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1. Introduction 

The suspension system provides control towards the vehicle itself for having good road 
handling and ride comfort in the case of facing external disturbances and road irregularities 
while driving. Nowadays, the most local automotive industry mostly implies conventional 
suspension system’s design that usually has an issue with load carrying, passenger comfort, and 
road handling [1]. There are three main types of suspension that have been used/studied in-
vehicle systems, passive, semi-active and active suspension. The current automobile suspension 
system implies passive components, also known as a conventional suspension system that 
provides a non-controllable spring and damping coefficients with a fixed parameter. However, 
the trade-off between ride comfort, handling quality, and load varying is difficult to achieve 
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 This paper delivers findings on optimal robust control studies of 
nonlinear full car models. A nonlinear active suspension full car model 
is used, which considers the dynamic of a hydraulic actuator. The 
investigation on the benefit of using Sliding Mode Control (SMC) 
structure for the effective trade-off between road handling. The design 
of SMC in the chassis/internal subsystem is enhanced by modifying a 
sliding surface based on Proportional-Integral-Derivatives (PID) with 
the utilization of particle swarm optimization (PSO) algorithm in 
obtaining the best optimum value of control parameters. The switching 
control is designed through the Lyapunov function, which includes the 
boundedness of uncertainties in sprung masses that can guarantee the 
stability of the control design. The responses of the proposed controller 
have improved the disturbance rejection up to 60% as compared to the 
conventional SMC controller design and shown the high robustness to 
resist the effect of varying the parameter with minimal output 
deviations. The study proved that the proposed SMC scheme offers an 
overall effective performance in full car active suspension control to 
perform a better ride comfort as well as the road handling ability while 
maintaining a restriction of suspension travel. An intensive computer 
simulation (MATLAB Simulink) has been carried out to evaluate the 
effectiveness of the proposed control algorithm under various road 
surface conditions. 
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since the parameters are fixed. The difference for semi-active suspension systems is the 
coefficient of dampers can be controlled [2]. In contrast to passive and semi-active, an active 
suspension system is able to enhance energy externally by the use of a force actuator to provide 
a closed-loop response for the system rather than dissipating the energy by the use of springs 
in passive. Many researchers nowadays are interested in developed suspension with active 
control automobile systems. Previous works of automobile systems focusing on the linear 
model of active suspension are adopted to propose various control strategies for different 
components to be controlled [1][2][3][4][5][6][7]. The proposed controller in the mentioned 
references has greatly improved the suspension performance; however, the dynamical effect of 
the system’s behavior is being ignored. In fact, it is well known that the actuator behaves far 
from ideal in real life. In this work, the hydraulic actuator for the active suspension system 
model is chosen where the real implementation with its dynamic could easily be controlled to 
track the desired force with adequate techniques as reported in [8],[9],[10],[11],[12], and [13].  

Most of the suspension control studies previously mainly focused on the quarter car model 
and half car model of the vehicle. These models were chosen due to the simplicity of the 
development of the mathematical modeling to represent the original system in an approximate 
and simplified manner [14][15][16]. The major concern is how it behaves like a real system 
since the full system of the vehicle or full car model is neglected. Therefore, the full car model is 
adopted as vehicle modeling in this work because it acted more realistic with the real car 
suspension system. The adopted model behaves similar to the real car model since it included 
all four actuator forces that exhibit three rotations in which heave, roll, pitch motions which are 
essential for the analysis of system performances whenever having a disturbance due to the 
roughness of the road surfaces. Moreover, most of the linear vehicle models in previous studies 
completely ignored the dynamical effect of system behavior in a specific condition. However, it 
is well known that the system dedicated with actuator behaves as highly nonlinear 
characteristics due to non-negligible dynamic and nonlinear components. This motivates the 
work to propose a robust controller design for an active suspension on a non-linear suspension 
system with an actuator dynamic included. The pairing of the nonlinear suspension system 
under the subjection of external disturbances causes the system dynamics to be considerably 
more complex. Thus, the controller design for a nonlinear system in this research work intends 
to design a control approach with a good tracking performance that is robust and insensitive to 
the parameter uncertainties and external disturbance. Based on intensive analysis of literature 
review, the Sliding Mode (SMC) is recognized as a nonlinear robust control method that 
possesses the dynamics of the system with an invariance property to uncertainties and external 
disturbance rejection once the system dynamics are controlled in the sliding mode by an 
appropriate design of switching function. 

For a complex, full-scale model, the controller is designed for each of a separated subsystem 
which is the chassis and the other four sub-suspension pairing with the hydraulic actuator 
(actuation modules). The standard sliding surfaces offer limited flexibility on the constant gains 
as the error variables that will lead to the lower tracking accuracy and disturbance rejection 
ability. Thus, the proposed SMC controller in the chassis is designed with PID sliding surfaces 
that are able to directly adjust the proportional, integral, and derivative coefficients until the 
satisfied sliding condition can be achieved. The PID control algorithm is employed due to its 
simple feasibility and independent tuning parameters as a constant coefficient that is added into 
the sliding surfaces to improve the ability to resist the impact of external disturbances so that 
the system can generate the desired tracking force which able to attenuate the effect of vertical 
body motions and perform the better transient responses of the dynamic performances and 
steady-state accuracy as compared to the standard one. As the major nonlinearities of the model 
system come from the dynamic of the hydraulic actuator, the simple, robust SMC controller is 
designed for each of the actuation modules where it is divided into the separate tracking 
performance of the actuator force and the spool displacement. The developed control structures 
are designed to tackle the nonlinearity properties and track the desired variables according to 
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its requirement. In addition, a robust control strategy with appropriate intelligent parameters 
tuning using particle swarm optimization (PSO) algorithm is utilized to obtain the optimal 
control performances of the controller design that is able to effectively overcome the occurrence 
of uncertainties and varying parameters in the system. 

2. Methods 

 System Modelling 

The inclusion of both pitch and roll motions in the suspension model serves what is known 
as a full car model. The study of ride comfort and vehicle handling much more depends on the 
combined effects of bounce, pitch, and roll for the development of a controller aimed towards 
the improvement of the system. Yet, the full active suspension model with seven degrees of 
freedom (7 D.O.F) that is utilized in this work inclusive of 3 DOF of vehicle body motions which 
are heave, pitch, and roll motions, and other 4 DOF of vertical direction motions, which are the 
front-right wheel, front-left wheel, rear-right wheel, and rear-left wheel motions. For simplicity, 
the assumptions for the simplified full car model are considered as in the presented works 
[2][17][18], 

i. Both suspension spring stiffness and damper behave as linear. 

ii. The tire is modeled by linear spring while having no damping effect (neglected), and 
the tire is always in contact with road surfaces.  

iii. The vehicle is a rigid body and has no rotational motion in the body and tire. 

The simplified model of full-vehicle suspension system with 7 D.O.F is represented in Fig. 
1(a), as used in [19], [15], [20],  [21], [22]. The system consists of a single sprung mass (vehicle 
body) denoted as Zb, connected to four unsprung masses denoted as Zui, which refer to wheel 
assembly were connected to the wheel at each corner. Spring force and damping force are 
denoted as Fsi and 𝐹𝑑𝑖, respectively. Briefly, all the notations with 𝑖 = 1,2,3,4 correspond to 
front-right (fr), front-left (fl), rear-right (𝑟𝑟), and rear-left (𝑟𝑙), respectively. The sprung 
mass/chassis subsystem consists of 3 D.O.F motions, including heave (Zb), pitch (𝜃𝑏) and roll 
(𝜑𝑏). The active force, 𝑓𝑠𝑖 is exerted by a hydraulic actuator located in between sprung and 
unsprung masses. In addition, the road input denoted as Zr has been subjected to each corner of 
the wheel.  

 

(a) 

 

(b) 

Fig. 1. Nonlinear active full car suspension system [22][23] 

As the linear representation of system dynamics is insufficient and not always valid, a 
nonlinear model of the full car active suspension system adapted from [24][23] is utilized for 
the evaluation of the proposed controller design throughout this work. For the convenience of 

d c 

𝑓𝑠𝑖
 

𝑢𝑖 

𝑍𝑣𝑖  𝑖 = 1,2,3,4 
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control, the model can be divided into two parts which are one on the internal chassis subsystem 
of 3 D.O.F motion of vehicle body and the other one is on the four sub-suspension systems that 
include the dynamic of hydraulic actuators, as depicted in Fig. 1(a).  

