
International Journal of Pure and Applied Mathematics

Volume 106 No. 2 2016, 513-523
ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: 10.12732/ijpam.v106i2.14

PA
ijpam.eu

FAST BLOCK DIAGONALIZATION OF

(k, k′)-PENTADIAGONAL MATRICES

Asuka Ohashi1 §, Tomohiro Sogabe2, Tsuyoshi Sasaki Usuda1

1Graduate School of Information Science & Technology
Aichi Prefectural University
Aichi 480-1198, JAPAN

2Graduate School of Engineering
Nagoya University

Nagoya 464-8603, JAPAN

Abstract: In this paper, we provide a block diagonalization algorithm of (k, k′)-pentadiagonal

matrices. The algorithm is a structure-preserving algorithm in that the small diagonal blocks

essentially have the same nonzero structure as the original one, and it can be regarded as

an extension of the block diagonalization algorithm of k-tridiagonal matrices in [T. Sogabe,

M.E.A. El-Mikkawy, Appl. Math. Compute., 218 (2011), 2740-2743].
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1. Introduction

We consider n× n (k, k′)-pentadiagonal matrices A
(k,k′)
n ∈ Cn×n defined as
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A(k,k′)
n :=
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(1)

where 1 ≤ k ≤ k′ < n. The matrices arise in a finite difference discretization of
partial differential equations (see, e.g., [1, Section 12.1]).

The matrices (1) include three important matrices. First, A
(1,2)
n corresponds

to an ordinary pentadiagonal matrix. For the recent developments, see, e.g.,

[2], [5], [6], and [10]. Second, A
(k,k)
n corresponds to a k-tridiagonal matrix. For

the recent developments, see, e.g., [4], [7], [8], and [9]. Third, if a′i = bj = 0 for

all i and j or ai = b′j = 0 for all i and j in A
(k,k′)
n , the matrices arise in the

discrete hungry Lotka-Volterra system, see, e.g., [3].

The purpose of this paper is to present a block diagonalization algorithm of
(k, k′)-pentadiagonal matrices. The algorithm can be regarded as an extension
of a block diagonalization algorithm of k-tridiagonal matrices in [8].

This paper is organized as follows: in Section 2, we give two lemmas as
preliminaries; in Section 3, we present a block diagonalization algorithm of
(k, k′)-pentadiagonal matrices and describe the nonzero structures of the ob-
tained diagonal blocks; in Section 4, illustrative examples are shown; finally,
concluding remarks are made in Section 5.
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Preliminaries

In this section, we give two lemmas for proving the theorem in the next section.

Let P and Q be n × n permutation matrices, and let P ′ and Q′ be n ×m
and n × ℓ submatrices of P and Q, respectively. Then, P ′ and Q′ are written
by

P ′ = [ei1 ,ei2 , . . . ,eim ], Q′ = [ej1 ,ej2 , . . . ,ejℓ], (2)

where ip, jq ∈ {1, 2, . . . , n}, p = 1, 2, . . . ,m, q = 1, 2, . . . , ℓ, and eip denotes the
n-dimensional ip-th canonical vector.

We now have the following lemmas:

Lemma 1. Let M ∈ C
n×n. Then, multiplying M by (P ′)T and Q′ in (2)

yields an m× ℓ submatrix of PTMQ where the (p, q) element is represented by

((P ′)TMQ′)p,q = Mip,jq ,

where Mip,jq denotes the (ip, jq) element of M .

Proof. Easy.

Lemma 2. Let A
(k,k′)
n be an n × n (k, k′)-pentadiagonal matrix, and let

r be the equivalence class of the set Nn := {i ∈ N | 1 ≤ i ≤ n} as follows:

r := {j ∈ Nn | j ≡ r (mod m)}, where m := gcd(k, k′). That is, Nn =
⋃m

r=1 r.

Then, it follows that (A
(k,k′)
n )p,q = 0 for p ∈ r1 and q ∈ r2 (r1 6= r2), where

r1, r2 ∈ {1, 2, . . . ,m}.

