An Energy-Recovery Sustaining Driver with Discharge Current Compensation for AC Plasma Display Panel

Chen-Chang Liu, Horng-Bin Hsu, Shin-Tai Lo, and Chern-Lin Chen, Senior Member, IEEE

Abstract—A novel driver with discharge current compensation is proposed to drive an ac plasma display panel (PDP). This proposed circuit uses resonance between the inductor and the ac PDP to avoid abrupt charging/discharging. The four switches of the full bridge are all operated with zero-voltage-switching turn-on. In addition, an 8-in ac PDP equipped with the proposed driving circuit, operating at 100 kHz, is investigated. With the discharge current compensation, the experimental results show that the proposed driver can maintain the ac PDP to light at lower voltage (129 V).

Index Terms—Current compensation, energy recovery, plasma display panel.

I. INTRODUCTION

PLASMA DISPLAY is known for its features of light weight, thinness, wide viewing angle, long lifetime, and high contrast, which is especially suitable for HDTV, as shown in Fig. 1. Fig. 1 is a sectional view showing an example of a structure of one discharge cell in an ac plasma display panel (PDP). An ac PDP display is composed of front and rear glass substrates. The separation between the two opposing substrates is about 100–130 μm and the space between them is filled typically with a gas mixture of Ne and Xe. The pressure of the gas is approximately 400–500 torr. The front glass substrate has a first electrode (X electrode) and a second electrode (Y electrode) which operate as sustaining electrodes. The X and Y electrodes are coated with bus electrodes, dielectric layer, and MgO layer in sequence. The MgO protects the dielectric from plasma damage and also aids the plasma in sustaining a discharge through secondary electron emission from its surface. In addition, equivalent capacitor exists between the X and Y electrodes [1], [2]. On the surface of the rear glass substrate opposed to the front glass substrate, a third electrode operating as address electrode (A electrode) is formed to be orthogonal to the X and Y electrodes. Address electrodes are covered with three phosphors of red, green, and blue. In operation, an ac voltage sufficiently high will ionize the gas to create the plasma. Then, the ultraviolet light from the plasma excites the phosphor to create the color image.

Most ac PDPs utilize the address-display-separation (ADS) driving scheme, as shown in Fig. 2 [3], [4]. All X electrodes are bussed together and connected to a sustain driver. On the other hand, the Y electrodes are connected to a sustain driver through several scan ICs. One TV field is divided into 8 subfields (SFs), and each consists of a reset period, an address period, and a display period. In the reset period, a high voltage (usually larger than 340 V) is provided to turn on all the cells in order to obtain an identical initial condition for all the cells. In the address period, the Y electrodes receive scan pulses, together with data pulses on the address electrodes, to control wall charges in appropriate cells according to the image to be displayed. In the following display period, the sustain discharges take place between the electrodes X1–Y1, X2–Y2, X3–Y3, etc. Furthermore, gray scales are expressed by using the binary-coded light-emission-period method. The display periods are filled with trains of constant width and constant period pulses and their lengths are arranged according to the binary sequence, 1 : 2 : 4 : 8 : 16 : 32 : 64 : 128. Therefore, gray levels of 28 for each color (R, G, B) can be expressed with an 8-bit sequence.

The ac PDPs provide inherent memory characteristic, as explained in Fig. 3 [5], [6]. In general, the ac sustain square pulses,
whose voltage V_S is smaller than breakdown voltage V_{bd}, cannot initiate a discharge, as shown in Fig. 3(a). If data pulses V_d, as shown in Fig. 2, are applied to the address electrodes, while scan pulses $-V_S$ are sequentially applied to each Y electrode, the voltage $(V_d + V_y)$ is higher than V_{bd} and a discharge ignites, as shown in Fig. 3(b). Charges, called wall charges (or wall voltage V_{wall}), deposit on the dielectric layer and reduce the effective voltage across the gap. Then, the discharge ceases after a short time, as shown in Fig. 3(c). When the polarity of the sustain pulse is reversed, the potential difference across the gap becomes larger than V_{bd} by an amount determined by the wall charges, and a new discharge of different polarity occurs, as shown in Fig. 3(d). The buildup of wall charges again terminates the discharge, as shown in Fig. 3(e). The next discharge starts as the polarity of the sustain pulse is reversed.