The dynamic of 7 D.O.F of an active full car suspension can be derived by applying newton's 
second law of motion. Before that, let us define the suspension travel that is known as the 
expression as a function of the state components of physical relations within the chassis and its 
every four corners, 

∆𝑍𝑖 = 𝑍𝑖 − 𝑍𝑢𝑖           ;             (𝑖 = 1,2,3,4)                              (1) 

where, 

𝑍1 = 𝑍𝑏 + 𝑎𝑠𝑖𝑛(𝜃𝑏) − 𝑐𝑠𝑖𝑛(𝜑𝑏)                 (2) 

𝑍2 = 𝑍𝑏 + 𝑎𝑠𝑖𝑛(𝜃𝑏) + 𝑑𝑠𝑖𝑛(𝜑𝑏)                 (3) 

𝑍3 = 𝑍𝑏 − 𝑏𝑠𝑖𝑛(𝜃𝑏) − 𝑐𝑠𝑖𝑛(𝜑𝑏)                   (4) 

𝑍4 = 𝑍𝑏 − 𝑏𝑠𝑖𝑛(𝜃𝑏) + 𝑑𝑠𝑖𝑛(𝜑𝑏)                         (5) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are the distances of each suspension to the chassis subsystem.  

The governing equations of motion for full car active suspension system after derivation 
from Newton’s second law are obtained as follows, 

Chassis (vehicle body) system: 

𝑚𝑏𝑍
••

𝑏 = −𝑘𝑠1(𝑍1 − 𝑍𝑢1) − 𝑐𝑠1
(𝑍

•

1 − 𝑍
•

u1
) − 𝑘s2(𝑍2 − 𝑍u2) − 

     (6)                  −𝑐s2
(𝑍

•

2 − 𝑍
•

u2
) − 𝑘s3(𝑍3 − 𝑍𝑢3) − 𝑐s3

(𝑍
•

3 − 𝑍
•

u3
)−.. 

                 −𝑘𝑠4(𝑍4 − 𝑍u4) − 𝑐𝑠4
(𝑍

•

4 − 𝑍
•

u4
) + 𝐹𝑏 

𝐼𝑦𝜃
••

𝑏 = 𝑎𝑘𝑠1(𝑍1 − 𝑍𝑢1) + 𝑎𝑐𝑠1
(𝑍

•

1 − 𝑍
•

u1
) + 𝑎𝑘s2(𝑍2 − 𝑍u2)+.. 

(7)              +𝑎𝑐s2
(𝑍

•

2 − 𝑍
•

u2
) − 𝑏𝑘s3(𝑍3 − 𝑍𝑢3) − 𝑏𝑐s3

(𝑍
•

3 − 𝑍
•

u3
)−.. 

           −𝑏𝑘𝑠4(𝑍4 − 𝑍u4) − 𝑏𝑐𝑠4
(𝑍

•

4 − 𝑍
•

u4
) + 𝐹𝜃𝑏 

𝐼𝑥𝜑
••

𝑏 = 𝑑𝑘𝑠1(𝑍1 − 𝑍𝑢1) + 𝑑𝑐𝑠1
(𝑍

•

1 − 𝑍
•

u1
) − 𝑐𝑘s2(𝑍2 − 𝑍u2)−.. 

     
(8) 

             −𝑐𝑐s2
(𝑍

•

2 − 𝑍
•

u2
) + 𝑑𝑘s3(𝑍3 − 𝑍𝑢3) + 𝑑𝑐s3

(𝑍
•

3 − 𝑍
•

u3
)−.. 

             −𝑐𝑘𝑠4(𝑍4 − 𝑍u4) − 𝑐𝑐𝑠4
(𝑍

•

4 − 𝑍
•

u4
) + 𝐹𝜑𝑏 

Four sub-suspension systems: 

𝑚𝑢1
𝑍
••

1 = 𝑘𝑠1(𝑍1 − 𝑍𝑢1) + 𝑐𝑠1
(𝑍

•

1 − 𝑍
•

u1
) − 𝑘t1(𝑍u1

− 𝑍𝑟1) − 𝑓𝑠1                            (9) 

 𝑚𝑢2
𝑍
••

2 = 𝑘s2(𝑍2 − 𝑍u2) + 𝑐s2
(𝑍

•

2 − 𝑍
•

u2
) − 𝑘t2(𝑍u2

− 𝑍𝑟2) − 𝑓𝑠2
                            (10) 

𝑚𝑢3
𝑍
••

3 = 𝑘s3(𝑍3 − 𝑍u3) + 𝑐s3
(𝑍

•

3 − 𝑍
•

u3
) − 𝑘t3(𝑍u3

− 𝑍𝑟3) − 𝑓𝑠3
                                                      (11) 

𝑚𝑢4
𝑍
••

4 = 𝑘𝑠4(𝑍4 − 𝑍u4) + 𝑐𝑠4
(𝑍

•

4 − 𝑍
•

u4
) − 𝑘t4(𝑍u4

− 𝑍𝑟4) − 𝑓𝑠4
            (12) 

where 𝑘𝑠𝑖
 and 𝑐𝑠𝑖

 are stand for spring stiffness and damping coefficient, respectively for each of 

the corresponding suspension, 𝑘t𝑖
 is a tire stiffness, 𝑚𝑏 and 𝑚𝑢𝑖

 are denoted for sprung and 
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unsprung masses, respectively, 𝐼𝑥 and 𝐼𝑦 are respectively roll and pitch moment of inertia of 

sprung mass. The relationship for actuation force exerted by, respectively, heave, pitch and roll 
motions satisfies that 

𝐹𝑏 = 𝑓𝑠1 + 𝑓𝑠2
+ 𝑓𝑠3

+ 𝑓𝑠4
                   (13) 

𝐹𝜃𝑏 = 𝑎(𝑓𝑠1 + 𝑓𝑠2) − 𝑏(𝑓𝑠3
+ 𝑓𝑠4

)                      (14) 

𝐹𝜑𝑏 = 𝑑(𝑓𝑠1 + 𝑓𝑠3) − 𝑐(𝑓𝑠2
+ 𝑓𝑠4

)                              (15) 

The dynamics of the hydraulic actuator, as referred to Fig. 1(b), are taken into account for a 
full-scale nonlinear model of a car suspension, by which the force is produced by the 
multiplication of the load pressure drops across the piston with the cross-sectional area of the 
piston itself, which in the mathematical equation the force is given by, 

𝑓𝑠𝑖
= Area of piston (𝐴) × Load pressure (𝑃𝐿)                                   (16) 

Fig. 1(b) clearly showed the piston of the actuator is controlled by means of the 
voltage/current input to the electro-hydraulic servo valves in a three-lane four-way critical 
spool valve system [25][26]. The hydraulic actuator force is produced through the high-
pressure differences that occur in the piston due to the movement of a spool valve (𝑃𝐿) 
multiplied with the cross-sectional area (A) of piston itself. The governing equations for the 
electro-hydraulic actuator can be structured into a simple form as modeled in [8][25][27][26], 
where the derivatives of the load pressure are given by 

 𝑃𝐿

•
 =  𝛼𝑄𝐿 − 𝛽𝑃𝐿 − 𝛼𝐴(𝑥

•

1 − 𝑥
•

2)  (17) 

By upon substitution of 𝛼, 𝛽, 𝛾, which expressed as, 

𝛼 =
4𝛽𝑒

𝑉𝑡
; 𝛽 = 𝛼𝐶𝑡𝑚 ; 𝛾 =  𝛼 𝐶𝑑𝑤√

1

𝜌
  

where 𝑉𝑡 is the total volume of the actuator,  𝛽𝑒 is the effective bulb modulus, 𝐶𝑡𝑚 is the total 
leakage coefficient of a piston, 𝐶𝑑 is the discharge coefficient, w is the spool valve area gradient, 
𝑥𝑣 is the servo-valve displacement, and 𝜌 is the hydraulic fluid density. In the meantime, the 
resulting hydraulic flow rate, 𝑄𝐿 can be written as, 

 𝑄𝐿 = 𝛾𝑥𝑣 √𝑃𝑠 − 𝑠𝑔𝑛(𝑥𝑣)𝑃𝐿 (18) 

Then, assumed that servo valve that controls a motion of spool valve, 𝑥𝑣 as approximately a 
first-order linear system with a time constant, 𝜏 [9], as described in (5), 

 
𝑥𝑣

•
=

1

𝜏
(𝑢 − 𝑥𝑣) (19) 

In addition, 𝑥 ∈ ℜ22 is a state vector defined as in Table A in the Appendix. 

