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Abstract: Bone marrow failure (BMF) syndromes are a heterogenous group of non-malignant hemato-
logic diseases characterized by single- or multi-lineage cytopenia(s) with either inherited or acquired
pathogenesis. Aberrant T or B cells or innate immune responses are variously involved in the
pathophysiology of BMF, and hematological improvement after standard immunosuppressive or
anti-complement therapies is the main indirect evidence of the central role of the immune system
in BMF development. As part of this immune derangement, pro-inflammatory cytokines play an
important role in shaping the immune responses and in sustaining inflammation during marrow
failure. In this review, we summarize current knowledge of cytokine signatures in BMF syndromes.

Keywords: cytokines; bone marrow failure syndromes; aplastic anemia; myelodysplastic syndromes

1. Introduction

Bone marrow failure (BMF) syndromes are a heterogeneous group of non-malignant
constitutional and acquired hematological diseases characterized by uni- or multi-lineage
marrow and or peripheral blood cytopenia(s), regardless the presence of any other disorder
that may affect marrow function [1–4]. BMF in constitutional syndromes is caused by inher-
ited germline mutations occurring in the hematopoietic stem cell (HSC) compartment or in
other hematopoietic stem and progenitor cells (HSPCs), resulting in specific diseases such
as Fanconi anemia (FA), dyskeratosis congenita (DKC), Shwachman–Diamond syndrome
(SDS), congenital amegakaryocytic thrombocytopenia, and neutropenia (Kostman Disease),
as well as familial telomerase diseases. Conversely, acquired BMF syndromes result from
extrinsic direct and indirect damages on the HSC pool due to chemical agents, drugs, and
different viruses (Figure 1) [1]. However, the indirect injury of HSC is primarily supported
by immune effector mechanisms, which may also be triggered by viruses or by drug
metabolites. Regardless the type of initial injury on the bone marrow (BM), constitutional
and acquired BMF syndromes share qualitative and/or quantitative disfunctions of HSCs
or their progenies, which affect their self-renewal ability [2–4]. Self-renewal is a hallmark
of stemness that allows long-term maintenance of a complex process called hematopoiesis,
leading to differentiation and maturation of mature circulating cells. Hematopoiesis is
regulated by a complex network between hematopoietic and stromal cells, as well as
several soluble and membrane-bound cytokines within and outside the hematopoietic
niches [1–5]. Derangement in interaction and cooperativity between cellular and cytokine
activities has been widely reported in different acquired BMF syndromes, such as acquired
aplastic anemia (AA), hypoplastic myelodysplastic syndromes (hMDS), and chronic T and
natural killer (NK) granular lymphocyte disorders.
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different acquired BMF syndromes, such as acquired aplastic anemia (AA), hypoplastic 
myelodysplastic syndromes (hMDS), and chronic T and natural killer (NK) granular 
lymphocyte disorders. 

 
Figure 1. Bone marrow failure (BMF) syndromes’ pathophysiology. BMF syndromes are characterized by empty bone 
marrow and peripheral blood cytopenia(s), and can be divided in congenital disorders, iatrogenic aplastic anemia (AA), 
and immune-mediated BMF. In congenital disorders, such as Shwachman–Diamond syndrome (SDS) or Fanconi anemia, 
hematopoietic stem cells (HSCs) harbor mutations in genes important for normal hemopoiesis, which becomes insufficient 
over time in maintaining normal ranges of circulating cells. In iatrogenic AA, HSCs are directly damaged by external 
stressors, such as chemicals and radiation. In immune-mediated BMF, dysregulated immune responses can cause an 
autologous immune attack of cytotoxic T lymphocytes (CTLs) against HSCs or can suppress hemopoiesis through changes 
in BM microenvironment. Clinical presentation of BMF syndromes differs among diseases; however, immunosuppressive 
therapies (ISTs) can often restore bone marrow cellularity, which is one of the major pieces of evidence for the immune-
mediated pathogenesis in BMF. Abbreviations. PNH, paroxysmal nocturnal hemoglobinuria; LGL, T-large granular 
lymphocyte leukemia; AA, acquired aplastic anemia; MDS, myelodysplastic syndromes; AML, acute myeloid leukemia. 

In this review, we provide an update of the main cytokine abnormalities involved in 
key relevant pathways of acquired BMF syndromes sharing similar immune-mediated 
pathogenic mechanisms. 

2. Acquired Aplastic Anemia 
AA is a usually sporadic and immune-mediated BMF syndrome, likely caused by an 

autologous immune attack against HSPCs, and hematological recovery of blood counts 
after immunosuppressive therapies (ISTs) is one of the strongest pieces of evidence for the 
immune-mediated pathogenesis [2]. Cytotoxic T cells (CTLs) play a pivotal role in BM 
destruction, and type I interferons (IFNs) polarize the immune system toward T helper 
(Th)1 responses [2,6–8]; however, other T cell subsets and cytokines are involved in AA 
pathogenesis [2]. Oligoclonal expansion of CD8+CD28− T cells and effector memory 
CD8+CD28−CD57+ T lymphocytes is frequent in AA and suggests an antigen driven 
mechanism of T-cell activation [9–11]. Immunodominant clones can be highly enriched in 
effector memory CD8+CD28−CD57+ T cells, and related CDR3 sequences are private to AA, 