Proof. From the definition of A
(k,k′)
n in (1), the (i, j) element of the matrix

is represented by

(A(k,k′)
n )i,j =











































di if i = j,

ai if i = j − k,

bi if i = j + k,

a′i if i = j − k′,

b′i if i = j + k′,

0 otherwise,

(3)

where 1 ≤ i ≤ n and 1 ≤ j ≤ n.
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Let ℓ ∈ {0,−k, k,−k′, k′}. Then, fromm=gcd(k, k′), it follows that ℓ ∈ mZ.
Since q ∈ r2, we see that q ∈ r2 +mZ. Thus,

q + ℓ ∈ r2 +mZ. (4)

From p ∈ r1, it follows that

p ∈ r1 +mZ. (5)

r1 6= r2 indicates that (r1 +mZ)∩ (r2 +mZ) = ∅. Hence, from (4) and (5), we
have, for any p ∈ r1 and any q ∈ r2, that

p 6= q + ℓ, ℓ ∈ {0,−k, k,−k′, k′}. (6)

(3) and (6) lead to (A
(k,k′)
n )p,q = 0 for any p ∈ r1 and any q ∈ r2, which

concludes the proof.

2. Main Results

In this section, we propose a block diagonalization algorithm of a (k, k′)-penta-
diagonal matrix that is an extension of a block diagonalization algorithm of
k-tridiagonal matrices in [8].

Using Lemma 2, we can block-diagonalize A
(k,k′)
n as shown in Theorem 3.

Theorem 3. Let A
(k,k′)
n be an n × n (k, k′)-pentadiagonal matrix, let

Nn and r be the same notations as in Lemma 2, and let |r| be the number of

elements in r. Then, A
(k,k′)
n is block-diagonalized into a block diagonal matrix

with m diagonal blocks by an n× n permutation matrix P of the form

P := [P1, P2, . . . , Pm], (7)

where Pr (r = 1, 2, . . . ,m) are n× |r| matrices as follows:

Pr := [ei1 ,ei2 , . . . ,ei|r| ], (8)

where ip ∈ r (p = 1, 2, . . . , |r|).

Proof. Substituting (7) into PTA
(k,k′)
n P yields

PTA(k,k′)
n P =













PT
1
A

(k,k′)
n P1 PT

1
A

(k,k′)
n P2 · · · PT

1
A

(k,k′)
n Pm

PT
2
A

(k,k′)
n P1 PT

2
A

(k,k′)
n P2 · · · PT

2
A

(k,k′)
n Pm

...
...

. . .
...

PT
mA

(k,k′)
n P1 PT

mA
(k,k′)
n P2 · · · PT

mA
(k,k′)
n Pm













.
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Here, let Pr1 := [ei1 ,ei2 , . . . ,ei|r1| ] and Pr2 := [ej1 ,ej2 , . . . ,ej|r2| ] for ip ∈ r1
and jq ∈ r2 (r1 6= r2). Then, we have

PT
r1
A(k,k′)

n Pr2 = O|r1|×|r2|

since (PT
r1
A

(k,k′)
n Pr2)p,q = (A

(k,k′)
n )ip,jq = 0 from Lemmas 1 and 2. Thus, we

have

PTA(k,k′)
n P =









PT
1
A

(k,k′)
n P1

. . .

PT
mA

(k,k′)
n Pm









. (9)

This concludes the proof.

Hereafter, for simplicity, (9) is rewritten as

PTA(k,k′)
n P = A1 ⊕A2 ⊕ · · · ⊕Am,

where Ar := PT
r A

(k,k′)
n Pr and “⊕” denotes direct sum.

A block diagonalization algorithm in Theorem 3 is summarized in Algorithm
1.

Algorithm 1

Step 1: Generate P1, P2, . . . , Pm using (8).

Step 2: Generate a permutation matrix P using (7).

