
„Policy-Based Benchmarking of
Weak Heaps and Their Relatives“

Asger Bruun*, Stefan Edelkamp, Jyrki Katajainen*,
Jens Rasmussen*
*University of Copenhagen

Priority-Queue
Operations

Market
Analysis

Looking at Constants…

Further Engineering  Policy-Based Benchmarking…

 Methodology
(Policy-Based Benchmarking)

Results Highlights
(LEDA vs. CPH-STL)

Lessons Learnt

Generic Component Frameworks in
the CPH STL
C++ template design: useful to carry out unbiased

experiments & (micro-)benchmarking
 interfaces are decoupled from their implementations
Clear division of labour:
 Containers de/allocate nodes
 Realizators extract nodes and work on them
(Unidirectional) Iterators traverse through the elements and

are used as handles to elements

(Perfect) Weak-Heaps

A (perfect) Weak Heap is a binary tree where:
 the root has no left subtree
 the right subtree of the root is a balanced (complete)

binary tree
 each element is smaller than the element on its left „spine“

Observation: 1-to-1 mapping between nodes in
heap-ordered binomial trees and perfect weak heaps

Single-Heap Framework

Resizable Array: For iterators validity, store elements
indirectly & maintain pointers between array and elements
(does not destroy worst-case complexity!)

Heap Structure: different heapifier policies allow switching
between weak heaps and different implementations of
binary heaps
(e.g., alternative bottom-up sift-down strategy)

Joining/Merging and Splitting

Heap Store

A heap store is a
sequence of perfect
weak heaps

Joins are delayed
using redundant
number representation

Insert
(node p) 1.

2.

Multiple-Heap Framework

Node: 2 pointers per node are sufficient to cover the parent-
child relationships, but this space optimization costs
execution time

Heap Store: list of proxies was slower than maintaining the
roots in a linked list by reusing the pointers at the nodes,
where the heights of the heaps are maintained in a bit
vector

Node Store
maintains heap-order
violating marked
nodes efficiently
 worst case for

mark, unmark, and
reduce is O(1)

Transformations
 Cleaning:

 Parent:

 Sibling:

Pair:

 Run (reduces 1 marking, max. 3 comps)
 Singleton (reduces 1 marking, max. 3 comps)

Decrease
(at node p)

Delete
(node p)

Relaxed-Heap Framework
Node Store: doubly-linked lists of leaders, and singletons at

each height too slow 
Engineering: array of bit vectors, each occupying a single

word, indicating which of the marked nodes are singletons
(access via most significant bit)

Rank Relaxation: apply transformations eagerly
 2 bitvectors

Insert (in sorted order)

Results: Decrease (to top-1)

Results: Delete (random position)

Results: Delete-Min (in random heap)

LEDA vs. CPH STL (Dijkstra‘s SSSP)
 CPH STL bin heap 353.334.592 cmps 34.45s
 CPH STL weak heap 194.758.826 cmps 34.45s
 CPH STL weak queue 272.386.118 cmps 29.70s
 CPH STL run relaxed 324.826.547 cmps 35.98s
 CPH STL rank relaxed 321.256.461 cmps 33.69s

 LEDA pairing heap 276.780.966 cmps 36.72s
 LEDA Fibonacci heap 566.343.539 cmps 47.03s

(Hot: CPH STL Fibonacci heaps 258.767.545 cmps 30.87s)

Lessons Learnt (1)

1) Read the masters: the original implementation of a binomial
queue of Vuillemin, in essence a weak queue, turned out to
be one of the best performers.

2) PQs that guarantee good performance in the worst-case
setting have difficulties in competing against solutions that
guarantee good performance in the amortized setting.

3) Memory management is expensive: in our early code many
unnecessary memory allocations were performed.

Lessons Learnt (2)

4) For most practical values of n, the difference between lg n and
O(1) is small; e.g. for heaps, the loop sifting up an element is
extremely tight.

5) For random data, the typical running time of insert, decrease,
and delete is O(1) for binary heaps, weak heaps, and weak
queues.

6) Generic component frameworks help algorithm engineers to
carry out unbiased experiments

Thanks

	„Policy-Based Benchmarking of Weak Heaps and Their Relatives“
	�Priority-Queue �Operations �
	Market �Analysis
	Looking at Constants… �� ��Further Engineering  Policy-Based Benchmarking…��
	Generic Component Frameworks in the CPH STL
	(Perfect) Weak-Heaps
	Single-Heap Framework
	Joining/Merging and Splitting
	Heap Store
	Insert�(node p)
	Multiple-Heap Framework
	Node Store
	 Transformations
	Decrease�(at node p)
	Delete�(node p)
	Relaxed-Heap Framework
	Insert (in sorted order)
	Results: Decrease (to top-1)
	Results: Delete (random position)
	Results: Delete-Min (in random heap)
	LEDA vs. CPH STL (Dijkstra‘s SSSP)
	Lessons Learnt (1)
	Lessons Learnt (2)
	Thanks