 Proposed Method 

The design of active suspension control using the SMC approach is allocated for two 
fundamental parts in the system by which the chassis and the other four sub-suspension 
systems (actuation modules) as described in Fig. 2. The 3-DOF state variables in the chassis are 
first to be observed during a maneuver of the vehicle under the subjection of road input 
disturbances in order to minimize the undesired effect of heave, pitch, and roll motion on the 
passengers due to road irregularities. The proposed SMC is designed by defining a PID control 
algorithm as sliding surfaces on the dynamic of second-order chassis subsystem, and the 
enhanced control law of SMC is obtained based on the equivalent control law approach and the 
design of switching control through a Lyapunov stability function as to tackle the system’s 
uncertainties. The second SMC design has two controllers that are formulated for each of the 



506 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 1, No. 4, 2021, pp. 501-522 

 

 

Erliana Samsuria (Enhanced Sliding Mode Control for Nonlinear Active Suspension Full Car Model) 

 

actuation modules, where it is divided into the separate tracking performance of the actuator 
force and the spool displacement. First, to provide the keen tracking of desired actuator forces 
by controlling the spool valve towards its desired position. Next, the needed spool valve position 
is further used to design four local control inputs from the hydraulic actuator to be fed to the 
system. Both controllers have employed first-order SMC control laws. 

 

Fig. 2. The proposed method 

 The Proposed PID-SMC Design in the Chassis Part 

The chassis subsystem can be described by following six equations obtained from 
mathematical modeling of the system, consider the separate function of the variables as follows, 
(notation fr, fl, rr, rl used in the equations are stands for front-right, front-left, rear-right, and 
rear-left respectively), 

𝑥
•

𝑖 = 𝑓𝑖 + 𝑔𝑖𝑢𝑖 (20) 

With, 

𝑓18 = {𝑘𝑠𝑓𝑟
𝑥1 + 𝑘𝑠𝑓𝑙

𝑥5 + 𝑘𝑠𝑟𝑟
𝑥9 + 𝑘𝑠𝑟𝑙

𝑥13 − (𝑘𝑠𝑓𝑟
+ 𝑘𝑠𝑓𝑙

+ 𝑘𝑠𝑟𝑟
+ 𝑘𝑠𝑟𝑙

) 𝑥17−.. 

(21) 

       − [𝑎 (𝑘𝑠𝑓𝑟
+ 𝑘𝑠𝑓𝑙

) − 𝑏(𝑘𝑠𝑟𝑟
+ 𝑘𝑠𝑟𝑙

)] 𝑠𝑖𝑛(𝑥19) − [𝑑 (𝑘𝑠𝑓𝑙
+ 𝑘𝑠𝑟𝑙

)−.. 

       − 𝑐 (𝑘𝑠𝑓𝑟
+ 𝑘𝑠𝑟𝑟

)] 𝑠𝑖𝑛(𝑥21) + 𝑐𝑠𝑓𝑟
𝑥2 + 𝑐𝑠𝑓𝑙

𝑥6 + 𝑐𝑠𝑟𝑟
𝑥10 + 𝑐𝑠𝑟𝑙

𝑥14 −.. 

       − (𝑐𝑠𝑓𝑟
+ 𝑐𝑠𝑓𝑙

+ 𝑐𝑠𝑟𝑟
+ 𝑐𝑠𝑟𝑙

) 𝑥18 − [𝑎 (𝑐𝑠𝑓𝑟
+  𝑐𝑠𝑓𝑙

) − 𝑏(𝑐𝑠𝑟𝑟
+ 𝑐𝑠𝑟𝑙

)] ×.. 

       × 𝑐𝑜𝑠(𝑥19)𝑥20 − [𝑑(𝑐𝑠𝑓𝑙
+ 𝑐𝑠𝑟𝑙

) − 𝑐(𝑐𝑠𝑓𝑟
+ 𝑐𝑠𝑟𝑟

)]𝑐𝑜𝑠(𝑥21)𝑥22} /𝑀 

𝑔18 =
1

𝑀
 (22) 

𝑓20 = cos(𝑥19) × { 𝑎𝑘𝑠𝑓𝑟
𝑥1 + 𝑎𝑘𝑠𝑓𝑙

𝑥5 − 𝑏𝑘𝑠𝑟𝑟
𝑥9 − 𝑏𝑘𝑠𝑟𝑙

𝑥13 −[𝑎 (𝑘𝑠𝑓𝑟
+. . . 

(23) 
        + 𝑘𝑠𝑓𝑙

) − 𝑏(𝑘𝑠𝑟𝑟
+  𝑘𝑠𝑟𝑙

)] 𝑥17 − [𝑎2 (𝑘𝑠𝑓𝑟
+ 𝑘𝑠𝑓𝑙

) − 𝑏2(𝑘𝑠𝑟𝑟
+ 𝑘𝑠𝑟𝑙

)] ×. .. 

ACTUATION MODULES 

𝒙𝟑𝒅, 𝒙𝟕𝒅, 𝒙𝟏𝟏𝒅, 𝒙𝟏𝟓𝒅 

− 

+ 
− 

+ 𝒛, 𝜽, ∅ 

− 

+ 

𝑬 

𝒓(𝒕) = 𝟎 

𝒙𝟒𝒅, 𝒙𝟖𝒅, 𝒙𝟏𝟐𝒅, 𝒙𝟏𝟔𝒅 

𝒖𝒊 

Chassis           

(PID-SMC) 

Full Car Model 

Active Suspension 

System 

Road            

Disturbances 
Spool Valve 

position 

(SMC) 

Servo valve 

control input 

(SMC) 
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         ×  sin(𝑥19) − [𝑑 (𝑎𝑘𝑠𝑓𝑙
− 𝑏𝑘𝑠𝑟𝑙

) −  𝑐 (𝑎𝑘𝑠𝑓𝑟
− 𝑏𝑘𝑠𝑟𝑟

)]  sin(𝑥21) + ⋯ 

        + 𝑎𝑐𝑠𝑓𝑟
𝑥2 + 𝑎𝑐𝑠𝑓𝑙

𝑥6 − 𝑏𝑐𝑠𝑟𝑟
𝑥10 − 𝑏𝑐𝑠𝑟𝑙

𝑥14 − [𝑎 (𝑐𝑠𝑓𝑟
+ 𝑐𝑠𝑓𝑙

) − ⋯ 

      − 𝑏(𝑐𝑠𝑟𝑟
+ 𝑐𝑠𝑟𝑙

)]𝑥18 − [𝑎2 (𝑘𝑠𝑓𝑟
+ 𝑘𝑠𝑓𝑙

) − 𝑏2(𝑘𝑠𝑟𝑟
+ 𝑘𝑠𝑟𝑙

)]  cos(𝑥19)𝑥20 − ⋯ 

      − [𝑑(𝑎𝑐𝑠𝑓𝑙
− 𝑏𝑐𝑠𝑟𝑙

) − 𝑐(𝑎𝑐𝑠𝑓𝑟
− 𝑏𝑐𝑠𝑟𝑟

)] cos(𝑥21)𝑥22} /𝐼𝑦𝑦 

𝑔20 =
1

𝑀
 (24) 

𝑓22 = cos(𝑥21) × {− 𝑐𝑘𝑠𝑓𝑟
𝑥1 + 𝑑𝑘𝑠𝑓𝑙

𝑥5 − 𝑐𝑘𝑠𝑟𝑟
𝑥9 + 𝑑𝑘𝑠𝑟𝑙

𝑥13 −[𝑑 (𝑘𝑠𝑓𝑙
+. .. 

(25) 

      +𝑘𝑠𝑟𝑙
)] − 𝑐(𝑘𝑠𝑓𝑟

+ 𝑘𝑠𝑟𝑟
)]𝑥17 − [𝑑 (𝑎𝑘𝑠𝑓𝑙

− 𝑏𝑘𝑠𝑟𝑙
) − 𝑐 (𝑎𝑘𝑠𝑓𝑟

− 𝑏𝑘𝑠𝑟𝑟
)] ×. .. 

      × sin(𝑥19) − [𝑑2 (𝑘𝑠𝑓𝑙
+ 𝑘𝑠𝑟𝑙

) − 𝑐2 (𝑘𝑠𝑓𝑟
+ 𝑘𝑠𝑟𝑟

)] sin(𝑥21) − ⋯ 

      − 𝑐𝑐𝑠𝑓𝑟
𝑥2 + 𝑑𝑐𝑠𝑓𝑙

𝑥6 − 𝑐𝑐𝑠𝑟𝑟
𝑥10 + 𝑑𝑐𝑠𝑟𝑙

𝑥14 − [𝑑 (𝑐𝑠𝑓𝑙
+ 𝑐𝑠𝑟𝑙

)−. . . 

