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ABSTRACT

Osteoclasts (OCs) are clinically important cells that resorb bone matrix. Accelerated bone 
destruction by OCs is closely linked to the development of metabolic bone diseases. In this 
study, we screened novel chemical inhibitors targeting OC differentiation to identify drug 
candidates for metabolic bone diseases. We identified that 1,3-dibenzyl-5-fluorouracil, also 
named OCI-101, is a novel inhibitor of osteoclastogenesis. The formation of multinucleated 
OCs is reduced by treatment with OCI-101 in a dose-dependent manner. OCI-101 inhibited 
the expression of OC markers via downregulation of receptor activator of NF-κB ligand and 
M-CSF signaling pathways. Finally, we showed that OCI-101 prevents ovariectomy-induced 
bone loss by suppressing OC differentiation in mice. Hence, these results demonstrated that 
OCI-101 is a good drug candidate for treating metabolic bone diseases.

Keywords: Osteoclasts; Osteoclastogenesis; 1,3-Dibenzyl-5-fluorouracil; Ovariectomy; 
Osteoporosis

INTRODUCTION

Bone is continuously maintained by the process of bone remodeling through the balanced 
actions of bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (1-3). OCs, the 
only cells with bone-resorbing activity, play clinically important roles in metabolic bone 
diseases, such as postmenopausal osteoporosis and osteoarthritis, which are characterized 
by accelerated bone destruction by OCs (2,4). Therefore, inhibition of excessive OC bone-
resorbing activity and OC differentiation play a key role in the treatment of metabolic bone 
diseases (2,3).

Mature bone-resorbing OCs are multinucleated giant cells derived from cell fusion of 
monocyte/macrophage lineage precursors by a process of cellular differentiation called 
OC differentiation or osteoclastogenesis (2,3). Osteoclastogenesis is mainly regulated by 
2 cytokines, M-CSF and RANK ligand (RANKL), which are produced by osteoblasts and 
activated immune cells (2,3). RANK-RANKL signaling is a key process in OC differentiation 
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and bone-resorbing function. Upon RANKL stimulation, RANK recruits tumor necrosis 
factor receptor-associated factors (TRAFs) to activate downstream signaling cascades of 
adaptors/kinases, such as IκB kinases (IKKs), Vav3, c-Src and MAPKs, including p38, JNK 
and ERK (3,5). M-CSF also activates p38, JNK, ERK and Akt signaling that regulate OC 
proliferation and survival (2,3). The final consequence of RANKL and M-CSF signaling 
cascades is the activation of osteoclastogenic transcription factors, such as NF-κB, AP-
1, cAMP-response element-binding protein and NFATc1, which induce the expression of 
OC markers, such as tartrate-resistant acid phosphatase (TRAP), OC-associated receptor, 
dendritic cell-specific transmembrane protein, B-lymphocyte induced maturation protein 1 
and cathepsin K (3,6-8).

Osteoporosis is most common in postmenopausal women (9). Estrogen has a protective 
effect on bones by inhibiting bone loss (10). In postmenopausal osteoporotic patients, 
estrogen deficiency can lead to excessive bone resorption due to increases in both OC 
differentiation and OC activity, which causes rapid bone loss (9). Thus, estrogen or 
estrogen signal-related therapies targeting OC differentiation/activity, including estrogen 
replacement and selective estrogen receptor modulators, have been regarded as treatments 
for postmenopausal osteoporosis (11). In long-term therapy, however, these therapeutic 
options are limited by adverse effects, including an increased risk of uterine or breast cancer 
and cardiovascular events (9,12). Bisphosphonates (a classic anti-resorptive agent) and 
denosumab (a human monoclonal antibody to RANKL) are currently the most widely used 
therapies for the treatment of postmenopausal osteoporosis (13). Bisphosphonates, such 
as alendronate, risedronate and zoledronate, are considered the first-line treatment for 
postmenopausal osteoporosis (13,14). Bisphosphonates bind to calcium in bone and inhibit 
bone resorption by reducing OC activity or by inducing OC apoptosis, leading to reduced 
fracture risk (14-16). Denosumab blocks the RANK-RANKL interaction, thereby inhibiting 
both OC differentiation and OC activity and enhancing bone strength (17). Denosumab 
is also considered both a first-line agent and an alternative to bisphosphonates in the 
treatment of postmenopausal osteoporosis (18). In long-term therapy, bisphosphonate 
treatment results in a plateau in bone mineral density (BMD) response after 3–5 years, 
while denosumab treatment leads to continuously increasing BMD for up to 10 years of 
treatment (19-21). Denosumab treatment increases BMD and reduces cortical porosity at all 
measured skeletal sites and decreases expression of biochemical markers of bone turnover 
(18,22). Therefore, denosumab administration targeting RANK-RANKL signaling can be 
considered the preferred choice for the treatment of postmenopausal osteoporosis (18). 
Both bisphosphonates and denosumab are generally considered to be safe, but prolonged 
medication is also associated with adverse effects, such as jaw osteonecrosis, hypocalcemia, 
gastrointestinal symptoms and atypical femoral fractures (18,23,24). Thus, it is necessary 
to find new and more effective drug candidates for the management of postmenopausal 
osteoporosis and inflammatory bone-related diseases.