Figure 1. Bone marrow failure (BMF) syndromes’ pathophysiology. BMF syndromes are characterized by empty bone
marrow and peripheral blood cytopenia(s), and can be divided in congenital disorders, iatrogenic aplastic anemia (AA),
and immune-mediated BMF. In congenital disorders, such as Shwachman–Diamond syndrome (SDS) or Fanconi anemia,
hematopoietic stem cells (HSCs) harbor mutations in genes important for normal hemopoiesis, which becomes insufficient
over time in maintaining normal ranges of circulating cells. In iatrogenic AA, HSCs are directly damaged by external
stressors, such as chemicals and radiation. In immune-mediated BMF, dysregulated immune responses can cause an
autologous immune attack of cytotoxic T lymphocytes (CTLs) against HSCs or can suppress hemopoiesis through changes
in BM microenvironment. Clinical presentation of BMF syndromes differs among diseases; however, immunosuppressive
therapies (ISTs) can often restore bone marrow cellularity, which is one of the major pieces of evidence for the immune-
mediated pathogenesis in BMF. Abbreviations. PNH, paroxysmal nocturnal hemoglobinuria; LGL, T-large granular
lymphocyte leukemia; AA, acquired aplastic anemia; MDS, myelodysplastic syndromes; AML, acute myeloid leukemia.

In this review, we provide an update of the main cytokine abnormalities involved
in key relevant pathways of acquired BMF syndromes sharing similar immune-mediated
pathogenic mechanisms.

2. Acquired Aplastic Anemia

AA is a usually sporadic and immune-mediated BMF syndrome, likely caused by an
autologous immune attack against HSPCs, and hematological recovery of blood counts
after immunosuppressive therapies (ISTs) is one of the strongest pieces of evidence for the
immune-mediated pathogenesis [2]. Cytotoxic T cells (CTLs) play a pivotal role in BM
destruction, and type I interferons (IFNs) polarize the immune system toward T helper
(Th)1 responses [2,6–8]; however, other T cell subsets and cytokines are involved in AA
pathogenesis [2]. Oligoclonal expansion of CD8+CD28− T cells and effector memory
CD8+CD28−CD57+ T lymphocytes is frequent in AA and suggests an antigen driven
mechanism of T-cell activation [9–11]. Immunodominant clones can be highly enriched in
effector memory CD8+CD28−CD57+ T cells, and related CDR3 sequences are private to
AA, while they are shared between disease and healthy subjects, suggesting the existence
of common epitopes [9]. T regulatory cells (Tregs) are also decreased in AA and their ability
to suppress autoreactive clones is reduced, while Th17 cells, associated with autoimmune
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disorders, are frequently increased, are correlated to disease severity, and are inversely
related to the number of CD4+CD25highFoxP3+ Tregs (Figure 2) [12].
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Figure 2. Pathophysiology of AA. In AA, an unknown antigen might trigger a T helper (Th)1 immune
response, causing the expansion of cytotoxic T lymphocytes (CTLs), which directly kill hematopoietic
stem cells (HSCs) [2,6–8]. Chronic antigen exposure might also polarize naïve T cells toward the
Th17 phenotype, leading to expansion of effector memory T cells (Tem) with cytotoxic activities
and inhibition of T regulatory cells (Treg) [2]. Several interleukins (ILs) and cytokines, such as
interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha, are involved in immune response
polarization and direct growth inhibition of HSCs, which leads to increased levels of growth factors
for maintaining normal hemopoiesis [8]. APC, antigen-presenting cells; MΦ, macrophage; CXCL,
C-X-C motif chemokine; G-CSF, granulocyte colony-stimulating factor; TPO, thrombopoietin; EPO,
erythropoietin.

2.1. Th1 Cytokines

Several cytokines and chemokines are deregulated during AA as the consequence of
specific T cell subset expansion or as a direct cause of immune response polarization and
BM growth inhibition (Table 1) [13]. In the Th1-mediated immune response, circulating
and BM levels of IL-12 and IL-23 are increased in AA and are related to disease sever-
ity [14]. IL-12 is mainly secreted by activated dendritic cells and macrophages. IL-12 and
IL-23 share a common subunit, p40, and induce IFN-γ production in T and NK cells and
polarization of naïve T lymphocytes into Th1 type [15–18]. IL-18, an IL-1 family member,
cooperates with IL-12 in Th1 polarization, CTL activation, and IFN-γ production [19–22].
IL-18 and IL-18 binding protein serum levels are increased in AA at diagnosis compared
with healthy subjects [23], and their concentrations are higher in non-responder patients
compared with responders. IL-18 can modulate in vitro gene expression on the BM com-
partment, especially on CD34+ hematopoietic stem cells (HSCs), which show the highest
surface expression of the IL-18 receptor compared with other BM populations. However,
by knocking down IL-18 or IL-18R, BMF did not ameliorate in mouse models, suggesting
a dispensable role of this cytokine in AA pathogenesis [23]. Upon stimulation and dif-
ferentiation, Th1 cells can produce IL-2 and IFN-γ and activate macrophages and CTLs.
Accordingly, IL-2 plasma levels in the BM and in the peripheral blood are increased and
related to disease severity [24]. Similarly, IFN-γ and TNF-α BM plasma levels are elevated
and decline after recovery [25]; however, circulating TNF-α might be not increased in
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AA compared with healthy subjects [26]. IFN-γ and TNF-α are historically implicated in
AA pathogenesis [8,27]; nevertheless, their effects on HSPC growth and immune system
regulation might be different. Exogenous and stromal cell-produced IFN-γ inhibits HSPC
growth and reduces self-renewal of HSCs, probably impairing TPO signaling pathways. In
addition, IFN-γ directly suppresses erythropoiesis by blocking HPSCs at the earliest stages
of differentiation, and likely by inducing IL-15 production, which can also directly suppress
hematopoiesis [28–31]. BM growth is also reduced because of increased apoptosis through
induction of Fas expression on HSPCs, which facilitates apoptosis via Fas/Fas ligand
(FasL), and by inducing nitric oxide synthase (NOS) and production of nitric oxide [30,32].
Moreover, chronic inflammation causes increased expression of IFN-γ in BM and lympho-
cytes, particularly in highly IFN-γ producing T-bet+ cells [32]. TNF-α is increased in AA
and upregulation of its receptors has been described on human BM cells, as well as in-
creased frequency of TNF-α+ BM macrophages [33–35]. In BMF mouse models, injection of
lymph node TNF-α−/− cells into pre-irradiated CByB6F1 recipients does not prevent BMF
development, as well as depletion of TNF-α receptor genes in recipient mice [33]. However,
depletion of TNF-α producing macrophages in recipient mice abrogates BMF by blocking T
cell migration into the BM and by reducing circulating levels of IFN-γ and TNF-α through
induction of the master transcriptional regulator Tbx21, which modulates gene expression
in CD4+ and CD8+ T cells [33]. CXCL10 is also elevated in the plasma of AA patients at
diagnosis compared with AA patients who achieved a complete remission and healthy
subjects [36]. Upon CXCL10 stimulation in vitro, Th1 cell number and Th1/Th2 ratio are
higher in AA with decreased Th2 proportion compared with healthy controls [36].