      −𝑐 (𝑐𝑠𝑓𝑟
+ 𝑐𝑠𝑟𝑟

)] 𝑥18 − [𝑑 (𝑎𝑐𝑠𝑓𝑙
− 𝑏𝑐𝑠𝑟𝑙

) − 𝑐 (𝑎𝑐𝑠𝑓𝑟
− 𝑏𝑐𝑠𝑟𝑟

)]  cos(𝑥19)𝑥20 

      − [𝑑2 (𝑐𝑠𝑓𝑙
+ 𝑐𝑠𝑟𝑙

) − 𝑐2 (𝑐𝑠𝑓𝑟
+ 𝑐𝑠𝑟𝑟

)] cos(𝑥21)𝑥22} /𝐼𝑥𝑥 

 𝑔22 =
1

𝑀
 (26) 

In order to ensure a preferable control effort for each heave 𝑢𝑧, pitch 𝑢𝜃, and roll 𝑢𝜑 for a 

full car model, the controller is designed with defining the error between the actual and desired 
trajectory as follows, 

𝐸 = [

𝑒𝑧

𝑒𝜃

𝑒𝜑

] = [

𝑥17 − 𝑥17𝑑

𝑥19 − 𝑥19𝑑

𝑥21 − 𝑥21𝑑

] (27) 

where the desired trajectory for a chassis part of the system is denoted as 𝑥17𝑑, 𝑥19𝑑, and 𝑥21𝑑 . 
The time derivatives of the error in (27) is 

𝐸
•

= [

𝑒
•

𝑧

𝑒
•

𝜃

𝑒
•

𝜑

] = [

𝑥
•

17 − 𝑥
•

17𝑑 

𝑥
•

19 − 𝑥
•

19𝑑

𝑥
•

21 − 𝑥
•

21𝑑

] = [

𝑥18 − 𝑥18𝑑

𝑥20 − 𝑥20𝑑

𝑥22 − 𝑥22𝑑

] (28) 

The switching or sliding surface is designed by adopting PID control algorithm, 

𝑢𝑃𝐼𝐷 = 𝑘𝑝𝑒 + 𝑘𝑖 ∫𝑒 𝑑𝑡 + 𝑘𝑑

𝑑𝑒

𝑑𝑡
  (29) 

where 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are known as proportional, integral, and derivative control gains for the 

defined errors, respectively. These gains are positive constant of non-zero scalars will be further 
optimized using PSO algorithm. 

 Thus, PID sliding surfaces for heave, pitch, and roll are defined as  

𝑆 = [

𝑆𝑧

𝑆𝜃

𝑆𝜑

] =

[
 
 
 
 
 𝑘𝑝𝑧𝑒𝑧 + 𝑘𝑖𝑧 ∫𝑒𝑧 𝑑𝑡 + 𝑘𝑑𝑧𝑒𝑧

•

𝑘𝑝𝜃𝑒𝜃 + 𝑘𝑖𝜃 ∫𝑒𝜃 𝑑𝑡 + 𝑘𝑑𝜃𝑒𝑧

•

𝑘𝑝𝜑𝑒𝜑 + 𝑘𝑖𝜑 ∫𝑒𝜑 𝑑𝑡 + 𝑘𝑑𝜑𝑒𝑧

•

]
 
 
 
 
 

 (30) 
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The derivation of equation (30), along with the inclusive of system uncertainties in dynamic 
of the chassis model yields,  

𝑆
•

=

[
 
 
 
 𝑆

•

𝑧

𝑆
•

𝜃

𝑆
•

𝜑]
 
 
 
 

=

[
 
 
 𝑘𝑝𝑧𝑒𝑧

•
+ 𝑘𝑖𝑧𝑒𝑧 + 𝑘𝑑𝑧(𝑓18(𝑥) + ∆𝑓18(x)) + 𝑘𝑑𝑧(𝑔18 + ∆𝑔18)𝑢𝑧 − 𝑘𝑑𝑧𝑥

••

17𝑑

𝑘𝑝𝜃𝑒𝜃

•
+ 𝑘𝑖𝜃𝑒𝜃 + 𝑘𝑑𝜃(𝑓20(𝑥) + ∆𝑓20(x)) + 𝑘𝑑𝜃(𝑔20 + ∆𝑔20)𝑢𝑧 − 𝑘𝑑𝜃𝑥

••

19𝑑

𝑘𝑝𝜑𝑒𝜑

•
+ 𝑘𝑖𝜑𝑒𝜑 + 𝑘𝑑𝜑(𝑓22(𝑥) + ∆𝑓22(x)) + 𝑘𝑑𝜑(𝑔22 + ∆𝑔22)𝑢𝑧 − 𝑘𝑑𝜑𝑥

••

21𝑑]
 
 
 
 

 (31) 

The equivalent control input for sliding mode is chosen to be linear, which means having no 

uncertainties by appointing a dynamic of sliding manifold 𝑆
•

= 0 when 𝑆 = 0,  

𝑢𝑒𝑞 = [

𝑢𝑧𝑒𝑞

𝑢𝜃𝑒𝑞

𝑢𝜑𝑒𝑞

] =

[
 
 
 
 (𝑘𝑑𝑧𝑔18)

−1 (𝑘𝑑𝑧𝑥
••

17𝑑 − 𝑘𝑑𝑧𝑓18(𝑥) − 𝑘𝑝𝑧𝑒𝑧

•
− 𝑘𝑖𝑧𝑒𝑧)

(𝑘𝑑𝜃𝑔20)
−1 (𝑘𝑑𝜃𝑥

••

19𝑑 − 𝑘𝑑𝜃𝑓20(𝑥) − 𝑘𝑝𝜃𝑒𝜃

•
− 𝑘𝑖𝜃𝑒𝜃)

(𝑘𝑑𝜑𝑔22)
−1 (𝑘𝑑𝜑𝑥

••

21𝑑 − 𝑘𝑑𝜑𝑓22(𝑥) − 𝑘𝑝𝜑𝑒𝜑

•
− 𝑘𝑖𝜑𝑒𝜑)]

 
 
 
 

 (32) 

by defining 𝜉𝑖 = 𝑘𝑑𝑖
𝑥
••

ϑ𝑑 − 𝑘𝑑𝑖
𝑓18(𝑥) − 𝑘𝑝𝑖

𝑒𝑧

•
− 𝑘𝑖𝑖

𝑒𝑧 ; {𝑖 ∈ 𝑧, 𝜃, 𝜑 ;  𝜗 = 17,19,21}, thus eq. (32) 

becomes 

𝑢𝑒𝑞 = [

𝑢𝑧𝑒𝑞

𝑢𝜃𝑒𝑞

𝑢𝜑𝑒𝑞

] =  [

(𝑘𝑑𝑧𝑔18)
−1𝜉𝑧

(𝑘𝑑𝑧𝑔20)
−1𝜉𝜃

(𝑘𝑑𝑧𝑔22)
−1𝜉𝜑

]  (33) 

Next is designing the switching control input to obtain the total control input for SMC design. 
It should be designed properly to compensate for the system’s uncertainties and thus stabilize 
the chassis system. To find the total control input of SMC that has two terms (equivalent and 
switching control inputs), defined as 

[

𝑢𝑧

𝑢𝜃

𝑢𝜑

] = [

𝑢𝑧𝑒𝑞 + 𝑔18
−1𝑢𝑧𝑠

𝑢𝜃𝑒𝑞 + 𝑔20
−1𝑢𝜃𝑠

𝑢𝜑𝑒𝑞+𝑔22
−1𝑢𝜑𝑠

]   

where  𝑔18, 𝑔20 and 𝑔22 are the gains computed from (22), (24), (26), respectively. 

Considers the Lyapunov stability function as 

𝑉 =
1

2
𝑆𝑧

2 +
1

2
𝑆𝜃

2 +
1

2
𝑆𝜑

2   (34) 

which has been defined based on all three chassis’ sliding surfaces. Taking the first derivative of 
(34),  

𝑉
•

= 𝑆𝑧𝑆
•

𝑧 + 𝑆𝜃𝑆
•

𝜃 + 𝑆𝜑𝑆
•

𝜑 (35) 

By substituting Eq. (31-33) into (42) and recalled that 𝑘𝑑𝑖
𝑥
••

𝜗𝑑 − 𝑘𝑑𝑖
𝑓18(𝑥) − 𝑘𝑝𝑖

𝑒𝑧

•
−

𝑘𝑖𝑖
𝑒𝑧 = 𝜉𝑖  , where {𝑖 ∈ 𝑧, 𝜃, 𝜑 ;  𝜗 = 17,19,21}, the equation then yields, 

Now, the assumption of the upper bounds of the uncertainties has been made to be known 
as in [23]. Hence, the relations of the boundedness are, 

𝑉
•

= 𝑆𝑧 [𝑘𝑑𝑧∆𝑓18(𝑥) + 𝑘𝑑𝑧𝑢𝑧𝑠 + ∆𝑔18(𝑔18)
−1𝜉𝑧 + 𝑘𝑑𝑧∆𝑔18(𝑔18)

−1𝑢𝑧𝑠]+.. 