In this study, we discovered a novel chemical inhibitor named OCI-101, 1,3-dibenzyl-5-
fluorouracil, targeting OC differentiation. We demonstrate that OCI-101 acts as an inhibitor 
of osteoclastogenesis. The formation of multinucleated OCs is dose-dependently inhibited by 
OCI-101 treatment. Finally, we show that OCI-101 prevents ovariectomy (OVX)-induced bone 
loss by suppressing OC differentiation in mice.
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MATERIALS AND METHODS

Reagents, antibodies and mice
1,3-Dibenzyl-5-fluorouracil was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, 
USA). A chemical library with a total of 16,380 unique chemical compounds was obtained 
from the Korea Chemical Bank (KCB). Recombinant human soluble RANKL and human 
M-CSF were prepared as previously described (25,26). Antibodies were purchased from Cell 
Signaling Technology (Beverly, MA, USA). Mice were purchased from Daehan Biolink Co. 
(Umsung, Korea), and the animal study was approved (approval No. CNU-00326 and CNU-
00114) by the Animal Experiment Ethics Committee of Chungnam National University.

OC differentiation, analysis and cytotoxicity assay
Osteoclastogenesis was performed as described previously (25,26). Briefly, bone marrow cells 
collected from the tibias and femurs of 6-week-old C57BL/6J male mice were cultured at 1×105 
cells/well in 96-well plates in the presence of 50 ng/ml M-CSF and 200 ng/ml RANKL for 4 
days. Bone marrow-derived OCs (BMOCs) were further analyzed by TRAP staining and solution 
assays. For the TRAP solution assay, BMOCs were fixed and incubated with the p-nitrophenyl 
phosphate substrate for 30 min. The supernatant was then mixed with 1 N NaOH, and TRAP 
activities were analyzed by measuring the absorbance at 405 nm in each well using a microplate 
reader (Bio–Rad, Hercules, CA, USA). For the TRAP staining assay, the cells were stained with 
naphthol AS phosphate and fast red violet for 20–30 min at room temperature. TRAP-positive 
multinucleated BMOCs (TRAP+ MNCs) with more than 3 nuclei were considered multinucleated 
OCs. For the cytotoxicity assay, bone marrow cells (1×105 cells/well in 96-well plates) were 
differentiated into bone marrow-derived macrophages (BMMs) with 50 ng/ml M-CSF alone 
in the presence or absence of OCI-101 (25–100 µM) for 4 days. Real-time PCR analysis and pit 
formation assay were performed as previously described (27,28). The cytotoxicity of OCI-101 in 
BMMs was analyzed using the Cell Counting Kit-8 (Dojindo Lab., Kumamoto, Japan) according 
to the manufacturer’s recommendations. The analyses of RANKL-induced signaling using 
immunoblotting were performed as described previously (25,26). BMMs were preincubated 
with 100 µM OCI-101 for 12 h before RANKL or M-CSF stimulation. To induce RANKL 
or M-CSF signaling, BMMs precultured for 2 h without RANKL or M-CSF. The cells were 
stimulated with RANKL (200 ng/ml) or M-CSF (50 ng/ml) for the indicated times, and the cell 
lysates were subjected to immunoblot analysis with antibodies.