Table 1. Deregulated cytokines in acquired aplastic anemia (AA).

ILs Chemokines IFNs/TNFs Growth Factors Others

Increased

IL-2

CXCL10
CCL20

IFN-γ
TNFα

G-CSF
TPO
EPO

GDF-15
sST2

IL-8
IL-12

IL-17A
IL-18
IL-21
IL-23

Decreased
IL-33
IL-35

CCL5

EGF
VEGF

CD40L
CCL11 SELL
CCL17 DKK1
CXCL5 c-Mpl
CXCL11 Hepcidin

No changes IL-1Ra
IL-6

CCL2
HGF

(or slightly
reduced)

CCL3 S100A8
CCL4 S100A9

CXCL9 S100A8/A9
CXCL11

Abbreviations. ILs, interleukins; IFNs, interferons; TNFs, tumor necrosis factors; CCL, CC chemokine
ligands; CXCL, C-X-C motif chemokine; G-CSF, granulocyte colony-stimulating factor; TPO, throm-
bopoietin; EPO, erythropoietin; EGC, epidermal growth factor; VEGF, vascular endothelial growth
factor; HGF, hepatocyte growth factor; GDF, growth differentiation factor; SELL, L-selectin; DKK1,
Dickkopf-related protein 1; c-Mpl, thrombopoietin receptor.

2.2. Th17 Cytokines

Th17/Treg deregulation is also linked to modification in related cytokine concentra-
tions in both plasma and BM microenvironment. The plasma concentration of IL-17A is
increased in AA and correlates with disease severity and the number of CD4+CXCR4+ T-
cells [12,37]. IL-21, a pro-inflammatory cytokine elevated in several autoimmune disorders,
shows increased plasma levels in AA, as well as IL-21-producing CD4+ T cells in the BM
that are positively correlated with Th17 frequency and negatively correlated with Treg
number [38]. Increased CCL20 levels in AA might be also related to a Th17 skewing of
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immune responses, and increased BM levels might function as chemoattractant of Th17 to
BM niche [39]. IL-35 is a heterodimeric member of the IL-12 family composed by IL-12 p35
and IL-27 Epstein–Barr virus-induced protein 3 (EBI3) subunits, and might act as an im-
munosuppressive cytokine mainly released by Tregs [40–42]. IL-35 can inhibit polarization
of naïve CD4+ T cells into Th1 and Th17, thus reducing related Th1 and Th17 cytokines
while inducing a potent Treg population (iTR35) and B regulatory cell expansion [40,43].
In AA, IL-35 plasma levels are decreased and correlated to disease severity, and patients
in complete remission have similar levels of those in healthy subjects, suggesting a role
of IL-35 in maintaining immune tolerance during BMF [40]. Similarly, in children, IL-35
is decreased at diagnosis and its normalization in the first 28 days after starting IST is
associated with prolonged response to therapy [44].

2.3. Growth Factors

HSPC growth inhibition and apoptosis determine the release of growth factors to
restore normal hemopoiesis. Erythropoietin (EPO), thrombopoietin (TPO), and granulocyte-
colony stimulating factor (G-CSF) are required for differentiation and maturation of HSCs
into red blood cells, platelets, and granulocytes [45], and their circulating levels are
fine tuned to maintain peripheral blood cell levels in physiological ranges. Therefore,
plasma levels of EPO, TPO, and G-CSF are significantly increased in AA because of the
BMF [26,45,46]. Interestingly, EPO and G-CSF levels dramatically decline and normalize
after IST initiation in patients who achieved a complete remission, while TPO levels are
persistently high even in responders with stable blood counts after years from IST and/or
eltrombopag, a TPO agonist, treatments [45]. TPO is removed from circulation through
MPL (myeloproliferative leukemia protein)-mediated internalization and degradation in
platelets; therefore, thrombocytopenia in AA determines reduced TPO clearance from
peripheral blood, leading to increased circulating levels of this growth factor [46–49]. How-
ever, MPL circulating levels might be persistently reduced in AA patients after 6 months
of IST, regardless of responsiveness to therapy [46]. Circulating EPO concentrations are
positively correlated with plasma GDF-15, the growth differentiation factor-15, a member
of the transforming growth factor-β family involved in iron homeostasis [50]. Indeed,
GDF-15 levels are also positively correlated with serum iron and transferrin saturation
levels, and percentage of sideroblasts in the BM, while they are negatively correlated with
hepcidin levels [50,51].

