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Introduction

Motivation
Where Do the Diagrams Come From?

Senario 1

Draw n functions from a probabilty distribution over the set of (Morse)
functions. This induces a sample of persistence landscapes. Ex: each
function is the distance to a compact set embedded in Rd .

Senario 2

Given a large dataset with N points, it is very expensive to compute the
persistence landscape λ exactly. Instead, we use subsampling to compute
approximations λ1, λ2, . . . , λn. Then, we can upper bound E[λi − λ] with

E[λi − µ] + E[µ− λ]
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Topological Inference
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Confidence Bands

Pointwise Convergence of Landscapes

Let λ1, . . . , λn
iid∼ LT .

µ = E(λi )
λ̄n : empirical average landscape

Pointwise Convergence [B-2012].

λ̄n converges pointwise to µ.

Key Properties

Landscapes are (T/2)-bounded and one-Lipschitz!
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Confidence Bands

Gaussian Process

Gaussian Process

A GP over I is a set of independent random variables associated to each
t ∈ I such that every finite collection of random variables has a
multi-variate normal distribution.

Brownian Bridge

A Brownian Bridge B defined over I is a continuous GP over I with a nice
covariance structure such that B(0) = B(1) = E[B(i)] = 0.
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Confidence Bands

Emperical Process

n

t

ft : LT → R
λ 7→ λ(t)

λ̄n(t)− µ(t)

Emperical Process on [0,T ]

For t ∈ [0,T ], we define Gn(ft) = Gn(t) := 1√
n

(
ft(λ̄n)− ft(µ)

)
.
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Confidence Bands

Weak Convergence

Weak Convergence

Gn(t) = 1√
n

(λ̄n(t)− µ(t)) converges weakly to the Brownian bridge G
with covariance function

κ(f , g) =

∫
f (u)g(u)dP(u)− (

∫
f (u)dP(u))(

∫
g(u)dP(u)).
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Confidence Bands

Uniform Convergence

Let σ(t) =
√
n Varλ̄n(t).

Assume σ(t) > 0 on [t∗, t
∗] ⊂ [0,T ].

Uniform CLT

There exists a random variable W
d
= supt∈[t∗ ,t∗] |G(ft)| such that

sup
z∈R

∣∣∣∣∣P( sup
t∈[t∗,t∗]

|Gn(t)| ≤ z
)
− P (W ≤ z)

∣∣∣∣∣ = O
((log n)

7
8

n
1
8

)
.
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Confidence Bands

Confidence Bands

Confidence Band

A (1− α)-confidence band for µ is a pair of functions `n, un : [0,T ]→ R
such that

P(`n(t) ≤ µ(t) ≤ un(t) for all t) ≥ 1− α.
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Confidence Bands

The Multiplier Bootstrap

Let ξ1, . . . , ξn ∼ N(0, 1). Then,

G̃n(ft) :=
1√
n

n∑
i=1

ξi (λi (t)− λ̄n(t))

is the multiplier bootstrap version of Gn(ft).

α-Quantile

Z̃α is the unique value such that

P

(
sup
t
|G̃n(ft)| > Z̃α

∣∣∣∣∣ {λi}
)

= α

*Approx. Z̃α by MC simulation
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Confidence Bands

Confidence Bands for Landscapes
The Multiplier Bootstrap

Recalling
Gn(t) = 1√

n
(λ̄n(t)− µ(t)), let

`n = λ̄n(t)− Z̃ (α)√
n

un = λ̄n(t) +
Z̃ (α)√

n

Uniform Band

P (`n(t) ≤ µ(t) ≤ un(t) for all t) ≥ 1− α− O
((log n)

7
8

n
1
8

)
.
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Confidence Bands

Variable Width Confidence Bands

Hn(ft) := Gn(t)/σ(t) =
1√
n

n∑
i=1

λi (t)− µ(t)

σ(t)

H̃n(ft) :=
1√
n

n∑
i=1

ξi
λi (t)− λ̄n(t)

σ̂n(t)

Q̃α is the unique value such that

P

(
sup
t
|H̃n(ft)| > Q̃α

∣∣∣∣∣ {λi}
)

= α
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Confidence Bands

Variable Width Confidence Bands

`n = λ̄n(t)− Q̃(α)σ̂n(t)√
n

un = λ̄n(t) +
Q̃(α)σ̂n(t)√

n

Variable Band

P (`n(t) ≤ µ(t) ≤ un(t) for all t) ≥ 1− α− O
((log n)

7
8

n
1
8

)
.
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Silhouettes

Relax, that was the most technical part.
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Silhouettes

Persistence Silhouettes
Definitions

B. Fasy (Tulane) Convergence of Landscapes and Silhouettes 11 June 2014 18 / 25



Silhouettes

Persistence Silhouettes
Definitions

Λ: R× Z+ → R
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Silhouettes

Persistence Silhouettes
Definitions

Weighted Silhouette

φ(t) =

∑n
i=1 wiΛi (t)∑n

j=1 wj

Power-Weighted Silhouette

wi = |di − bi |p
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Silhouettes

Power-Weighted Silhouettes
Two Examples
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Silhouettes

Persistence Silhouettes
Results

Since φ is one-Lipschitz for non-negative weights wj ...

Convergence of Empirical Process

1√
n

(
n∑

i=1

φi (t)− E[φ(t)]

)
converges weakly to a Brownian bridge, with known rate of convergence.

Confidence Bands

We can use the multiplier bootstrap to create a uniform (or a variable
width) confidence band defined by `siln and usiln such that

lim
n→∞

P
(
`siln (t) ≤ µ(t) ≤ usiln (t) for all t

)
= 1− α.
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Silhouettes

Example I
A Toy Example
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Silhouettes

Example II
Earthquake Epicenters
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Conclusion

Summary

First real use of statistical data analysis in TDA.

Not just theoretical: we’ve implemented these techniques!

Develops the theory of subsampling techinques. (Did you see the
ArXiv this week?)
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