Bone analysis by micro-computed tomography (micro-CT) and histological 
analysis
Bone analysis was performed as previously described (28,29). Briefly, C57BL/6J female mice 
(8-week-old, n=10–11 per group) were randomly divided into 4 groups: sham operation 
(Sham), OVX with a vehicle, ovariectomy with a low dose of OCI-101 (OVX + OCI-101 [1 mg/
kg]) and ovariectomy with a high dose of OCI-101 (OVX + OCI-101 [10 mg/kg]). OVX was 
performed by surgical removal of ovaries, and sham surgery was performed by identifying 
both ovaries. A week after surgery, the mice were injected intraperitoneally with OCI-101 
(1–10 mg/kg) or vehicle each day for 3 wk. For micro-CT analysis, femurs were fixed with 
10% formalin, and trabecular morphometry of distal femurs was performed using micro-CT 
(SkyScan 1076, Bruker micro-CT; Bruker, Kontich, Belgium). For histological analysis, the 
femurs were decalcified in 15% EDTA solution at 4°C for 3 wk and embedded in paraffin. 
Paraffin sections were stained with TRAP and hematoxylin, and the TRAP+ OCs were counted 
by visualization under a microscope.
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Statistical analysis.
The data represent the mean ± SD (at least n=3 per group). Statistical analyses were 
performed using 2-tailed Student’s t-test or 1- or 2-way ANOVA. The p-values <0.05 were 
considered statistically significant.

RESULTS

OCI-101 inhibits OC differentiation
Inhibitors of osteoclastogenesis were screened by OC differentiation assays using a KCB 
chemical library containing a total of 16,380 unique chemical compounds at a chemical 
concentration of 5 μM. We identified several inhibitory candidates, named the OCI series 
(data not shown). Among them, we discovered a novel chemical inhibitor named OCI-101, or 
1,3-dibenzyl-5-fluorouracil, that targeted OC differentiation (Fig. 1A). First, we examined the 
cytotoxicity of OCI-101 by a cell proliferation assay with BMMs. BMMs were stimulated for 4 
days with M-CSF alone (50 ng/ml) in the presence of OCI-101 compounds (0–100 µM). We did 
not observe OCI-101 cytotoxicity at any of the tested concentrations in BMMs after 4 days of 
culture (Fig. 1B). To test the inhibitory effect of OCI-101 on OC differentiation, BMMs were 
differentiated into BMOCs by stimulation with M-CSF (50 ng/ml) and RANKL (200 ng/ml) in 
the presence or absence of OCI-101. After 4 days of culture, the cells were fixed, and the fixed 
cells were analyzed by TRAP solution assay and TRAP staining to determine the number of 
differentiated multinucleated OCs (TRAP+ MNC). OCI-101-treated BMMs showed a marked 
dose-dependent reduction in the differentiation of multinucleated OCs when compared to 
that of the mock-treated control (Fig. 1C). Furthermore, the number of TRAP+ MNCs and 
TRAP activity were dose-dependently decreased by OCI-101 treatment (Fig. 1D). Similarly, the 
resorption area was reduced significantly by OCI-101 (Fig. 1E). Consistent with these results, 
we observed that the expression of OC markers was inhibited by OCI-101 (Fig. 1F). These 
results suggest that OCI-101 is an inhibitor targeting OC differentiation.

OCI-101 inhibits RANKL and M-CSF signaling pathway
We next analyzed the effect of OCI-101 on the RANKL- and M-CSF-induced signaling 
pathway. To induce RANKL signaling, BMMs precultured for 2 h without RANKL treatment 
were stimulated with 200 ng/ml RANKL at the indicated times. We then examined the 
activation of NF-κB and MAPKs by RANKL stimulation in OCI-101-treated BMMs. Upon 
RANKL stimulation, the phosphorylation of IκBα, p65 and ERK was inhibited by OCI-
101 treatment, but not JNK phosphorylation, compared to the mock-treated control. In 
contrast, the phosphorylation of p38 was slightly enhanced by OCI-101 treatment (Fig. 2A). 
Furthermore, we observed that the phosphorylation of JNK, Akt and ERK following M-CSF 
stimulation was inhibited by OCI-101 treatment, but not IκBα, p65 and p38 phosphorylation 
(Fig. 2B). These results indicate that OCI-101 negatively regulates osteoclastogenesis via 
modulating multiple RANKL- and M-CSF-induced signaling pathways.