If the sustain circuit abruptly charges and discharges the panel, stored capacitive energy will be lost. Several drivers have been proposed in recent years to recover most of this energy [7]–[15]. The basic idea is to charge and discharge the panel capacitance through an inductor instead of through the lossy resistance of a switch. Furthermore, the sustain driver must drive the panel capacitance at a frequency of typically 100 kHz.
and supply plasma discharge current spikes of up to 19 A when all pixels are in the on state for an 8-in plasma panel. One prior approach is discussed in the following section and the influence of the large plasma discharge current (19 A for an 8-in panel) on the driver is also investigated.

II. PRIOR APPROACH

Fig. 4 shows an energy-recovery circuit and its driving waveforms for ac PDPs [7]–[9]. Considering only the left-side circuit, the intrinsic panel capacitance C_p and the energy recovery capacitance C_{SSS1} (which are series connected by an external inductor L_1). The driver utilizes the series resonance among C_p, L_1, and C_{SSS1} to charge or discharge the intrinsic panel capacitance C_p. The charging operation and subsequent discharging operation of the panel C_p are divided into four time durations: T_1, T_2, T_3, and T_4, as shown in Fig. 4(b).

Before T_1, only the switches M_3 and M_4 are in the on state and the others are in the off state. The voltage V_p is equal to zero.

During T_1, the switch M_3 is turned off and then the switch M_5 is turned on. An equivalent LC circuit as illustrated in Fig. 5 is formed. The voltage of the capacitance C_{SSS1} is equal to $V_S/2$ in the steady state [7]. The panel voltage V_p will be charged to V_S at the end of T_1.

After V_p is raised to V_S, the switch M_1 is turned on and then the switch M_5 is turned off. Namely, during T_2, V_S is supplied from the power source through the switch M_1 to the panel. In other words, the voltage V_S applied to the panel capacitor C_p is sustained for the time duration T_2.

During T_3, the panel capacitance C_p is discharged. The switch M_1 is turned off and then the switch M_6 is turned on. The discharging current of the capacitor C_p begins to flow through the inductor L_2, the diode D_2, and the switch M_6 into the capacitor C_{SSS1}. The capacitor C_{SSS1} is charged. The panel capacitor C_p discharges until the voltage V_p drops to zero voltage.

When the voltage V_p is reduced to zero, the switch M_3 is turned on and then the switch M_6 is turned off. That is, during T_4, the ground potential is supplied through the switch M_3 to the panel. The zero voltage applied to the panel capacitor C_p is sustained for the time duration T_4.

As described above, the charge/discharge currents flow through the inductor L_1, the LC resonance operation appears, and thereby the energy recovery effect can be obtained. In other words, the energy discharged from the energy recovery capacitance C_{SSS1} is used to charge the intrinsic panel capacitance C_p through the switch M_5 and the diode D_1, and the energy discharged from the capacitance C_p can also be temporarily stored in the capacitance C_{SSS1}. Therefore, most energy is recovered and high efficiency is achieved.

