L}
1Zl Technologie-Zentrum Informatik

,Policy-Based Benchmarking of
Weak Heaps and Their Relatives®

Asger Bruun*, Stefan Edelkamp, Jyrki Katajainen*,
Jens Rasmussen®

*University of Copenhagen

@ Universitat Bremen

[
1Zl Technologie-Zentrum Informatik

Priority-Queue
Operations

e
@ Universitat Bremen

find-min
input: none

msert

input: element output: locator

output: locator

delete-min
p — find-min()
delete(p)

f?i’ creasc

delete input: locator, element

input: locator output: none

output: none

[
1Zl Technologie-Zentrum Informatik

Market
Analysis

@ Universitat Bremen

efficiency| binary binomial Fibonacci run-relaxed
heap queue heap heap
metho worst case worst case amortized worst case
find-min 2(1) @(1) ©(1) (1)
insert O(lgn) o(1) ©(1) 2(1)
decrease @(lgn) ©(lgn) ©(1) e(1)
delete @(lgn) @(lgn) @(lgn) @(lgn)

[
1Zl Technologie-Zentrum Informatik

Looking at Constants...

Framework | Structure | delete | insert | decrease
single heap weak heap [1g n] |lgn| +1f [lgn]
multiple heap weak quene 2lgn+ O(1) 2 lgn|
relaxed heap [run-relaxed weak queue|3lgn + O(1) 2 4

Further Engineering =» Policy-Based Benchmarking...

= Methodology
(Policy-Based Benchmarking)
Results Highlights
(LEDA vs. CPH-STL)
Lessons Learnt
@ Universitat Bremen

o
12' Technologie-Zentrum Informatik

Generic Component Frameworks In
the CPH STL

C++ template design: useful to carry out unbiased
experiments & (micro-)benchmarking

=» interfaces are decoupled from their implementations
Clear division of labour:

» Containers de/allocate nodes

» Realizators extract nodes and work on them

(Unidirectional) Iterators traverse through the elements and
are used as handles to elements

l@’ Universitat Bremen

o
12' Technologie-Zentrum Informatik

Weak-Heaps

A Weak Heap is a binary tree where:
» the root has no left subtree

» the right subtree of the root is a balanced
binary tree

» each element is smaller than the element on its left ,spine”

Observation: 1-to-1 mapping between nodes in
heap-ordered binomial trees and perfect weak heaps

l@’ Universitat Bremen

o
12' Technologie-Zentrum Informatik

Single-Heap Framework

Resizable Array: For iterators validity, store elements
indirectly & maintain pointers between array and elements

(does not destroy worst-case complexity!)

Heap Structure: different heapifier policies allow switching
between weak heaps and different implementations of
binary heaps
(e.qg., alternative bottom-up sift-down strategy)

l@’ Universitat Bremen

[
1Zl Technologie-Zentrum Informatik

Joining/Merging and Splitting

Joining and splitting two perfect weak heaps
of the same size:

Note that for a binary heap a join may take
logarithmic time.

UU.” Universitat Bremen

[
1Zl Technologie-Zentrum Informatik

Heap Store

A heap store is a
sequence of perfect
weak heaps

Joins are delayed
using redundant
number representation e cject

input: H;, i <j input: none input: H, and H)

f'lf"j'HFHf'f

output: none output: H; output: none

@ Universitat Bremen

[
1Zl Technologie-Zentrum Informatik

Insert
(node p)

@ Universitat Bremen

1. Place the new node, which is also a per-
fect weak heap of height O, into the heap
store by invoking wnject.

2. Correct the minimum pointer to point to
the new node if e is smaller than the cur-
rent minimum.

Worst-case time: ©(1) with at most 2 ele-
ment comparisons

o
12' Technologie-Zentrum Informatik

Multiple-Heap Framework

Node: 2 pointers per node are sufficient to cover the parent-
child relationships, but this space optimization costs
execution time

Heap Store: list of proxies was slower than maintaining the
roots in a linked list by reusing the pointers at the nodes,
where the heights of the heaps are maintained in a bit
vector

l@’ Universitat Bremen

1Zl Technologie-Zentrum Informatik

Node Store

maintains heap-order
violating marked

/ e O(,m nodes efficiently

=» worst case for
helght
unmarked mark, unmark, and
member .
%,eader reduce is O(1)
smgleton

mark unmark reduce
input: a node input: a node input: none
output: none output: none output: none
effect: Unmark at least

one arbitrary marked node.