2.4. BM Environment

BM mesenchymal stem cells (BM-MSCs) might be involved in the pathogenesis of AA,
because MSCs can differentiate in distinct types of stromal cells that support hematopoiesis
and regulate immune cells in the BM niche [52–56]. BM-MSCs have reduced ability to
suppress proliferation and differentiation of CD4+ cells, and TNF-α and IFN-γ production
in AA while inducing Treg polarization without affecting IL-4, IL-10, or IL-17 production.
In addition, BM-MSCs themselves show impairment in morphology and multi-lineage
differentiation ability, but not in their immunophenotypes [57]. Indeed, establishment
efficiency of long-term BM-MSCs from AA patients is lower than that of healthy subjects,
and cells have impaired adipogenic differentiation ability with morphologic abnormalities
and reduced expression of insulin-like growth factor (IGF)-1, as well as reduced osteogenic
differentiation [58]. MSCs in AA show differentially expressed genes compared with
MSCs from healthy subjects, and genes are involved in immunoregulation and cellular
processes. Other highly expressed genes are Th1, Th2, and Th17 differentiation-associated
and inflammation-related genes. In addition, abnormal splicing is also documented and
involved genes are related to oncogenesis, metabolism, and other signaling pathways such
as mTOR (mammalian target or rapamycin) and Wnt [52–58].
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3. hMDS

hMDS are characterized by BM hypocellularity and peripheral blood cytopenia(s)
resembling AA, while clinically overlapping with normo-/hypercellular MDS (NH-MDS)
showing dyspoiesis, chromosomal abnormalities, and increased risk of acute myeloid
leukemia (AML) [1,59,60]. Differential diagnosis is often challenging because of the lack
of specific clinical and molecular features in hMDS. Recurrent genetic and epigenetic
alterations are found between hMDS, NH-MDS, and AA at different frequencies without
any statistical significance. Indeed, trisomy 8, trisomy 1q, 20q deletion, or monosomy 7 can
be found in both hMDS and AA, as well as RAS, AML1, or JAK2 mutations in NH-MDS
and hMDS [60–62]. The pathogenesis of hMDS is still unclear; however, hematological
improvement of blood counts after IST is the strongest indirect evidence of an immune-
mediated BM growth suppression, as described in AA [61]. Oligoclonal expansion of CTLs
is also frequent during hMDS with overexpression of FasL and TNF-related apoptosis-
inducing ligand (TRAIL) on HSPCs [63–69]. Tregs are impaired in low-risk MDS, and Th22
and Th17 subsets are less represented in the peripheral blood, suggesting a derangement
of immune responses in hMDS and low-risk MDS, which modifies cytokine composition in
the BM niche (Figure 3A) [70–75].
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Figure 3. Pathophysiology of hypoplastic myelodysplastic syndrome (hMDS). (A) In hMDS, naïve
T cells differentiate into Th1 cells, causing CTL activation, which directly kills HSCs [61]. Myeloid
derived suppressor cells (MDSC) can also induce expansion of Treg, especially in high-risk MDS.
IFN-γ, TNF-α, and tumor growth factor-beta (TGF-β) drive in immune response polarization and
direct growth inhibition of HSCs [66,70–72,76]. (B) Reported cytokines increased in low-risk MDS
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and hMDS were interpolated using Venn’s diagram, and shared cytokines (n = 10) were used for
protein pathway analysis to identify common pathways in BMF disease pathophysiology. (C) The
top 20 related pathways are reported.

Several cytokines, such as TNF-α, TRAIL, IFN-γ, Flice-like inhibitory protein (FLIP),
TGF-β, or IL-17, are frequently increased in the sera of hMDS and low-risk MDS patients
(Table 2) [61,76–80]. Low circulating IL-10 levels can be linked to decreased immunoreg-
ulatory activity of the immune system with enhancement of Th1 responses, ultimately
leading to BM growth inhibition. IFN-γ in vitro blockade restores colony formation in
hMDS and refractory anemia MDS. When compared with AA cytokine signature, several
cytokines are significantly increased in the plasma of hMDS compared with that of AA,
such as CCL5, CXCL5, CCL11, CXCL11, CCL3, CCL4, IL-1ra, and IL-6, while only TPO is
decreased [26]. However, only TPO and CCL3 might be discriminatory in the differential
diagnosis because of the minimal overlap of cytokine circulating concentrations between
diseases [26]. hMDS show a greater homogeneity in cytokine profiling compared with
NH-MDS, which are a heterogenous group of hematologic disorders with various clinical
and molecular features. A recent meta-analysis has reported that TNF-α, IL-6, and IL-8
levels are significantly increased in MDS, regardless of stratification risk score based on
the International Prognostic Scoring System (IPPS) [80–83], while several differences in
cytokine levels are reported between low- and high-risk MDS. In particular, hMDS cytokine
signature is more similar to that of low-risk MDS than that of high-risk MDS. Indeed, low-
risk MDS show increased levels of circulating TNF-α, IFN-γ, TGFβ, IL-17, CXCL5, CCL5,
CCL11, CD40L, EGF, and VEGF compared with high-risk MDS [26], with decreased levels
of circulating IL-10 and CCL4 [61]. In the BM of MDS patients, IL-8, IP10, MCP-1, and IL-27
are significantly higher in both low- and high-risk MDS compared with healthy subjects,
and levels increased during hypomethylating agent treatment [84]. In addition, MMP-1,
MMP-9, and the inhibitor TIMP-2 levels are decreased in high-risk MDS compared with
low-risk patients [85]. When comparing cytokine signature between hMDS and low-risk
MDS based on the literature, five cytokines are commonly increased in the plasma of
patients: TNF-α; IFN-γ; TGF-β; IL-17; CXCL5; CCL5; CCL11; CD40L; VEGF; and IL-6
(Figure 3B). Protein pathway analysis with STRING and Reactome databases [86,87] reveals
that shared cytokines are mainly involved in cytokine and chemokine signaling in the
immune system, TNF and IL-17 pathways, and infectious diseases (Figure 3C), suggesting
common immunological derangement in low-risk and hypoplastic MDS pathogenesis.