(36)       +𝑆𝜃 [𝑘𝑑𝜃∆𝑓20(𝑥) + 𝑘𝑑𝜃𝑢𝜃𝑠 +  ∆𝑔20(𝑔20)
−1𝜉𝜃 + 𝑘𝑑𝜃∆𝑔20(𝑔20)

−1𝑢𝜃𝑠]+.. 

      +𝑆𝜑 [𝑘𝑑𝜑∆𝑓22(𝑥) + 𝑘𝑑𝜑𝑢𝜑𝑠 + ∆𝑔22(𝑔22)
−1𝜉𝜑 + 𝑘𝑑𝜑∆𝑔22(𝑔22)

−1𝑢𝜑𝑠] 
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‖∆𝑓18(𝑥)‖ ≤ 𝜒18 ; ‖∆𝑓20(𝑥)‖ ≤ 𝜒20 ; ‖∆𝑓22(𝑥)‖ ≤ 𝜒22 

‖∆𝑔18(𝑔18)
−1‖ ≤ ϐ18 < 1 ; ‖∆𝑔20(𝑔20)

−1‖ ≤ ϐ20 < 1 ; ‖∆𝑔22(𝑔22)
−1‖ ≤ ϐ22 < 1 

 (37) 

where 𝜒18 , 𝜒20 , 𝜒22,, ϐ18 , ϐ20 , ϐ22 are design parameters with positive values which are set 

to satisfy the given inequalities. Thus, by implementing Eq. (37) into (36) yields 

Then, the switching control of SMC laws for heave, pitch, and roll (𝑢𝑧𝑠, 𝑢𝜃𝑠, 𝑢𝜑𝑠)  is designed 

as follows, 

𝑢𝑧𝑠 = −
𝑘𝑧𝑠

1 + ϐ18

𝑆𝑧

‖𝑆𝑧‖
; 𝑢𝜃𝑠 = −

𝑘𝜃𝑠

1 + ϐ20

𝑆𝜃

‖𝑆𝜃‖
; 𝑢𝜑𝑠 = −

𝑘𝜑𝑠

1 + ϐ22

𝑆𝜑

‖𝑆𝜑‖
 (39) 

where 𝑘𝑧𝑠 = 
𝑘𝑧

𝑘𝑑𝑧
 , 𝑘𝜃𝑠 = 

𝑘𝜃

𝑘𝜃𝑧
 , 𝑘𝜑𝑠 = 

𝑘𝜑

𝑘𝜑𝑧
 . Thus, substitute eq. (39) into (38), become, 

𝑉
•

= ‖𝑆𝑧‖(𝜒18𝑘𝑑𝑧 + ϐ18|𝜉𝑧| − 𝑘𝑧) + ‖𝑆𝜃‖(𝜒20 𝑘𝑑𝜃 + ϐ20𝜉𝜃 − 𝑘𝜃)+.. 
(40) 

       + ‖𝑆𝜑‖(𝜒22𝑘𝑑𝜑 + ϐ22𝜉𝜑 − 𝑘𝜑) 

If 𝑘𝑧, 𝑘𝜃, 𝑘𝜑 are set as follows, 

𝑘𝑧 = 𝜒18𝑘𝑑𝑧 + 𝛽18|𝛶𝑧| ; 𝑘𝜃 = 𝜒20𝑘𝑑𝜃 + 𝛽20|𝛶𝜃| ; 𝑘𝜑 = 𝜒22𝑘𝑑𝜑 + 𝛽22|𝛶𝜑| (41) 

Therefore, the eq. (40) results to 

𝑉
•

≤ 0 (42) 

With this satisfying condition, the proposed SMC control design has guaranteed the stability of 
the chassis system. Nevertheless, the chattering phenomena that occur in the SMC phase may 
degrade the robustness of the controller. In order to reduce the chattering, the boundary 
thickness layer is introduced to approximate a discontinuous function in switching control law 
as follow, 

𝑢𝑧𝑠 = −
𝑘𝑧𝑠

1 + 𝛽18

𝑆𝑧

‖𝑆𝑧‖ + 𝛿
; 𝑢𝜃𝑠 = −

𝑘𝜃𝑠

1 + 𝛽20

𝑆𝜃

‖𝑆𝜃‖ + 𝛿
; 𝑢𝜑𝑠 = −

𝑘𝜑𝑠

1 + 𝛽22

𝑆𝜑

‖𝑆𝜑‖ + 𝛿
 

 (43) 

where 𝛿 > 0 is a small positive scalar of the thickness boundary layer, which determines the 
quality of the approximation.  

From the dynamic of the chassis model, it is clear that the relation between 𝑢𝑖 and the 
actuator pressure (state variables; 𝑥3, 𝑥7, 𝑥11, 𝑥15) is, 

[

𝑢𝑧

𝑢𝜃

𝑢𝜑

] = 𝐴𝑝 [
1 1 1 1
𝑎 𝑎 −𝑏 −𝑏
−𝑐 𝑑 −𝑐 𝑑

] [

𝑥3

𝑥7

𝑥11

𝑥15

] , [

𝑢𝑧

𝑢𝜃

𝑢𝜑

] = 𝐴𝑝𝑀 [

𝑥3

𝑥7

𝑥11

𝑥15

]  

where 

𝑉
•

= ‖𝑆𝑧‖(𝜒18𝑘𝑑𝑧 + ϐ18|𝜉𝑧|) + 𝑆𝑧𝑘𝑑𝑧𝑢𝑧𝑠 + ‖𝑆𝑧‖ϐ18‖𝑢𝑧𝑠‖𝑘𝑑𝑧+.. 

  (38)        + ‖𝑆𝜃‖(𝜒20𝑘𝑑𝜃 + ϐ20|𝜉𝜃|) + 𝑆𝜃𝑘𝑑𝜃𝑢𝜃𝑠 + ‖𝑆𝜃‖ϐ20‖𝑢𝜃𝑠‖𝑘𝑑𝜃+.. 

       + ‖𝑆𝜑‖(𝜒22𝑘𝑑𝜑 + ϐ22|𝜉𝜑|)+𝑆𝜑𝑘𝑑𝜑𝑢𝜑𝑠 + ‖𝑆𝜑‖ϐ22‖𝑢𝜑𝑠‖𝑘𝑑𝜑 
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𝑀 = [
1 1 1 1
𝑎 𝑎 −𝑏 −𝑏
−𝑐 𝑑 −𝑐 𝑑

] (44) 

[

𝑥3

𝑥7

𝑥11

𝑥15

] = 𝐴𝑝𝑀−1  [

𝑢𝑧

𝑢𝜃

𝑢𝜑

]  (45) 

where  𝑀+ = 𝑊+(𝑊𝑊𝑇) −1 is the pseudo-inverse of matrix N. The values of a, b, c, d, and Ap 
are defined in table 1.  The desired actuator pressures for the four subsystems are considered 
as the states in (45). Thus, we define [𝑥3𝑑 𝑥7𝑑 𝑥11𝑑 𝑥15𝑑] = [𝑥3 𝑥7 𝑥11 𝑥15]. 