During T_1, when the intrinsic panel capacitance is charged to exceed the firing voltage V_f [$V_f + V_w = V_{ad}$, as shown in Fig. 4(b)], the gas in the plasma display panel would start to discharge. However, there is an interval (about 100–200 ns) between the instant V_p reaches V_f and the gas starts to discharge. Generally, the inductance L_1 or L_2 is small enough, and the voltage V_p can be quickly charged to V_S before the gas starts to discharge. In such condition, although the series resonance finishes completely, the large discharge current going through the on resistance of the switches M_1 and M_4 or M_2 and M_3 would cause voltage notch across the panel. We utilize the prior circuit in Fig. 4(a) to drive an 8-in ac PDP. The experimental arrangement and waveforms are shown in Fig. 6. The test pattern is the white image. In other words, all pixels are in the on state. As shown in Fig. 6(b), the current I_p, which goes through the panel, has several spikes. The smaller ones are the displacement currents to charge and discharge the panel capacitance C_p. The larger ones are the plasma discharge currents needed for the gas to discharge. However, when the plasma discharge occurs, the large discharge current goes through the switches M_4 and M_1 or M_2 and M_3, and causes voltage drops on the switches M_4 and M_1, indicated by the circle in Fig. 6(b). In addition, as the voltage decreases, so does the accumulated amount of wall charge. The problem of voltage notch appears in all prior arts.
Fig. 6. Experiment of the prior circuit. (a) Experimental arrangement. (b) Voltage V_p and current I_p across the 8-in ac PDP (time: μs/div).

Fig. 7. Proposed circuit. (a) Circuit structure. (b) Driving waveforms.
In this paper, a novel driver with discharge current compensation is proposed. The operation principles of the proposed driver are analyzed in the following section. Then, the same 8-in PDP equipped with the proposed driving circuit is investigated to verify the theoretical analysis.

III. PROPOSED CIRCUIT

A. Principle of Operation

Fig. 7(a) is the embodiment of the proposed driver for ac PDPs, where \(D_1 \sim D_6 \) are the body diodes of MOSFETs \(M_1 \sim M_6 \) from source to drain. The capacitors \(C_1 \sim C_4 \) are parasitic components of the switches \(M_1 \sim M_4 \). Moreover, the diodes \(D_7 \) and \(D_8 \) are used to prevent high voltage across \(M_5 \) and \(M_6 \), which results from the resonance between the inductors \(L_1 \), \(L_2 \) and the parasitic capacitance of the other parts [15].

Before the panel is charged or discharged, the switches \(M_1 \) and \(M_4 \) are turned on. After a predetermined period of time, the switch \(M_3 \) is turned on, and the current \(I_{L_1} \) of the inductor \(L_1 \) is increased linearly until no less than the plasma discharge current. Then, turn off the switches \(M_1 \) and \(M_4 \), and a resonance is brought about by the parallel resonance between the panel capacitance \(C_p \) and the inductor \(L_1 \) through the diode \(D_9 \) and the switch \(M_5 \). With this arrangement, the abrupt charging/discharging operation of the panel capacitance is avoided. The plasma discharge current is provided by the inductor current \(I_{L_1} \). The large discharge current would not flow through the switches \(M_1 \) and \(M_4 \), and the voltage notch across the on resistance of the switches \(M_1 \) and \(M_4 \) would not appear.

When the voltage \(V_p \) reaches \(-V_S \), the switches \(M_2 \) and \(M_3 \) are turned on with zero-voltage switching (ZVS). At this time, the current \(I_{L_1} \) of the inductor \(L_1 \) is decreased linearly with slope \(-V_S/L_1 \). When the current \(I_{L_1} \) decreases to zero, turn off the switch \(M_5 \). The operation of the adjacent half of period is similar to that described above.
In the proposed circuit, there is no sudden voltage drop in the driving waveform V_p when the panel discharges. It will attract more wall charge to deposit on the dielectric layer of the electrodes. In other words, the wall voltage is larger, and it helps the panel maintain to light at lower voltage.

B. Equivalent Circuit Analysis

Shown in Fig. 7(b) are the driving waveforms of the proposed circuit. One period of the driving operations is divided into two half cycles, $t_0 \sim t_6$ and $t_6 \sim t_{12}$. Because the operation principles of the two half cycles are symmetric, only the first half cycle is explained as follows.

Stage 1 ($t < t < t_0$): The panel capacitance C_p is connected between the power source V_S and GND with the switches M_1 and M_4 turning on.

