

"Policy-Based Benchmarking of Weak Heaps and Their Relatives"

Asger Bruun*, **Stefan Edelkamp**, Jyrki Katajainen*, Jens Rasmussen* *University of Copenhagen

TZI Technologie-Zentrum Informatik

Priority-Queue Operations

Market Analysis

efficiency method	binary heap worst case	binomial queue worst case	Fibonacci heap amortized	run-relaxed heap worst case
find-min	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
insert	$\Theta(\lg n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
decrease	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(1)$	$\Theta(1)$
delete	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$

Looking at Constants...

Framework	Structure	delete	insert	decrease
single heap	weak heap	$\lceil \lg n \rceil$	$\lfloor \lg n \rfloor + 1$	$\lceil \lg n \rceil$
multiple heap	weak queue	$2 \lg n + O(1)$	2	$\lfloor \lg n \rfloor$
relaxed heap	run-relaxed weak queue	$3 \lg n + O(1)$	2	4

Further Engineering → Policy-Based Benchmarking...

Methodology

 (Policy-Based Benchmarking)

 Results Highlights

 (LEDA vs. CPH-STL)
 Lessons Learnt

Generic Component Frameworks in the CPH STL

- C++ template design: useful to carry out unbiased experiments & (micro-)benchmarking
- ➔ interfaces are decoupled from their implementations
- Clear division of labour:
- Containers de/allocate nodes
- Realizators extract nodes and work on them
- (Unidirectional) Iterators traverse through the elements and are used as handles to elements

(Perfect) Weak-Heaps

A (perfect) Weak Heap is a binary tree where:

- the root has no left subtree
- the right subtree of the root is a balanced (complete) binary tree
- each element is smaller than the element on its left "spine"

Observation: 1-to-1 mapping between nodes in heap-ordered binomial trees and perfect weak heaps

Single-Heap Framework

Resizable Array: For iterators validity, store elements indirectly & maintain pointers between array and elements (does not destroy worst-case complexity!)

- Heap Structure: different heapifier policies allow switching between weak heaps and different implementations of binary heaps
 - (e.g., alternative bottom-up sift-down strategy)

Joining/Merging and Splitting

Joining and splitting two perfect weak heaps of the same size:

Note that for a binary heap a join may take logarithmic time.

Heap Store

A heap store is a sequence of perfect weak heaps

Joins are delayed using redundant number representation

Insert (node p)

- Place the new node, which is also a perfect weak heap of height 0, into the heap store by invoking *inject*.
- Correct the minimum pointer to point to the new node if e is smaller than the current minimum.

Worst-case time: $\Theta(1)$ with at most 2 element comparisons

Multiple-Heap Framework

- Node: 2 pointers per node are sufficient to cover the parentchild relationships, but this space optimization costs execution time
- Heap Store: list of proxies was slower than maintaining the roots in a linked list by reusing the pointers at the nodes, where the heights of the heaps are maintained in a bit vector

Node Store

maintains heap-order
violating marked
nodes efficiently
➔ worst case for

mark, unmark, and reduce is O(1)

one arbitrary marked node.

- → Run (reduces 1 marking, max. 3 comps)
- Singleton (reduces 1 marking, max. 3 comps)

Decrease (at node p)

- 1. Make the element replacement at p.
- 2. Make p a potential violation node by invoking mark.
- 3. Reduce the number of potential violation nodes, if possible, by invoking *reduce*.
- 4. Correct the minimum pointer if necessary.

Worst-case time: $\Theta(1)$ with at most 4 element comparisons

Delete (node p)

Worst-case time: $\Theta(\lg n)$ with at most $3 \lg n + O(1)$ element comparisons

Relaxed-Heap Framework

- Node Store: doubly-linked lists of leaders, and singletons at each height too slow →
- Engineering: array of bit vectors, each occupying a single word, indicating which of the marked nodes are singletons (access via most significant bit)
- Rank Relaxation: apply transformations eagerly
 - ➔ 2 bitvectors

Insert (in sorted order)

Results: Decrease (to top-1)

Results: Delete (random position)

Results: Delete-Min (in random heap)

LEDA vs. CPH STL (Dijkstra's SSSP)

- CPH STL bin heap 353.334.592 cmps 34.45s
- CPH STL weak heap **194.758.826** cmps 34.45s
- CPH STL weak queue 272.386.118 cmps 29.70s
- CPH STL run relaxed 324.826.547 cmps 35.98s
- CPH STL rank relaxed 321.256.461 cmps 33.69s
- LEDA pairing heap 276.780.966 cmps 36.72s
- LEDA Fibonacci heap 566.343.539 cmps 47.03s

(Hot: CPH STL Fibonacci heaps 258.767.545 cmps 30.87s)

Lessons Learnt (1)

- 1) Read the masters: the original implementation of a binomial queue of Vuillemin, in essence a weak queue, turned out to be one of the best performers.
- 2) PQs that guarantee good performance in the worst-case setting have difficulties in competing against solutions that guarantee good performance in the amortized setting.
- 3) Memory management is expensive: in our early code many unnecessary memory allocations were performed.

Lessons Learnt (2)

- 4) For most practical values of n, the difference between Ig n and O(1) is small; e.g. for heaps, the loop sifting up an element is extremely tight.
- 5) For random data, the typical running time of insert, decrease, and delete is O(1) for binary heaps, weak heaps, and weak queues.
- 6) Generic component frameworks help algorithm engineers to carry out unbiased experiments

Thanks