@ Universitat Bremen

1Zl Technologie-Zentrum Informatik

Transformations
» Cleaning: & A

® ® © @
N\ —= \ /A A o
VAR / /N u S8
[.f\.)\ _‘, h / 7 / /\) /®\
é FARY \ A Ny = = ot N)
/’X\ /B /C\ /ﬁ:)\ JAN /'j:)\.\ /CA /B \ _.Y.\/' /\ \,Y\) w L) ()
/SN /N YA /a N
LA A A A AN A A AN A A
. A A/ ARANANPA ANVARAY /A
< Parent: AgLn0 A s Lo A gL/

" T\ /
/ \ /A _// \ JAR / \ / \
/:‘\ /\\ /A } \ / \ A,\ /{, A \ A A /\
AL ABAD A B
» Sibling: P N
CﬁL }D — @ ® o G W
It J \ /Y A '
N /N VAR A /N an
A /\ \ A A A \\, (’\ A A
AWAWA ANWARARFA \ A
A\ B\ /C\ D\ A\ C\ B\ D, /A \ /C\ /D\ /B\

Pair: R E; B S \ ®\ .,

W) (w) ad (z) or D
I 7 ant 7 i 7
/N / \ /\ /o /'j \\ /N

\ \ /\) ! [‘ -)'\ A /\ \ A A j/‘ '/\'\

\ AN e - AN oY \ ARl

/ "—\ /AN /B‘ /b /AN /CN JC\ /AN fB\-\ __fb‘ /D) FADA /B‘

= Run (reduces 1 marking, max. 3 comps)
=>» Singleton (reduces 1 marking, max. 3 comps)

@ Universitat Bremen

[
1Zl Technologie-Zentrum Informatik

Decrease
(at node p)

@ Universitat Bremen

1.

Make the element replacement at p.

Make p a potential violation node by in-
voking mark.

Reduce the number of potential violation
nodes, if possible, by invoking reduce.

Correct the minimum pointer if neces-
sary.

Worst-case time: ©(1) with at most 4 ele-

ment comparisons

[
1Zl Technologie-Zentrum Informatik

Delete
(node p)

Worst-case time: ©(lgn) with at most 31gn+
O(1) element comparisons

@ Universitat Bremen

o
12' Technologie-Zentrum Informatik

Relaxed-Heap Framework

Node Store: doubly-linked lists of leaders, and singletons at
each height too slow =

Engineering: array of bit vectors, each occupying a single
word, indicating which of the marked nodes are singletons
(access via most significant bit)

Rank Relaxation: apply transformations eagerly
=>» 2 bitvectors

l@’ Universitat Bremen

1Zl Technologie-Zentrum Informatik

Execution time per »n [us]

Insert

0.4

0.35 ¢

0.25 ¢

Operation sequence: inserf’

* binary heap

- Fibonacci heap
- pairing heap

weak w%iw

weak heap

run-relaxed we

x oo

n [logarithmic scale]

@ Universitat Bremen

MNumber of element comparisons per i

25

Operation sequence: insert"

20

tn
T

binary heap
weak heap
weak queue
run-relaxed weak queue
- Fibonacci heap

-~ pairing heaw .

n [logarithmic scale]

1Zl Technologie-Zentrum Informatik

Results: Decrease

Operation sequence: decrease” Operation sequence: decrease”
4 T T "":'I T LERELELL | T LR | T T T 25 T T ""."I T T
+— binary heap & +— binary heap
35 ¢ weak queue o weak queue M
weak heap o 20 - weak heap -
3 -+ run-relaxed weak queue *:f'* « run-relaxed weak queue M
-+ Fibonacci heap 1,7 ~=- Fibonacci heap