Stage 2 ($t_0 < t < t_1$): At t_0, the switch M_5 is turned on. At this time, the voltage across L_1 is V_S and the current I_{L_1} of the inductor L_1 begins to increase linearly with slope V_S/L_1.

Stage 3 ($t_1 < t < t_2$): At t_1, the switch M_4 is turned off and the inductor current I_{L_1} starts to charge C_4 and discharge C_2 and C_p at the same time, as shown in Fig. 8(a). When V_S increases to V_S, D_2 becomes conductive and I_{L_1} will go through D_2. Then, the switch M_2 is turned on with ZVS at t_2.

Stage 4 ($t_2 < t < t_3$): As shown in Fig. 8(b), with the switches M_3 and M_2 conducting, the voltage V_p across the panel is equal to zero. In addition, the voltage across L_1 is zero so that the inductor current I_{L_1} keeps constant and circulates through L_1, D_3, M_5, D_2, and M_4.

Stage 5 ($t_3 < t < t_4$): At t_3, the switch M_1 is turned off and the inductor current I_{L_1} starts to charge C_1 and discharge C_3 and C_p at the same time, as shown in Fig. 8(c). When V_X decreases to zero, D_3 becomes conductive and I_{L_1} will go through D_3. Then, the switch M_3 is turned on with ZVS at t_4.

Stage 6 ($t_4 < t < t_5$): As shown in Fig. 8(d), with the switches M_3 and M_2 conducting, the voltage V_p across the panel is equal to $-V_S$. An interval (about 100 ~ 200 ns) after t_4, the plasma starts to discharge. At the same time, the large discharge current is provided by the inductor current I_{L_1} and is not provided by the power supply V_S through the switches M_2 and M_3. Thus, there are no voltage drops across the on resistance of the switches M_2 and M_3. In other words, the voltage V_p across the panel keeps $-V_S$ during the plasma discharge. In addition, the voltage across the inductor L_1 is equal to $-V_S$ during this period. Therefore, the inductor current I_{L_1} begins to decrease linearly with slope $-V_S/L_1$ and the energy stored in L_1 is recovered back to the power supply V_S through D_3, L_1, D_3, M_5, D_2, and D_2. When I_{L_1} becomes zero, D_2 and D_3 will be turned off naturally without the problem of reverse recovery. Then turn off the switch M_5.

Stage 7 ($t_5 < t < t_6$): The panel capacitance C_p is connected between the GND and power source V_S with the switches M_2 and M_3 turning on. The voltage V_p of the panel is equal to $-V_S$.

Circuit operations of $t_0 \sim t_{12}$ are similar to that of $t_0 \sim t_6$. Subsequently, the operations from t_0 to t_{12} are repeated.
C. Design Considerations

In this proposed circuit, the inductor current I_{L1} or I_{L2} is mainly used to provide the large discharge current. So the discharge current must be measured first. In the experiment, the discharge current spike is about 19 A when all pixels are in the on state for an 8-in diagonal display panel, as shown in Fig. 6(b). During the periods (t_0–t_4) and (t_6–t_7), the voltage V_S charges the inductor L_1 and L_2, respectively. Therefore, the inductor current I_{L1} and I_{L2} increases linearly with slope V_S/L_1 and V_S/L_2. The charging equations of the inductor L_1 and L_2 are as follows:

\[V_S = L_1 \times \frac{I_{L1,\text{max}}}{t_4 - t_0} \]
\[V_S = L_2 \times \frac{I_{L2,\text{max}}}{t_6 - t_5} \]

where $I_{L1,\text{max}}$ and $I_{L2,\text{max}}$, shown in Fig. 7(b), are the maximum currents of the inductors L_1 and L_2. The current $I_{L1,\text{max}}$ and $I_{L2,\text{max}}$ should be no less than the plasma discharge current, and we select the current $I_{L1,\text{max}}$ and $I_{L2,\text{max}}$ equal to 20 A. Furthermore, the inductor L_1 and L_2 need the same interval to charge and discharge. In other words, the interval ($t_4 - t_0$) is equal to ($t_5 - t_4$), and the interval ($t_7 - t_6$) is equal to ($t_6 - t_1$), as shown in Fig. 7(b). In addition, they must satisfy the following equations:

\[(t_1 - t_0) + (t_{11} - t_{10}) \leq (t_{13} - t_{10}) \]
\[(t_5 - t_4) + (t_7 - t_6) \leq (t_7 - t_5) \]