Table 2. Deregulated cytokines in hypoplastic myelodysplastic syndrome (hMDS).

ILs Chemokines IFNs/TNFs Growth Factors Others

Increased

CCL3

VEGF

IL-1ra CCL4 IFN-γ CD40L
IL-6 CCL5 TNFα TGF-β

IL-17 CCL11 TRAIL FLIP
CXCL5

CXCL11
Decreased IL-10 TPO

Abbreviations. ILs, interleukins; IFNs, interferons; TNFs, tumor necrosis factors; CCL, CC chemokine
ligands; CXCL, C-X-C motif chemokine; TRAIL, TNF-related apoptosis-inducing ligand; VEGF,
vascular endothelial growth factor; TPO, thrombopoietin; TGF, tumor growth factor; FLIP, FLICE-like
inhibitory protein.

4. Large Granular Lymphocyte Leukemia

Large granular lymphocyte (LGL) leukemia is a clonal lymphoproliferative disorder
characterized by the presence of LGL with typical morphology and phenotype showing
positivity for CD3, TCR αβ, CD8, CD16, CD5dim, CD45RA, and CD57; negativity for CD4,
CD27, CD28, and CD45R0; and a phenotype similar to that of constitutively activated
T-cells and terminal-effector memory T cells [88–90]. Lymphocytosis is frequent, and T-
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LGLs show clonality of the TCR repertoire and constitutive activation of STAT3b caused
by somatic gain-of-function mutations. However, in some cases, differential diagnosis
with other BMF syndrome is challenging because patients show lymphopenia without
recurrent infections, transfusion-dependent anemia (10–30% of cases), thrombocytopenia
(<25% of cases), or pure red cell aplasia (PRCA). In addition, AA, paroxysmal nocturnal
hemoglobinuria (PNH), or MDS may co-exist with T-LGL leukemia [1,2,88]. On the other
hand, AA patients might also have increased frequency of oligoclonal CD8+CD57+ effector
memory T cells mimicking LGL clones [9]. Association with autoimmune diseases, such as
rheumatoid arthritis, is also frequent in T-LGL leukemia patients [88].

The most accepted pathogenetic hypothesis is a clonal drift of a T cell population
under chronic antigen exposure with a dramatic dysregulation of activation-induced
cell death pathways (Figure 4). Several viral infections have been suggested to trigger
the initial T cell activation, such as the human T-cell lymphotropic virus (HTLV) or the
hepatitis C virus [88,91]; however, great heterogeneity of the TCR Vβ and Vα repertoires
has been described, indicating that clonotypes are private to LGL leukemia because of
the unlimited number of candidate epitopes in contrast to the limited number of epitopes
in infectious diseases [9,92,93]. IL-15 and platelet-derived growth factors (PDGFs) play
crucial roles in LGL clone expansion. IL-15 is a proinflammatory cytokine and the β

and γ chains of the IL-2 receptor (CD122/CD132) form the IL-15 receptor for signaling
transduction [94]. First evidence of the leukemogenic effects of IL-15 was described in 1994
in HTLV1-associated human T cell leukemia, where IL-15 levels were highly increased and
anti-CD122 monoclonal antibody treatment reduced leukemic cell growth [95,96]. Similarly,
in LGL leukemia, IL-15 is overexpressed, and chronic exposure of normal LGLs to IL-15
induces leukemic transformation with chromosomal and centrosome abnormalities [97].
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Figure 4. Pathophysiology of T-LGL leukemia. In T-LGL leukemia, an unknown chronic antigen
causes the clonal drift of a T cell clonotype [88,91]. Acquisition of somatic mutations in STAT3 and
overexpression of IL-15 and/or PDGF drive the monoclonal expansion of the leukemic clone [94,97].
Alterations in apoptosis pathways, such as inhibition of Fas-mediated apoptosis through binding of
soluble Fas-ligand (sFas-L), also favor survival of the T-LGL clone [88,98–100].
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Centrosome alterations leading to aneuploidy are frequently caused by overexpression
of aurora kinases AurkA and AurkB, in which gene transcription is regulated by IL-15.
Indeed, short-term cultures of LGLs in the presence of IL-15 show increased expression of
MYC and ultimately of AURKA and AURKB, and hypermethylation of tumor suppressor
genes mainly via DNMT3B induction [97]. Monoclonal LGL expansion is also driven by
other two mechanisms: somatic STAT3B mutations and resistance to Fas/FasL-mediated
apoptosis [88,98]. Soluble FasL (sFasL) is increased in the sera of LGL leukemia patients
and acts as a decoy receptor blocking apoptotic events triggered by Fas [99,100]. Apoptotic
inhibition is also mediated by increased activation of the PI3K/Akt signaling pathway via
RANTES, IL-18, and MIP-1b at higher serum concentrations in LGL patients compared with
healthy subjects [101,102]. Moreover, hyperactivation of NF-κB through TRAIL receptor
activation can also lead to increased resistance to apoptosis in LGLs [103]. In addition,
circulating levels of IFN-α2, IFN-γ, monocyte chemoattractant protein-1, epidermal growth
factor, IL-6, IL-8, IL-10, IL-1β, IL-12p35, IL-1Ra, and MIP1-a are increased in the sera of
LGL leukemia patients (Table 3) [104,105].