 The SMC Design for Actuation Modules 

A. Actuator Force (Pressure) Tracking 

The SMC design for this part is to track the desired actuator force generated by the previous 
controller design (PID-SMC) in order to determine the needed position of the spool valve. Apart 
from this, this is predominantly insured by four local controllers for each subsystem 
{𝑎 𝜖 (𝑓𝑟, 𝑓𝑙, 𝑟𝑟, 𝑟𝑙)}. The desired actuator pressure is defined as 

[𝑥𝑑𝑝𝑓𝑟
𝑥𝑑𝑝𝑓𝑙

𝑥𝑑𝑝𝑟𝑟
𝑥𝑑𝑝𝑟𝑙] = [𝑥3𝑑 𝑥7𝑑 𝑥11𝑑 𝑥15𝑑]  (46) 

The pressure generated by the actuator is given by (which can clearly refer to system 
dynamic modeling equation),  

𝑥
•

𝑝𝑎
= −𝛽𝑥𝑝𝑎

− 𝛼𝐴𝑝( 𝑧
•

𝑠𝑎
−  𝑧

•

𝑢𝑎
) + 𝑠𝑖𝑔𝑛(𝑝𝑠 − 𝑠𝑖𝑔𝑛(𝑥𝑣𝑎

)𝑥𝑝𝑎
𝛾√|𝑝𝑠 − 𝑠𝑖𝑔𝑛(𝑥𝑣𝑎

)𝑥𝑝𝑎
|𝑥𝑣𝑎

  

with, 

𝑓2𝑎
= −𝛽𝑥𝑝𝑎

− 𝛼𝐴𝑝( 𝑧
•

𝑠𝑎
−  𝑧

•

𝑢𝑎
)  

And, 

 𝑔2𝑎
=  𝑠𝑖𝑔𝑛(𝑝𝑠 − 𝑠𝑖𝑔𝑛(𝑥𝑣𝑎

)𝑥𝑝𝑎
𝛾√|𝑝𝑠 − 𝑠𝑖𝑔𝑛(𝑥𝑣𝑎

)𝑥𝑝𝑎
|𝑥𝑣𝑎

  (47) 

This notation is used in the place of state-space representation for the generalization of the 
second module in every four actuators. For the second and third modules, the SMC control law 
is designed based on the derivative of tracking error information, that is, the differences 
between actual and desired state variables.  

In the meantime, defining the second sliding surface, 

𝑆2𝑎
= 𝑥𝑝𝑎

− 𝑥𝑑𝑝𝑎
  (48) 

It is taking a derivative of eq. (48) along with its derivation upon substitution of eq. (47), 
yields 

𝑆
•

2𝑎
= 𝑓2𝑎

+ 𝑔2𝑎
𝑥𝑣𝑎

− 𝑥
•

𝑑𝑝𝑎
  (49) 

Here the control input for the second SMC is defined as the state variables of the needed 
spool valve position (𝑥𝑣𝑎

), thus the total control input of 𝑥𝑣𝑎
 is selected as 

𝑥𝑣𝑎
= 𝑥𝑢𝑒𝑞𝑣𝑎

+ 𝑥𝑢𝑠𝑣𝑎
  (50) 

The equivalent control input of SMC is set by appointing a dynamic of sliding manifold 𝑆
•

= 0, 

𝑓2𝑎
+ 𝑔2𝑎

𝑥𝑣𝑎
− 𝑥

•

𝑑𝑝𝑎
= 0 

 (51) 
𝑥𝑢𝑒𝑞𝑣𝑎

= 𝑔2𝑎
−1(𝑥

•

𝑑𝑝𝑎
− 𝑓2𝑎

) 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

511 
Vol. 1, No. 4, 2021, pp. 501-522 

  

 

Erliana Samsuria (Enhanced Sliding Mode Control for Nonlinear Active Suspension Full Car Model) 

 

The switching control is chosen as proportional rate reaching law which is defined to 

sufficiently satisfy the reachability condition 𝑠𝑠
•
< 0 or 𝑠𝑠

•
≤ −𝜂|𝑠| with 𝜂 > 0 [28]. 

𝑥𝑢𝑠𝑣𝑎
= − 𝑔2𝑎

−1(𝜔2𝑎
𝑆2𝑎

)  (52) 

Thus, the total SMC control input of 𝑥𝑣𝑎
 results to, 

𝑥𝑣𝑎
= 𝑔2𝑎

−1(𝑥
•

𝑑𝑝𝑎
− 𝑓2𝑎

− 𝜔2𝑎
𝑆2𝑎

)  (53) 

Upon substitution of (55) into (61), the necessary spool valve position that will guarantee 
the actual output force by the actuator to approach the desired force can be given as, 

𝑥𝑣𝑑𝑎
= 

𝑥
•

𝑝𝑑𝑎
+ 𝛽𝑥𝑝𝑎

+ 𝛼𝐴𝑝( 𝑧
•

𝑠𝑎
−  𝑧

•

𝑢𝑎
) − 𝜔2𝑎

𝑆2𝑎

𝑠𝑖𝑔𝑛(𝑝𝑠 − 𝑠𝑖𝑔𝑛(𝑥𝑣𝑎
)𝑥𝑝𝑎

𝛾√|𝑝𝑠 − 𝑠𝑖𝑔𝑛(𝑥𝑣𝑎
)𝑥𝑝𝑎

|
  (54) 

where 𝜔2𝑎
 is chosen to satisfy sliding convergences in finite time as mentioned, with 

{𝑎 𝜖 (𝑓𝑟, 𝑓𝑙, 𝑟𝑟, 𝑟𝑙)}, the notation of ( 𝑧𝑠𝑎
−  𝑧𝑢𝑎

)   and ( 𝑧
•

𝑠𝑎
−  𝑧

•

𝑢𝑎
) are defined as suspension 

travel and its rate, respectively. It is the expression as a function of the state components of 
physical relations within the chassis (𝑧, 𝜃, 𝜑) and its four corners. Taking a derivative of 
equations (2 – 5) yields the respective rate of suspension travels as shown below, 

𝑍
•

1 = 𝑍𝑏 + 𝑎𝜃
•

𝑏𝑐𝑜𝑠(𝜃𝑏) − 𝑐𝜑
•

𝑏𝑐𝑜𝑠(𝜑𝑏)                     (55) 

𝑍
•

2 = 𝑍𝑏 + 𝑎𝜃
•

𝑏𝑐𝑜𝑠(𝜃𝑏) + 𝑑𝜑
•

𝑏𝑐𝑜𝑠(𝜑𝑏)                                                         (56) 

𝑍
•

3 = 𝑍𝑏 − 𝑏𝜃
•

𝑏𝑐𝑜𝑠(𝜃𝑏) − 𝑐𝜑
•

𝑏𝑐𝑜𝑠(𝜑𝑏)                                                         (57) 

𝑍
•

4 = 𝑍𝑏 − 𝑏𝜃
•

𝑏𝑐𝑜𝑠(𝜃𝑏) + 𝑑𝜑
•

𝑏𝑐𝑜𝑠(𝜑𝑏)                                                         (58) 

where a, b, c, and d are the distances of each suspension to the chassis subsystem.  

B. Spool Valve Displacement Tracking 

The similar SMC design steps (in A) applied in this part to determine the required control 
input 𝑢𝑎 for servo valve by having a good tracking of the desired spool valve position in the 
previous SMC controller.  

As known, the dynamic of spool valve dynamics in the system is given by, 

𝑥
•

𝑣𝑎
=

1

𝜏
(𝑢 − 𝑥𝑣𝑎

)  (59) 

Thus, the second sliding surface can be defined as, 

𝑆3𝑎
= 𝑥𝑣𝑎

− 𝑥𝑑𝑣𝑎
  (60) 

It is taking a derivative of (60) along with its derivation upon substitution of (59), yields 

𝑆
•

3𝑎
=

𝑢 − 𝑥𝑣𝑎

𝜏
−  𝑥

•

𝑑𝑣𝑎
  (61) 

The equivalent control input of the third SMC is set by appointing a dynamic of sliding manifold    

𝑆
•

= 0, 

𝑢𝑒𝑞 = 𝑥𝑣𝑎
−  𝜏𝑥

•

𝑑𝑣𝑎
  (62) 

The third switching control also is chosen as proportional rate reaching law (𝜔3𝑎
) that is 

chosen to satisfy the reachability condition 𝑠𝑠
•
< 0 or 𝑠𝑠

•
≤ −𝜂|𝑠| in finite time, 

𝑢𝑠 = − 𝜏 (𝜔3𝑎
𝑆3𝑎

)  (63) 
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Briefly, the control input 𝑢 is expressed as follows, 

𝑢 = [𝑢𝑑𝑓𝑟
𝑢𝑑𝑓𝑙

𝑢𝑑𝑟𝑟
𝑢𝑑𝑟𝑙]𝑇  (64) 

Thus. the total SMC control input of 𝑢𝑎 results to, 

𝑢𝑎 = 𝑥6 + 𝜏(𝑥
•

𝑣𝑑𝑎
− 𝜔3𝑎

𝑆3𝑎
)  (65) 

𝑢𝑎 = (1 − 𝜏𝜔3𝑎
)𝑥𝑣𝑎

+ 𝜏𝜔3𝑎
𝑥𝑣𝑎

+ 𝜏𝑥
•

𝑣𝑑𝑎
 (66) 

with defines the notation of {𝑎 𝜖 (𝑓𝑟, 𝑓𝑙, 𝑟𝑟, 𝑟𝑙)}. 