OCI-101 inhibits OVX-induced OC formation in mice
To examine the effects of OCI-101 on OC formation in vivo, C57BL/6 female mice were subjected 
to OVX or sham surgery. OVX mice were injected intraperitoneally with OCI-101 or vehicle each 
day for 3 wk. The femurs were collected, fixed and analyzed by TRAP staining and hematoxylin 
counterstaining. Finally, we compared bone histological morphology and OC formation in 
the trabecular region of femurs. OVX mice showed significantly reduced trabecular bones 
compared to those of sham control mice (Fig. 3A). After treatment with OCI-101 in OVX mice, 
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Figure 1. OCI-101 inhibits OC differentiation. (A) Chemical structures of OCI-101. (B) Cytotoxicity tests for OCI-101 in BMMs. Bone marrow cells were cultured with 
the indicated doses of OCI-101 in the presence of M-CSF (50 ng/ml) for 4 days. Cytotoxicity was measured by a Cell Counting Kit-8 assay kit. (C) The inhibition 
of BMOC differentiation by OCI-101. BMOCs were differentiated with the indicated doses of OCI-101 in the presence of M-CSF (50 ng/ml) and RANKL (200 ng/
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n.s., not significant. 
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we observed that the extent of bone loss in the trabecular bones of the femur in OVX mice was 
not significantly altered by 1 mg/kg OCI-101 treatment, while OVX-induced bone loss in the 
trabecular bones was rescued by 10 mg/kg OCI-101 treatment (Fig. 3A). Consistent with the 
results, the number of TRAP+ OCs in the trabecular region of femurs was decreased (26.9% 
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reduction, p<0.05) in OCI-101 (10 mg/kg)-treated OVX mice compared to that of OVX control 
mice (Fig. 3B and C). Hence, these results indicate that OCI-101 acts as an inhibitor in OVX-
induced bone loss by reducing OC formation in vivo.

OCI-101 prevents OVX-induced bone loss in mice
We next analyzed bone microarchitecture changes in OCI-101-treated OVX mice by micro-
CT. Bone parameters and 3-dimensional images of the trabecular region of the femurs were 
measured and quantified using micro-CT (Fig. 4A). Based on the imaging analysis, the extent 
of bone loss in the trabecular bones of the femur in OVX mice was not significantly altered 
by 1 mg/kg OCI-101 treatment (Fig. 4A). However, we observed that the increased bone loss 
of the trabecular bones in OVX mice was clearly inhibited by 10 mg/kg OCI-101 treatment 
(Fig. 4A). Consistent with the results, we observed the rescued phenotypes in the analysis 
of bone parameters after 10 mg/kg OCI-101 treatment (Fig. 4B). The BMD of the femurs was 
significantly increased (12.8% higher [p<0.001]) with high-dose OCI-101 treatment (10 mg/
kg) in OVX mice compared to that in the femurs of OVX control mice (Fig. 4B, first panel). 
The trabecular bone volume fraction was 34.8% higher (p<0.01) in OVX mice treated with a 
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high concentration (10 mg/kg) of OCI-101 than in OVX control mice (Fig. 4B, second panel). 
Furthermore, the Tb. N was 32.9% higher (p<0.01) in OCI-101 (10 mg/kg)-treated OVX mice 
than in OVX control mice, while trabecular spacing was 17.8% lower (p<0.05) in OCI-101 
(10 mg/kg)-treated OVX mice than in OVX control mice (Fig. 4B, third and fourth panels). 
Taken together, these results suggest that OCI-101 has protective effects on the OVX-induced 
osteoporotic-like bone phenotype in vivo.

DISCUSSION

OCs are terminally differentiated and specialized multinucleated cells exclusively responsible 
for physiological and pathological bone destruction (2,3). Mature OCs are formed by cell fusion 
of TRAP+ mononuclear OC precursors during osteoclastogenesis (2,3). Therefore, targeting 
osteoclastogenesis is considered a good therapeutic strategy for management of metabolic bone 
diseases, including postmenopausal osteoporosis and osteoarthritis, which are characterized 
by accelerated bone destruction by OCs. In our current study, we identified a novel inhibitor, 
OCI-101, targeting OC differentiation. Our findings reveal that 1) OCI-101 is an inhibitor of 
osteoclastogenesis, 2) OCI-101 inhibits multiple RANKL- and M-CSF-induced signaling, and 3) 
OCI-101 has protective effects against OVX-induced osteoporotic-like bone loss.