Table 3. Deregulated cytokines in large granular lymphocyte (LGL) leukemia.

ILs Chemokines IFNs/TNFs Growth Factors Others

Increased

IL-1β

CCL2 IFN-γ
IFN-α2

PDGF
EGF

IL-1ra
IL-6 RANTES
IL-8 MIP-1α

IL-10 MIP-1β
IL-12p35 sFas-L

IL-15 B2M
sIL-15Rα

IL-18
Decreased FLIP

Abbreviations. ILs, interleukins; IFNs, interferons; TNFs, tumor necrosis factors; CCL, CC chemokine
ligands; CXCL, PDGF, platelet-derived growth factor, EGF, epidermal growth factor; RANTES,
regulated on activation, normal t cell expressed and secreted; MIP, macrophage inflammatory protein;
sFas-L, soluble Fas ligand; B2M, beta-2 microglobulin; FLIP, FLICE-like inhibitory protein.

5. Paroxysmal Nocturnal Hemoglobinuria

PNH is a clonal non-malignant hematological disease characterized by the clinical
triad of hemolytic anemia, BMF, and increased risk of thromboembolic events, and caused
by somatic mutations in the X-linked phosphatidyl-inositol glycan class A (PIG-A) gene
in HSCs [106,107]. Somatic mutations in PIG-A produce the lack of an important enzyme
involved in the glycosylphosphatidyl inositol (GPI) anchor biosynthesis, thus proteins that
need the GPI-anchor to correctly localize on the cell membrane cannot attach and exert
their functions. Among all known GPI-anchored proteins, the lack of two complement-
regulatory proteins, CD59 and CD55, determines an uncontrolled complement cascade
activation, increasing the susceptibility of complement-mediated cell lysis [108]. Throm-
bophilia might be also related to the lack of urokinase-type plasminogen activator receptor
(uPAR) on the cell surface with increased concentrations of its soluble form, leading to
impairment in the fibrinolytic system [106]. However, HSCs harboring a PIG-A mutation
do not have any proliferative advantages compared with normal cells, as small PNH clones
can be found in healthy subjects; therefore, additional external events, such as BMF onset,
should occur to induce disease development and progression [106,109]. Evidence shows
the involvement of immune responses in triggering HSC destruction. To the best of our
knowledge, few data are available on cytokine signature in PNH; however, plasma levels of
TNF-α, TGF-β, and IFN-γ could be increased in PNH patients compared with healthy sub-
jects [110]. The frequency of IFN-γ-producing lymphocytes is negatively correlated with
circulating white blood cell and platelet counts [111], suggesting that IFN-γ can also act as
a hematopoietic suppressor during PNH, as described in other BMF syndromes [112,113].
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Meanwhile, IL-2-producing lymphocytes are decreased, probably because of the lack of
GPI-anchored proteins involved in intracellular signaling transduction [111]. Circulating
TNF-α levels might be increased and peripheral CD4+ memory T cells can have upreg-
ulation of genes involved in the TNF signaling pathway, such as TNFR and ATF2 [114].
Finally, oligoclonal expansion of CD8+ T cells can be also found in PNH patients as de-
scribed in AA, and CDR3 sequences are shared between patients and healthy subjects,
probably underlying a common epitope that triggers the autologous immune attach [115].
Noteworthy, one PNH-associated clonotype (CATSRTGGETQYF) was found in 11/12 AA
patients and 8/9 healthy subjects at similar frequencies, confirming that PNH clones can be
present in individuals without the disease and further proposing the clinical and biological
overlap between AA and PNH [9].

6. Inherited BMF Syndromes

Inherited BMF syndromes consist of several clinical congenital entities caused by
specific germline mutations and characterized by uni- or multi-lineage cytopenias and
increased risk of developing MDS, AML, or a solid tumor [1,2,116]. These congenital
disorders include FA, DKC, SDS, and Diamond–Blackfan anemia (DBA), and can be
diagnosed in children and adults (aged 16 and older), especially for FA and DKC (up to
50% of cases), with a projected cumulative median survival age of 16–72 years [117]. Unlike
immune-mediated BMF syndromes, inherited disorders are non-responsive to IST and
hematopoietic stem cell transplantation remains the only curative therapeutic strategy for
recovering from marrow failure [116–118].