 Optimization using PSO Algorithm 

 There In obtaining the optimal controllable parameter used in the proposed SMC to assign 
into the system, the tuning method applied is based on the PSO algorithm, which was formerly 
introduced by James Kennedy and Russell C. Eberhart [29]. There are a lot of significant 
parameters that need to be set to ensure the searching process for the optimal point within the 
whole swarm. These particles include the number of particles that indicate the size of the 
swarm, the iteration numbers, the components of velocity, and the coefficient of acceleration.  

 In the searching process, each current particle will accelerate to the new searching point in 
every presence of a new position, depending on the velocity that will be set according to the 
previous velocity and best position. Each particle changes the searching point or position, 𝑠𝑖 
with respect to its velocity, 𝑣𝑖 according to (67) and (68), respectively [30]. 

𝑣𝑖
𝑘+1 = 𝑤 ∗ 𝑣𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑𝑖(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑠𝑖
𝑘) + 𝑐2𝑟𝑎𝑛𝑑𝑖(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑠𝑖

𝑘)  (67) 

𝑠𝑖
𝑘+1 = 𝑠𝑖

𝑘 + 𝑣𝑖
𝑘+1 (68) 

where 𝑖 denotes as particle or agent values, 𝑘 represents the iteration of particle while 𝑘 + 1  
as the future iteration of the particle, 𝑐1 denotes the self-coefficient of acceleration for particle 
itself, 𝑐2 denotes the swarm-coefficient of acceleration in the entire group, 𝑤 represents the 
inertia weighting value,  𝑝𝑏𝑒𝑠𝑡 represents personal best value (particle’s value), and 𝑔𝑏𝑒𝑠𝑡 
represents global best value (groups). The 𝑟𝑎𝑛𝑑𝑖 represents as the random numbers that are 
to be assigned between [0,1].   

 The momentum and competency of the particles in terms of exploration (finding a good 
optimum place through the different areas of swarm space) and exploitation (to search around 
the target point) so that they would not diverge from the search space are much influenced by 
the inertia weight. The best way is to set the inertia weight with a larger value at the beginning 
of the iteration to make the particles move freely in their exploration to every space in the 
swarm and decrease linearly with the iteration number to obtain a quick convergence and able 
to perform the exploitation. The inertia weight condition stated in [31] in order to satisfy these 
processes is given as,  

𝑤𝑡+1 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
) ∗ 𝑡  (69) 

Where 𝑤𝑚𝑎𝑥 and  𝑤𝑚𝑖𝑛 stand for the minimum and maximum values of the inertia weight, 
respectively, while the maximum number of iterations is denoted as 𝑡𝑚𝑎𝑥 and the current 
number of iteration is denoted as 𝑡. 

 Fig. 3 illustrates the process step of the PSO algorithm to tune control parameters of the 
proposed controllers in obtaining an optimal value to guarantee the best performances of the 
controller.  Here, the PSO algorithm proposed to search the best value of the control gains of 
PID in the sliding surfaces of the chassis and the control laws’ gains of SMC in the actuation 
modules. 
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Fig. 3. Optimization using PSO Algorithm 
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3. Results and Discussion 

The simulation design of the nonlinear full car active suspension system with the 
adaptation of the proposed controller is carried out using MATLAB and Simulink based on the 
dynamic equations established in previous chapters. The obtaining results are significant in 
investigating the performances of the proposed PID-SMC-based active suspension along with 
the comparison with the benchmark controller and passive suspension.  

In the simulation, a conventional Sliding Mode Controller (SMC) is utilized as the 
comparative method to evaluate the performances of the proposed controller for a nonlinear 
active suspension system. Indeed, the control values of the benchmark controller also have 
been tuned using the PSO algorithm so that the results to be compared are fair and 
appropriately conducted.  Model parameters of nonlinear full car suspension system were 
adopted from [23] and [24], and the value of parameters used are tabulated in Table B as 
attached in the Appendix section. The related values of parameters of the proposed controller 
are tabulated as in Table 1. The values of boundedness constants from (49) are chosen based 
on the work reported in [23]. The boundary thickness layer is set to 0.8 as it is the preferable 
value to perform the best in obtaining the clear, smooth output results of the proposed 
controller.  

Table 1.  Control’s parameter values 

Description Parameter Value 

System boundedness parameters 
𝜒18, 𝜒20, 𝜒22 2.4 

ϐ18, ϐ20, ϐ22 0.2 

Boundary thickness layer gain 𝛿 0.8 

Desired trajectory 𝑥17𝑑 , 𝑥19𝑑 , 𝑥21𝑑 , 0 

 Tuning Parameter based on PSO Algorithm 

The implementation of PSO fed to the algorithm in the proposed PID-SMC control has 
included the set values of their parameter as tabulated in Table 2. The number of particles 
should be assigned with considerable not too large nor too low as it will slow down the 
processing time when setting the large value of 𝑁. Otherwise, the particles might be trapped in 
the local minima as if 𝑁 is too low [32][33]. The values of acceleration coefficient for 𝑐1 and 
𝑐2 are set to be similar as suggested in [34][35][36]. During the running process, the inertia 
weight will decrease linearly from within 0.9 to 0.4, which are set as maximum and minimum 
values, respectively. The large value of inertia weight allows the particles to move freely in the 
search space. Then it will decrease over time to focus the searching activity in a smaller region 
[37]. The chosen maximum and minimum values of inertia weight are based on the other works 
reported from [34][38][31]. 

Table 2.  PSO Control’s parameter values 

Description Parameter Value 

Number of particles 𝑁 2.4 

Maximum number of iterations 𝑡𝑚𝑎𝑥  50 

Maximum Inertia weight 𝑤𝑖𝑚𝑎𝑥  0.9 

Minimum Inertia weight 𝑤𝑖𝑚𝑖𝑛  0.4 

Acceleration coefficient 𝑐1 , 𝑐2 2 

Dimension of problems  5 

 

Integral Absolute Square Error (IASE) was utilized as an objective function that was used to 
calculate the minimum error produced in searching for the best values. The vertical body, pitch 
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and heave acceleration, suspension travel, and wheel deflection were considered as the fitness 
function. It aims for minimizing the fitness function performance index as; 

𝐽 =  𝐽1 + 𝐽2 + 𝐽3 + 𝐽4 + 𝐽5  

𝐽 = ∫ |𝑍
••

𝑏|
2

𝑑𝑡
𝑇

0

+ ∫ |𝜃
••

𝑏|
2

𝑑𝑡
𝑇

0

+ ∫ |𝜑
••

𝑏|
2
𝑑𝑡

𝑇

0

+ ∫ ∑ |𝑍𝑖 − 𝑍𝑢𝑖|
2
𝑑𝑡

𝑖=𝑓𝑟,𝑓𝑙,𝑟𝑟,𝑟𝑙

𝑇

0

+ ∫ ∑ |𝑍𝑢𝑖
− 𝑍𝑟𝑖|

2
𝑑𝑡

𝑖=𝑓𝑟,𝑓𝑙,𝑟𝑟,𝑟𝑙

𝑇

0

 

                             (70) 

where 𝑇 is the total time period. 

The results from the tuning process in obtaining the optimal values of control parameters 
of the proposed PID-SMC-based active suspension are tabulated in Table 3. 

Table 3.  Optimal values of control parameters of the proposed PID-SMC method 

Controller Description Parameter Value 

PID-SMC 

 

Proportional gain of respective heave, pitch, and roll 𝑘𝑝𝑧, 𝑘𝑝𝜃 , 𝑘𝑝𝜑, 25 

Integral gain of respective heave, pitch, and roll 𝑘𝑖𝑧 , 𝑘𝑖𝜃 , 𝑘𝑖𝜑 , 13.9016 

Derivative gain of respective heave, pitch, and roll 𝑘𝑑𝑧 , 𝑘𝑑𝜃 , 𝑘𝑑𝜑 , 5.7771 

Spool position SMC gain 𝜔2𝑎
 17.4696 

Control input SMC gain 𝜔3𝑎
 10000 

*All the notations with 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒 correspond to front-right (𝒇𝒓), front-left (𝒇𝒍), rear-right (𝒓𝒓), and rear-
left (𝒓𝒍) respectively. 

