogni-
tion system. Unlike conventional activity recognition
models, the proposed model does not need retraining
for recognizing a new activity if the activity is repre-
sented by a combination of predefined basic actions
and basic objects. Two wearable sensors, namely Myo
armband sensor and ETG, have been utilized for the
action recognition and object recognition, respectively.
The experimental results have shown that the accuracy
of both basic modules are reasonably high, and the
proposed model could recognize 3 types of activities
with precision of 77% and recall rate of 82%. The
future works include expansion of target activities as
well as enhancing the basic modules.
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