6.1. Fanconi Anemia

FA is an autosomal or X-linked recessive disease characterized by malfunctioning of
DNA repair mechanisms, leading to increased frequency of DNA double strand (dsDNA)
breaks by DNA cross-linking agents, hypersensitivity to oxidative stress, and frequent
chromosomal abnormalities [119–121]. Genetic alterations can occur over 17 different
genes: A (FANCA), B (FANCB), C (FANCC), D1 (FANCD1/BRCA2), D2 (FANCD2), E
(FANCE), F(FANCF), G (FANCG), I (FANCI/KIAA1794), J (FANCJ/BRIP1), L (FANCL),
M (FANCM), N (FANCN/PALB2), P (FANCP/SLX4/BTBD12), O (FANCO/RAD51C), S
(FANCS/BRCA1), and T (FANCT/UBE2T). These proteins play an essential role in DNA
repair; that is, the core complex composed of FANCA, B, C, E, F, G, L, and M is an E3
monoubiquitin ligase and activates the ID complex (FANCD2 and FANCI) after DNA
damage or replication stress is detected. After ubiquitination, the ID complex recruits
FAN1 nuclease, FANCD1/BRCA2, FANCJ, and FANCN on the site of dsDNA break, and
once correctly localized and stabilized, this complex associates with other DNA repair
protein, such as RAD51 and BRCA1, and dsDNA breaks are repaired while the cell cycle is
stopped [119,122,123]. The question, “why does the bone marrow fail in Fanconi anemia?”
still has an unclear answer [124]. BMF seems to occur because of a progressive decline
of CD34+ cells in the BM compartment, probably starting in the uterus; however, FA-
deficient mice can develop various grades of BMF after treatment with cross-linking agents
without showing the complete FA phenotype [125]. Indeed, unresolved DNA damage is
needed for initiation of BMF. Evidence shows that the main genotoxic agents during FA
are reactive oxygen species (ROS) and endogenous aldehydes; double knock-out mice for
Aldh2, an enzyme that oxidizes acetaldehyde to acetate, and Fancd2 have developmental
abnormalities and mostly died within 6 months of life because of acute lymphoblastic
leukemia [126]. In FA, oxidative stress causes the accumulation of dsDNA breaks, leading
to a progressive p53-dependent depletion of the HSC pool. Immune cells can also be
affected; in particular, patients can show a decreased number of B and NK cells [127–129],
and impairment in cytotoxic T cell and NK cell activities [118,129]. Immunoglobulin levels
can be decreased in FA patients with severe BMF, especially IgG and IgM [128,129]. There
is no specific cytokine signature in FA as few cytokines are found to be increased in the sera
of patients, and the findings are discordant depending on disease severity. For example,
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Korthof et al. found increased serum levels of TGF-β, IL-6, and low soluble CD40 ligand,
and no changes in IL-1β, IL-2, IL-4, IL-10, IL-13, IL-17, and IL-23 compared with healthy
subjects [128]; while Justo and colleagues described higher plasma levels of IL-10 and
no differences in TGF-β compared with controls [130]. The role of TNF-α and IFN-γ in
FA development is still under investigation. Historically, TNF-α and IFN-γ have been
proposed as BM growth inhibitors because of their functions in immune-mediated BMF
syndrome pathogenesis [131]; however, these cytokines might play a different role in FA
by pushing HSCs toward differentiation, and thus enhancing oxidative stress and DNA
damage [124]. BM-activated T cells of FA patients have increased expression of TNF-α
and IFN-γ; however, these findings were not confirmed by Matsui et al., who showed an
increased susceptibility of peripheral monocytes to produce TNF-α, IL-6, and IL-1β in
response to low dose lipopolysaccharide [118].

6.2. Diamond–Blackfan Anemia

DBA is characterized by physical abnormalities and macrocytic anemia with erythroid
hypoplasia in the BM. In 25% of cases, modifications in transcription, splicing, or translation
in genes encoding for ribosomal proteins, such as RPS19 and RPS24, are present with
increased erythrocyte adenosine deaminase (eADA) activity [119,132]. Ribosomal proteins
are essential in protein synthesis and also have extra-ribosomal functions, such as regulation
of hematopoiesis and red blood cell maturation. Indeed, the expression of RPS19 is low in
late stages of erythropoiesis compared with CD34+ HSCs, hinting a critical role of ribosomal
proteins in regulation of protein synthesis in erythroid precursors [133]. In a del(5q) MDS
model, Rps14 haploinsufficiency has been linked to increased innate immune responses
and to a p53-dependent erythroid differentiation defect, and the heterozygous deletion of
another ribosomal protein, Rps6, induces a DBA phenotype in a mouse model that can
be rescued by inactivating p53 [134]. However, RPS14 or RPS6 inactivation has not been
reported yet in DBA patients, suggesting that additional pathogenetic mechanisms are
required for BMF development. Similar to DBA, more than 95% of SDS patients carry
mutations in the SBDS (Shwachman–Bodian–Diamond syndrome) gene, mostly caused by
gene conversion with the adjacent pseudogene. SBDS encodes for a protein involved in
the 60S subunit ribosome formation [119]. Alterations in ribosomal functions lead to BMF
in both DBA and SDS; however, clinical phenotypes are completely different underlying
distinct extra-ribosomal functions of RPS proteins and SBDS. Indeed, SDS patients have
physical abnormalities, malabsorption, and neutropenia, and the risk of solid tumor is
not increased as in FA and DKC [132]. There are few studies investigating immune and
cytokine levels in DBA and SDS; however, no significant alterations in immune responses
are reported [118,127]. Indeed, serum immunoglobulin levels can be decreased, but within
normal ranges, and no significant changes are described in circulating cytokines, including
TNF-α and IFN-γ [118]. Peripheral lymphocytes and monocytes are lower in DBA and SDS
patients compared with controls. In addition, after stimulation with phorbol 12-myristate
13-acetate and ionomycin, TNF-α and IFN-γ production by CD3+ T cells is decreased
in DBA compared with healthy subjects and other inherited BMF syndromes, as well as
TNF-α-producing CD14+ monocytes, while no alterations are reported in SDS [118].