RANK-RANKL signaling is a critical osteoclastogenic pathway. The stimulation of RANK by 
RANKL recruits TRAFs, such as TRAF2, 5, and 6, to the cytoplasmic tail of trimeric RANK, 
thereby finally activating the transcription factors AP-1 and NF-κB (2,3). Among the TRAFs, 
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Figure 4. Micro-CT analyses of trabecular bones in OCI-101-treated OVX mice. (A) Three-dimensional microstructural analysis of the distal femur in OCI-101-
treated OVX mice. Femurs of mice (8-week-old, n=10–11/group) were fixed with 10% formalin and analyzed by micro-CT. Micro-CT images of the femur are shown. 
(B) Three-dimensional trabecular structural parameters in distal femurs from OCI-101-treated OVX mice. The following parameters were analyzed: BMD, BV/TV, 
Tb. N and Tb.Sp. 
n.s., not significant; BV/TV, trabecular bone volume fraction, Tb. N, trabecular number; Tb.Sp, trabecular spacing. 
*p<0.05; **p<0.01; ***p<0.001.
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TRAF6 plays a pivotal role in the activation of downstream signaling cascades, including 
MAPK and NF-κB pathways during RANKL-induced osteoclastogenesis (30). RANKL-
induced NF-κB activation can trigger the induction of RANKL target gene expression (31,32). 
Particularly NFATc1, a master regulator of osteoclastogenesis, is one of the key target genes 
of NF-κB in RANKL-induced osteoclastogenesis (33). Thus, NF-κB activation is crucial for 
RANKL-induced osteoclastogenesis. In our current study, we showed that OCI-101 inhibits 
RANKL-induced OC differentiation via downregulation of NF-κB pathways (Figs. 1 and 2A). 
The phosphorylation of IκBα and p65 in the NF-κB pathway was significantly reduced by 
OCI-101 treatment (Fig. 2A). The phosphorylation of IκBα by the IKK complex can lead to 
ubiquitin-mediated IκBα degradation, resulting in activation and nuclear translocation of 
NF-κB (34). The phosphorylation of p65 induces a conformational change that promotes its 
stability and interaction with cofactors of transcriptional machinery, thereby increasing NF-
κB transcriptional activity (35,36). Thus, this process may explain that TRAF6-mediated IKK 
signaling pathways are inhibited by OCI-101 in RANKL-induced osteoclastogenesis.

The significance of RANKL-induced MAPK pathway activation is also well documented 
in osteoclastogenesis (2,3). In particular, the phosphorylation of p38, JNK and ERK 
in OC precursors by RANKL-induced TRAF6 signal transduction pathways is crucial 
for OC differentiation (37,38). The phosphorylation of p38 activates microphthalmia-
associated transcription factors and NFATc1, which are responsible for the induction of 
osteoclastogenic genes, such as TRAP and cathepsin K (39,40). The phosphorylation 
of JNK is involved in the activation of the transcription factor c-Jun in RANKL-induced 
osteoclastogenesis (41,42). RANKL-induced ERK activation induces c-Fos phosphorylation 
and matrix metalloproteinase 9 expression (43,44). In our current study, we showed that the 
phosphorylation of ERK, but not that of p38 or JNK, by RANKL stimulation was reduced by 
OCI-101 treatment (Fig. 2A). Thus, it is possible that TRAF6 itself or the TRAF6 upstream 
signaling pathway is not the direct target of OCI-101. Hence, we presume that OCI-101 plays 
functionally distinct roles in blocking ERK activation of RANKL-RANK-TRAF6-mediated 
signaling pathways. RANKL-induced ERK activation is crucial for osteoclastogenesis (45,46). 
ERK1 deficiency reduces OC differentiation, activation and survival (47). Furthermore, it has 
been reported that M-CSF signaling is also linked to ERK activation in osteoclastogenesis 
(44). M-CSF-induced ERK activation leads to OC proliferation and survival (48,49). 
Collectively, ERK activation is mediated by both RANKL- and M-CSF-induced signaling 
in osteoclastogenesis. Based on our observations showing the reduction of ERK 
phosphorylation by OCI-101 (Fig. 2), we hypothesized that the inhibitory effects of OCI-101 
might be linked to both RANKL- and M-CSF-induced ERK activation in osteoclastogenesis. 
However, a direct target of OCI-101 for the ERK signaling pathway was not identified in this 
study; thus, further studies are required to elucidate how OCI-101 modulates the RANKL-
induced ERK activation pathway in osteoclastogenesis.

In conclusion, we show that OCI-101 is a novel inhibitor of osteoclastogenesis. OCI-101 inhibits 
OC differentiation by blocking multiple RANKL- and M-CSF-induced signaling pathways. 
Finally, we show that OCI-101 prevents OVX-induced osteoporotic-like bone loss by suppressing 
OC differentiation in mice. Hence, these results show that OCI-101 is a good drug candidate to 
treat postmenopausal osteoporosis and inflammatory bone-related diseases.
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