Step 3: PTA
(k,k′)
n P = A1 ⊕A2 ⊕ · · · ⊕Am.

Here, we have the following two notes: if k = k′, then Algorithm 1 reduces to

the algorithm in [8]; A
(k,k′)
n is block-diagonalized regardless of order of canonical

vectors in (8).

The following proposition may lead to a further block-diagonalization of

A
(k,k′)
n .

Proposition 4. Let A
(k,k′)
n be an n×n (k, k′)-pentadiagonal matrix, where

n and k satisfy that Nn,k(:= {i ∈ Nn |n−k < i ≤ k}) 6= ∅. Let Nn, r, and |r| be
the same notations as in Theorem 3, and let |Nn,k| be the number of elements
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in Nn,k. Then, A
(k,k′)
n is block-diagonalized into a block diagonal matrix with

(m+ |Nn,k|) diagonal blocks by an n× n permutation matrix P ′ of the form

P ′ := [P ′
1
, P ′

2
, . . . , P ′

m], (10)

where P ′
r (r = 1, 2, . . . ,m) are n× |r| matrices as follows:

P ′
r := [P̂r∗ , P̂r′ ], (11)

P̂r∗ := [ei1 ,ei2 , . . . ,ei|r∗| ], P̂r′ := [ej1 ,ej2 , . . . ,ej|r′| ], (12)

where jq ∈ r′ := {i ∈ Nn,k|i ∈ r} (q = 1, 2, . . . , |r′|) and ip ∈ r∗ := r r r′

(p = 1, 2, . . . , |r∗|).

Proof. Since P in Theorem 3 includes P ′ in (10), we have

(P ′)TA(k,k′)
n P ′ = A′

1
⊕A′

2
⊕ · · · ⊕A′

m,

where A′
r := (P ′

r)
TA

(k,k′)
n P ′

r (r = 1, 2, . . . ,m). Substituting (11) into the defini-
tion of A′

r yields

A′
r = (P ′

r)
T
A(k,k′)

n P ′
r

= [P̂r∗ , P̂r′ ]
T
A(k,k′)

n [P̂r∗ , P̂r′ ]

=

(

P̂T
r∗A

(k,k′)
n P̂r∗ P̂T

r∗A
(k,k′)
n P̂r′

P̂T
r′
A

(k,k′)
n P̂r∗ P̂T

r′
A

(k,k′)
n P̂r′

)

. (13)

Here, let i ∈ Nn and j ∈ Nn,k. Then, since j + k > n, j + k′ > n, j − k < 1,
and j − k′ < 1, we have

i 6= j ± k, i 6= j ± k′.

Thus, using (3), we obtain

i ∈ Nn and j ∈ Nn,k ⇒ (A(k,k′)
n )i,j = diδi,j , (14)

where δi,j denotes the Kronecker’s delta. Similarly, let i ∈ Nn,k and j ∈ Nn.
Then, since i+ k > n, i+ k′ > n, i− k < 1, and i− k′ < 1, we have

j 6= i± k, j 6= i± k′.

Thus, using (3), we obtain

i ∈ Nn,k and j ∈ Nn ⇒ (A(k,k′)
n )i,j = diδi,j . (15)
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From Lemma 1 and (12), it follows that

(P̂T
r∗A

(k,k′)
n P̂r′)p,q = (A(k,k′)

n )ip,jq , (16)

(P̂T
r′A

(k,k′)
n P̂r∗)q,p = (A(k,k′)

n )jq,ip . (17)

Since r′ ∩ r∗ = ∅, we obtain ip 6= jq. Thus, from (14) and (16), it follows

that (P̂T
r∗A

(k,k′)
n P̂r′)p,q = 0. Similarly, it follows from (15) and (17) that we have

(P̂T
r′
A

(k,k′)
n P̂r∗)q,p = 0. Therefore,

P̂T
r∗A

(k,k′)
n P̂r′ = O|r∗|×|r′|, P̂

T
r′A

(k,k′)
n P̂r∗ = O|r′|×|r∗|. (18)