 Simulation Results 

For the assessment of the controller response, a double bump input bump input was 
implemented in this system as one of the types of road input profiles that acts as a road 
disturbance [5]. For the front right, the amplitude of the first and second bump was equally set 
to 0.11𝑚 and 0.5𝑚 respectively while front left is set to 0.08𝑚 and 0.03𝑚 respectively. Since it 
is assumed that the car is moving forward with a constant speed in which 𝑣𝑐  =  22 𝑚/𝑠, the 
delay time can be computed for exerting the disturbances to the rear wheels. The time delay is 

𝜏𝑐  = 𝑎 + 𝑏
𝑣𝑐

⁄  where a and b are Distance from center of gravity to front and rear axle, that have 

set to 1.4m and 1.7m, respectively.  As a result, the rear right and rear left were designed as 

𝑧𝑟𝑟𝑟 = 𝑧𝑟𝑟𝑟(𝑡 −  𝜏) 

 𝑧𝑟𝑟𝑙 = 𝑧𝑟𝑟𝑙(𝑡 −  𝜏) 

Some experimental simulation results are provided here to demonstrate the effectiveness 
of the proposed PID-SMC controller. In this section, the performances of the full-scale vehicle 
dynamic system are tested under the case of double bump input road profile, and the time 
domain of the responses is analyzed.  

First, it is important to check is the controllability of the force tracking controller [26]. The 
force of tracking error of the hydraulic actuator model is measured using the proposed control 
algorithm for the particular road profile as a function of target force is shown in Fig. 4. It can be 
said that the output force generated by the hydraulic actuator has provided a good tracking 
effort with smooth variations according to the desired signal against a road perturbation. 

Fig. 5 illustrates the variations of sliding surfaces and their corresponding control input 
signals for chassis state. From the figure, the sliding function is not zero (𝑠 ≠ 0) when facing the 
sudden changes in road profile but had settled down after a few seconds of reaction time. This 
means that the sliding mode arrives at the sliding manifold right after it had to go around in the 
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reaching surface up to about 0.6𝑠 to 1.5𝑠 (according to each chassis state). The control input 
also showed zero fluctuations or signals once the sliding mode reached the sliding manifold. 
This manner has maintained the stability of the control system since it has satisfied the sliding 
condition to be converged and standstill in the manifold over a finite time. 

.  

Fig. 4. Performances of force tracking for each of four actuators 

 

Fig. 5. Sliding surface and control input of body heave motion 

The time response for an acceleration of the chassis states in terms of body-heave response, 
which is performance criteria related to riding comfort, also of pitch and roll response (vehicle 
handling) are given in Fig. 6. From the figures, it can be seen that the proposed PID-SMC 
controller outperformed the SMC controller that has attained a better transient behavior with 
a smaller amplitude and minimal oscillations. A sudden change of the road profile has produced 
a tremendous impact on the pitch and roll motions for active suspension control methods 
causes the improvement to be lower than in heave motions. However, a qualitative analysis of 
RMS values also proved that the proposed PID-SMC based active suspension control showed 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

517 
Vol. 1, No. 4, 2021, pp. 501-522 

  

 

Erliana Samsuria (Enhanced Sliding Mode Control for Nonlinear Active Suspension Full Car Model) 

 

the superior performances improvement for heave, pitch, and roll accelerations with the 
reduction of the percentage of respective 33.16%, 52.39%, and 48.94% over the SMC 
controller, and of respective 67.78%, 52.74% and 50.98% over the passive suspension system. 
These traits infer that the PID-SMC-based active suspension control possesses a good ride 
comfort and vehicle handling ability on the chassis under bump excitation.  

 

(a) Heave Acceleration 

 

(b)Pitch Acceleration 

 
(c) Roll Acceleration 

Fig. 6. Sprung mass acceleration responses  

The responses of four suspension travel for active and passive suspension controls are 
illustrated in Fig. 7. The resulting signals for both PID-SMC-based and SMC active suspension 
controls have traveled within the permissible range limits (±10𝑐𝑚) in accordance with the 
performances specifications. Besides that, the figures also indicated they both had improved 
the rattle-space dynamic of the system with less noticeable vibrations/oscillations and faster 
settling time once the road bump had been passed. The responses of suspension travel for both 
PID-SMC-based and SMC active suspension controls in terms of RMS values are reduced 
significantly as compared to the passive one. These indicated that the proposed active 
suspension controls had the extent to improve the ride comfort performance of the system. 

For road handling, considering the response of each of four tire deflections that determines 
how well the tires make contact with road surfaces as depicted in Fig. 8. The proposed method 
exhibits a smaller amplitude and is able to attenuate the vibration quickly after a short reaction 
time. Indeed, it can be told through the comparative analysis of the improvement percentages 
of tire deflections where the proposed method ensures an impressive reduction as much as 
16.13%, 27.59%, 47.22%, and 44.12% over the SMC-active suspension and 10.35%, 16%, 
52.5% and 51.28% over the passive suspension for a front-right, front-left, rear-right, and rear-
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left tires, respectively. It clearly implied that the PID-SMC-based method has a larger 
improvement upon the SMC-active suspension and passive, with a better grip of all four tires 
to the road surfaces when the vehicle is driven along the bumpy road. Hence, the major 
reduction in vibration of tire deflections for the proposed method had secured the system and 
ensured a preferable road handling ability of the active suspension system. 

 

Fig. 7. Suspension travels between the body and each of the tire displacements 

 

Fig. 8. Wheel deflections between body and each of tire displacements 
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4. Conclusion 

Good vertical control of the system can be achieved by having a robust control strategy that 
invariance to the perturbations of the road surfaces system uncertainties. Thus, this paper has 
presented the control strategies that combine the PID control with sliding mode control for the 
chassis subsystem in order to handle the perturbations by developing the needed tracking force 
to the actuation modules. Numerical and simulation results indicated that the performances of 
the acceleration of chassis states (heave, pitch, and roll motion), suspension travels, and wheel 
deflections for each of the tires in the case of the proposed controller outperformed the 
conventional SMC and passive suspension system. The combination of PID sliding surfaces and 
sliding mode control laws shows the controller exhibits good transient responses and higher 
percentages reduction in terms of RMS values as compared to the standard SMC laws. This 
attribute corresponds to the fast responses to alleviate the roll, pitch, and roll effects arising 
from the road irregularities. Moreover, they also demonstrated the effectiveness of the 
proposed SMC control structures had provided a stable impressive tracking control capability 
with smaller tracking errors that converge to zero, regardless of the input condition of the road 
disturbances. Hence, it has proved that the proposed method is splendidly robust and capable 
of achieving the trade-offs performances of ride comfort and road handling ability under the 
existences of uncertainties, parameter perturbations, and external road disturbances. 
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Appendix 

Table A. State Vector of the dynamic system 
Subsystem State Vector Model Variable Definition 

Four local 
wheels 

𝑥1 𝑍𝑢1
 Front-right unsprung mass displacement 

𝑥2 𝑍
•

𝑢1
 Front-right unsprung mass velocity 

𝑥3 𝐴1 Front-right actuator load pressure 

𝑥4 𝑍𝑣1
 Front-right spool valve position 

𝑥5 𝑍𝑢2
 Front-left unsprung mass displacement 

𝑥6 𝑍
•

𝑢2
 Front-left unsprung mass velocity 

𝑥7 𝐴2 Front-left actuator load pressure 

𝑥8 𝑍𝑣2
 Front-left spool valve position 

𝑥9 𝑍𝑢3
 Rear-right unsprung mass displacement 

𝑥10 𝑍
•

𝑢3
 Rear-right unsprung mass velocity 

𝑥11 𝐴3 Rear-right actuator load pressure 

𝑥12 𝑍𝑣3
 Rear-right spool valve position 

𝑥13 𝑍𝑢4
 Front-left unsprung mass displacement 

𝑥14 𝑍
•

𝑢4
 Front-left unsprung mass velocity 

𝑥15 𝐴4 Front-left actuator load pressure 

𝑥16 𝑍𝑣4
 Front-left spool valve position 

Chassis 
𝑥17 𝑍𝑏 Heave displacement of the sprung mass 

𝑥18 𝑍
•

𝑏 Heave velocity of the sprung mass 
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Subsystem State Vector Model Variable Definition 

𝑥19 𝜃𝑏 Pitch angle of the sprung mass 

𝑥20 𝜃
•

𝑏 Pitch angular velocity of the sprung mass 

𝑥21 𝜑𝑏 The roll angle of the sprung mass 

𝑥22 𝜑
•

𝑏 Roll angular velocity of the sprung mass 

 
Table B. Values of the Model Parameters   

*All the notations with 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒 corresponds to front-right (fr), front-left (𝒇𝒍), rear-right (𝒓𝒓) 

 and rear-left (𝒓𝒍), respectively. 
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