6.3. Dyskeratosis Congenita

DKC, the first discovered telomerophaty, is characterized by skin hyperpigmentation,
oral leukoplakia, and nail dystrophy, and patients lately have developed BMF, pulmonary
fibrosis, and cancer. Mutations in nine different genes involved in telomere biology can be
responsible for different clinical DKC phenotypes: DKC1, TERT, TERC, TINF2, WRAP53,
NOP10, NHP2, CTC1, and RTEL1 [119,135]. The most frequent mutated genes are DKC1
on the X chromosome encoding for dyskerin; TRF1-interacting nuclear factor 2 (TINF2)
encoding for the shelterin component TIN2; and heterozygous TINF2 mutations, which
cause the most severe phenotype. About 10% of DKC patients carry mutations in TERT and
TR, and rare autosomal recessive DKC are caused by mutations in telomerase accessory
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protein genes, such as NHP2, NOP10, and TCAB1 [136]. Disease manifestations can vary
based on genetic alterations, and patients with mild symptoms or without physical alter-
ations can receive a diagnosis of DKC only during adulthood when pulmonary fibrosis or
aplastic anemia appears [132]. In the latter, the BM is hypocellular and aplastic, completely
resembling AA [137], thus only screening for mutations in BMF-related genes can help
clinicians in differential diagnosis. In addition, modifications in telomere biology can also
be found in AA and worse BMF; however, mechanisms by which telomere attrition is
triggered are different [137]. A gradual telomere loss is physiological with age as small
portions of telomeres are lost during each cell division, regardless an optimal elongation by
telomerase holoenzyme and shelterin complex [136]. In DKC and other telomeropathies,
germline mutations in genes related to telomere repair lead to impairment in normal
functions of telomerase or shelterin complex, and telomeres are not elongated correctly
at each cell cycle, resulting in great telomere loss, apoptosis, and decreased HSC pool. In
AA, telomere attrition might be linked to a replicative stress caused by the attempt of the
BM to rescue the normal hemopoiesis [137]. Loss of HSC pool can also result in decreased
circulating levels of B and T cells and monocytes [118]. Few studies have systematically
investigated cytokine levels in DKC; however, only G-CSF, Flt3L (Flt3 ligand), and IP-10
can be increased in the sera of DKC patients with severe BMF, while RANTES can be lower
than DKC patients with mild to moderate BMF or healthy subjects [127].

7. Therapy-Related MDS

MDS can be a de novo disease or arise after a previous chemo- or radiotherapy. In
the latter, MDS is defined as therapy- or treatment-related MDS (tMDS) and is more fre-
quently described in long-survivals of Hodgkin and non-Hodgkin lymphomas (NHL),
acute lymphoblastic leukemia, sarcomas, and other solid tumors such as testicular can-
cer [138–140]. Incidence ranges from 0.8% to up to 24.3% in patients receiving autologous
hematopoietic stem cell transplantation (HSCT) [139]. Known risk factors are a previous
treatment with alkylating agents or radiation therapy identifying a specific clinical sub
entity, or previous treatment with topoisomerase II inhibitors that recognized a different
clinical entity as outlined by the World Health Organization [139,140]. Pathophysiology of
tMDS can be linked to direct damage to the HSC genome; however, evidence shows the
involvement of external factors and cytokines. For example, a prolonged administration
of colony-stimulating factor (CSF) in NHL patients receiving chemotherapy is associated
with an increased risk of tMDS development [141]. Radiation therapy can induce TNF-α
production, leading to dyspoiesis, BM angiogenesis, and modifications in BM niche and
stroma as described in de novo MDS [142]. Gene expression profiling of HSPCs obtained
from tMDS patients who have received autologous (HSCT) has shown downregulation of
genes involved in mitochondria and oxidative phosphorylation, ribosomes, proteasome,
or cell cycle, with upregulation of genes involved in hematopoietic regulation, such as
Hedgehog or HOX [143]. Increased susceptibility to DNA damage caused by impairment
in mitochondrial oxidative phosphorylation and ROS elimination can augment genomic
instability in HSPCs, ultimately leading to tMDS or AML.

8. Conclusions

BMF syndromes are characterized by hematopoietic failure and various grade of
peripheral blood cytopenia(s); however, their pathogenesis varies even though a common
immune signature could be identified [2,144]. In AA and hMDS, Th1 cells and CTLs are
mainly responsible of the autologous BM destruction and release of proinflammatory
cytokines, such as TNF-α and IFN-γ, causing BM growth inhibition directly or indirectly by
sustaining autologous immune responses [2]. In T-LGL leukemia, hematopoietic failure is
caused by BM infiltration of LGLs and release of proinflammatory cytokines, especially IL-
15, which is a potent inhibitor of hemopoiesis [88]. In PNH, complement-mediated cell lysis
is responsible for hemolytic anemia; however, increased circulating levels of TNF-α, TGF-β,
and IFN-γ can be described [106,110]. Therefore, diagnostic and pathophysiologic overlaps
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among BMF syndromes might be translated into cytokine profiling similarities because
several cytokines can be found to be augmented in different BMF syndromes, such as IL-1ra
and IL-6, which can be increased in both hMDS and T-LGL leukemia, or IFN-γ, which is a
common proinflammatory mediator involved in immune response polarization and BM
growth inhibition. Whether cytokines are drivers or passengers in BMF development is
still an open question. Indeed, prolonged in vitro exposure to TNFα and IFNγ can induce
senescence through increased oxidative stress, reactive oxygen species (ROS) production,
and DNA damage, as also recently described in DBA [145,146]. Oxidative stress and
DNA damage are generated by IL1β and TGFβ persistent stimulation. Senescent cells are
physiologically removed by immune cells; in turn, lymphocytes can induce cancer growth
arrest and senescence through Th1 cytokines, in a “dog-biting-tail” mechanism [147,148].
However, whether this process is also involved in BMF development is still unclear [117].

BMF cytokines signatures are pivotal not only for a better understanding of disease
pathophysiology, but also for identification of novel diagnostic and prognostic biomark-
ers and candidate therapeutic targets. Unfortunately, because of the complex cross-talk
between HSPCs, stromal cell, and immune cells, and of the intricate mixture of released
cytokines present in the BM niche, the use of a single anti-IL or anti-TNF agent in the BMF
syndromes has shown little efficacy in improvement of blood counts [61]. However, specific
changes in cytokine signatures might identify candidate biomarkers of responsiveness to
therapies, thus improving clinical management of patients by early identification of poor
responders or disease progression.
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