Substituting (18) into (13) yields

A′
r = P̂T

r∗A
(k,k′)
n P̂r∗ ⊕ P̂T

r′A
(k,k′)
n P̂r′ . (19)

From Lemma 1 and (12), it follows that

(P̂T
r′A

(k,k′)
n P̂r′)q,q′ = (A(k,k′)

n )jq,jq′

where jq, jq′ ∈ r′. From r′ ⊆ Nn,k ⊆ Nn, we see that jq and jq′ are written by
jq ∈ Nn and jq′ ∈ Nn,k. Thus, using (14), we have

(A(k,k′)
n )jq,jq′ = djqδjq ,jq′ .

Hence,

P̂T
r′A

(k,k′)
n P̂r′ = dj1 ⊕ dj2 ⊕ · · · ⊕ dj|r′| . (20)

Substituting (20) into (19) yields

A′
r = P̂T

r∗A
(k,k′)
n P̂r∗ ⊕ (dj1 ⊕ dj2 ⊕ · · · ⊕ dj|r′|).

Namely, A′
r is further block-diagonalized into a block diagonal matrix with one

diagonal block of the size |r∗| × |r∗| and |r′| diagonal blocks of the size 1× 1 by
P ′
r in (11).

Therefore, using P ′ in (10), A
(k,k′)
n is block-diagonalized into a block diago-

nal matrix with m diagonal blocks of the form P̂T
r∗A

(k,k′)
n P̂r∗ and |Nn,k| diagonal

blocks of the size 1× 1.

A block diagonalization algorithm in Proposition 4 is summarized in Algo-
rithm 2.



520 A. Ohashi, T. Sogabe, T.S. Usuda

Algorithm 2

Step 1: Generate P ′
r := [P̂r∗ , P̂r′ ] for r = 1, 2, . . . ,m using (11).

Step 2: Generate a permutation matrix P ′ using (10).

Step 3: (P ′)TA
(k,k′)
n P ′ = A′

1
⊕A′

2
⊕ · · · ⊕A′

m.

Next, the nonzero structures of diagonal blocks obtained from Algorithms
1 is shown in Proposition 5.

Proposition 5. Let Ar be diagonal blocks obtained from Step 3 of Algo-

rithm 1, where r = 1, 2, . . . ,m. Let i1 < i2 < · · · < i|r| in (8), and let k̃ = k/m

and k̃′ = k′/m. Then, Ar has the following nonzero structure:

(Ar)p,q =











































dip if p = q,

aip if p = q − k̃,

bip if p = q + k̃,

a′ip if p = q − k̃′,

b′ip if p = q + k̃′,

0 otherwise.

(21)

Proof. Using Lemmas 1 and 2, the (p, q) element of Ar is represented by

(Ar)p,q = (A(k,k′)
n )ip,iq =











































dip if ip = iq,

aip if ip = iq − k,

bip if ip = iq + k,

a′ip if ip = iq − k′,

b′ip if ip = iq + k′,

0 otherwise,

(22)

where ip, iq ∈ r. Here, it follows from the definition of r, k = mk̃, k′ = mk̃′,
and the assumption that we obtain

iq ± k = i
q±k̃

, iq ± k′ = i
q±k̃′

. (23)
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Substituting (23) into (22) yields

(Ar)p,q =











































dip if ip = iq,

aip if ip = i
q−k̃

,

bip if ip = i
q+k̃

,

a′ip if ip = i
q−k̃′

,

b′ip if ip = i
q+k̃

,

0 otherwise.

Thus, we obtain (21). This concludes the proof.

We see from (3) and (21) that Ar inherits essentially the same structure from
the original matrix (1). Thus, Algorithm 1 is a structure-preserving algorithm.

3. Illustrative Examples

In this section, illustrative examples of Algorithms 1 and 2 are provided.