25 1 --we-- pairing heap il 15 | ~----- pairing hea M §

Execution time per i [us]

Number of element comparisons per #

n [logarithmic scale] n [logarithmic scale]

@ Universitat Bremen

1Zl Technologie-Zentrum Informatik

Execution time per i [us]

0.8

Results: Delete

Operation sequence: delete”

T i T T T
run-relaxed weak queue
------ +- Fibonacci heap , 4l
+ bmaw heap TR
weg queu;:% g ,:.3__”‘._3.4‘4. L
r*u Hé q. i

- pairing heap

n [logarithmic scale]

@ Universitat Bremen

Number of element comparisons per »

n

=

Operation sequence: delete’

- Fibonacci heap
- pairing heap * !
binary heap e peg

ru |1—reh ed

n [logarithmic scale]

[
1Zl Technologie-Zentrum Informatik

Execution time per » [us]

Results: Delete-Min

Operation sequence: delete-min"

-~ Fibonacci ile'alpl i
- pairing heap

run-relaxed weak queue
binary heap
weak heap

weak queue

n [logarithmic scale]

@ Universitat Bremen

35
50
45
40
35

Number of element comparisons per »

Operation sequence: delete—min"

-~ Fibonacci heap -

-~ pairing heap e

binary heap
run—relaxed weak queue
weak queue "

weak e

n [logarithmic scale]

o
12' Technologie-Zentrum Informatik

LEDA vs. CPH STL

vV VvV Vv Vv V9

4
4

CPH STL bin heap 353.334.592 cmps 34.45s
CPH STL weak heap 194.758.826 cmps 34.45s
CPH STL weak queue 272.386.118 cmps 29.70s
CPH STL run relaxed 324.826.547 cmps 35.98s
CPH STL rank relaxed 321.256.461 cmps 33.69s

LEDA pairing heap 276.780.966 cmps 36.72s
LEDA Fibonacci heap 566.343.539 cmps 47.03s

(Hot: CPH STL Fibonacci heaps 258.767.545 cmps 30.875s)

l@’ Universitat Bremen

o
12' Technologie-Zentrum Informatik

Lessons Learnt (1)

1) Read the masters: the original implementation of a binomial
gueue of Vuillemin, in essence a weak queue, turned out to
be one of the best performers.

2) PQs that guarantee good performance in the worst-case
setting have difficulties in competing against solutions that
guarantee good performance in the amortized setting.

3) Memory management is expensive: in our early code many
unnecessary memory allocations were performed.

l@’ Universitat Bremen

[
1Zl Technologie-Zentrum Informatik

Lessons Learnt (2)

4) For most practical values of n, the difference between Ig n and
O(1) is small; e.g. for heaps, the loop sifting up an element is
extremely tight.

5) For random data, the typical running time of insert, decrease,
and delete is O(1) for binary heaps, weak heaps, and weak
gueues.

6) Generic component frameworks help algorithm engineers to
carry out unbiased experiments

e
@ Universitat Bremen

o
12' Technologie-Zentrum Informatik

Thanks

lLl._U’ Universitat Bremen

	„Policy-Based Benchmarking of Weak Heaps and Their Relatives“
	�Priority-Queue �Operations �
	Market �Analysis
	Looking at Constants… �� ��Further Engineering  Policy-Based Benchmarking…��
	Generic Component Frameworks in the CPH STL
	(Perfect) Weak-Heaps
	Single-Heap Framework
	Joining/Merging and Splitting
	Heap Store
	Insert�(node p)
	Multiple-Heap Framework
	Node Store
	 Transformations
	Decrease�(at node p)
	Delete�(node p)
	Relaxed-Heap Framework
	Insert (in sorted order)
	Results: Decrease (to top-1)
	Results: Delete (random position)
	Results: Delete-Min (in random heap)
	LEDA vs. CPH STL (Dijkstra‘s SSSP)
	Lessons Learnt (1)
	Lessons Learnt (2)
	Thanks