In the experiment, the frequency of the sustain pulse is 100 kHz and its duty is about 36%. Therefore, it is satisfied that the interval ($t_4 - t_0$) and ($t_7 - t_6$) are equal to 1. Then, from (3) and (4), we can determine that the values of L_1 and L_2 are 8 μH when V_S is equal to 160 V.

IV. EXPERIMENTAL RESULTS

Fig. 9 is the experimental arrangement of the proposed circuit with its associated parameters. The ac plasma display panel under test is 8-in diagonally, which is the same as the one in Fig. 6(a). All X electrodes are bussed together and connected to one leg of the proposed circuit. All Y electrodes are also bussed together and connected to the other leg of the proposed circuit. In addition, all address electrodes are shorted together and connected to ground. Moreover, the frequency of the sustain pulses is 100 kHz. The test pattern is the white image, that is, all pixels are in the on state.

Fig. 10 shows the experimental waveforms of the proposed circuit. The waveforms are in good agreement with those in Fig. 7(b). With the discharge current compensation from I_{L1} and I_{L2}, the notch of the voltage V_p across the panel disappears. It is also observed that the resonance between the panel capacitance C_p and inductor L_1 or L_2 results in the soft transition of V_p.

Fig. 11 shows that ZVS of the switches M_1–M_4 is achieved. Fig. 11(a) shows that the switch M_1 is turned on after V_{ds, M_1} drops to 0 V. Similarly, Fig. 11(b)–(d) shows that M_2–M_4 are turned on with ZVS, respectively.
Comparing the lowest operation voltage of the proposed circuit with that of the prior circuit in Fig. 6(a), we find that the proposed circuit can maintain the panel to display the white image at 129 V. However, the prior circuit cannot maintain the panel to light when the sustain voltage is lower than 134 V. In general, the operational margin of the sustain voltage (\(V_{S_{\text{max}}} - V_{S_{\text{min}}}\)) is about 30 V. To reduce the sustain voltage by 5 V means that the operational margin is improved by 16.7%. This is because the problem of the voltage notch is solved by the discharge current compensation. In addition, this solution improves the accumulation of wall charge but also maintain the operational margin of the sustain voltage (\(V_{S_{\text{max}}} - V_{S_{\text{min}}}\)).

V. CONCLUSION

A novel driver for an ac PDP has been proposed in this paper. It utilizes inductors to resonate with the equivalent intrinsic capacitance of an ac PDP. The abrupt charging/discharging operation can be avoided, and all four switches of the full bridge are operated with ZVS turn-on. In particular, the proposed discharge current compensation could solve the problem of sudden voltage drop during gas discharge. This solution cannot only improve the accumulation of wall charge but also maintain the panel to light at lower sustain voltage than all prior arts.

REFERENCES

Chen-Chang Liu was born in Kaohsiung, Taiwan, R.O.C., in 1975. He received the B.S. degree in 1997 from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., where he is currently working toward the Ph.D. degree.

Hsiau-Chen Lin was born in Miaoli, Taiwan, R.O.C., in 1976. He received the B.S. degree in electrical engineering in 1998 from National Taiwan University, Taipei, Taiwan, R.O.C., where he is currently working toward the Ph.D. degree.

Shin-Tai Lo was born in Taipei, Taiwan, R.O.C., in 1972. He received the B.S. degree in electrical engineering in 1997 from National Taiwan University, Taipei, Taiwan, R.O.C., where he is currently working toward the Ph.D. degree.

His current research is focused on the design of the driving circuit and driving waveform for plasma display panels.