Example 6. Let A
(3,6)
10 be a (3, 6)-pentadiagonal matrix as follows:

A
(3,6)
10 :=

































d1 0 0 a1 0 0 a′1 0 0 0
0 d2 0 0 a2 0 0 a′2 0 0
0 0 d3 0 0 a3 0 0 a′3 0
b4 0 0 d4 0 0 a4 0 0 a′4
0 b5 0 0 d5 0 0 a5 0 0
0 0 b6 0 0 d6 0 0 a6 0
b′7 0 0 b7 0 0 d7 0 0 a7
0 b′8 0 0 b8 0 0 d8 0 0
0 0 b′9 0 0 b9 0 0 d9 0
0 0 0 b′10 0 0 b10 0 0 d10

































.

The result of Algorithm 1 applied to A
(3,6)
10 is shown next. From m = 3, N10

is divided into the following three equivalence classes: 1 = {1, 4, 7, 10}; 2 =
{2, 5, 8}; 3 = {3, 6, 9}. Step 1 yields P1 = [e1,e4,e7,e10], P2 = [e2,e5,e8],
and P3 = [e3,e6,e9]. Step 2 yields P = [P1, P2, P3]. In Step 3, we have

PTA
(3,6)
10 P = A1 ⊕A2 ⊕A3, where

A1 =









d1 a1 a′1 0
b4 d4 a4 a′4
b′7 b7 d7 a7
0 b′10 b10 d10









, A2 =





d2 a2 a′2
b5 d5 a5
b′8 b8 d8



 ,
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A3 =





d3 a3 a′3
b6 d6 a6
b′9 b9 d9



 .

Example 7. Let A
(4,6)
7 be a (4, 6)-pentadiagonal matrix as follows:

A
(4,6)
7 :=





















d1 0 0 0 a1 0 a′1
0 d2 0 0 0 a2 0
0 0 d3 0 0 0 a3
0 0 0 d4 0 0 0
b5 0 0 0 d5 0 0
0 b6 0 0 0 d6 0
b′7 0 b7 0 0 0 d7





















.

From m = 2, N7 is divided into the following two equivalence classes: 1 =
{1, 3, 5, 7}; 2 = {2, 4, 6}. Here, Algorithm 2 can be applied since N7,4 = {4} 6= ∅.

First, the result of Algorithm 1 applied to A
(4,6)
7 is shown next. Steps 1 and

2 yield P = [P1, P2], where P1 = [e1,e3,e5,e7] and P2 = [e2,e4,e6]. In Step 3,

we have PTA
(4,6)
7 P = A1 ⊕A2, where

A1 =









d1 0 a1 a′1
0 d3 0 a3
b5 0 d5 0
b′7 b7 0 d7









, A2 =





d2 0 a2
0 d4 0
b6 0 d6



 .

Second, the result of Algorithm 2 applied to A
(4,6)
7 is shown next. Before

Step 1, 2
′
= {4} and 2

∗
= {2, 6} are generated. Steps 1 and 2 yield P ′ =

[P ′
1
, P ′

2
], where P ′

1
= P1 and P ′

2
= [P̂2

∗ , P̂2
′ ] =

[

[e2,e6], [e4]
]

. In Step 3, we have

(P ′)TA
(4,6)
7 P ′ = A′

1
⊕A′

2
, where

A′
1
= A1, A′

2
= P̂2

∗A
(4,6)
7 P̂T

2
∗ ⊕ d4 =

(

d2 a2
b6 d6

)

⊕ d4.

In this case, A2 is further block-diagonalized into A′
2
by Algorithm 2.

4. Concluding Remarks

In this paper, we proposed a block diagonalization algorithm of (k, k′)-penta-
diagonal matrices that is an extension of the block diagonalization algorithm of
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k-tridiagonal matrices in [8]. As for the obtained diagonal blocks, we showed
that the nonzero structures of the diagonal blocks are essentially the same as
that of the original matrix.
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