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Spatial correlation vortex dipoles may form in the four-dimensional mutual coherence function when a par-

tially coherent light source contains an optical vortex.

Analytical and numerical investigations are made in

near- and far-field regimes. © 2004 Optical Society of America
OCIS codes: 030.1640, 030.1670, 100.4550, 260.0260, 350.5030.

1. INTRODUCTION

Coherent optical beams may contain optical vortices that
are characterized by a dark core and a well-defined azi-
muthally harmonic phase.? In contrast, different points
in a spatially incoherent beam are uncorrelated, and the
phase structure of an optical vortex is ill defined. In the
transitional regime of partially coherent light, one should
take the statistical properties of light into account to
quantify global phase properties.>* Recent investiga-
tions suggest that vortices in partially coherent light are
destroyed.>® By relating the vortex phase to the spatial
variations in the mutual coherence function* (MCF), we
found robust vortex attributes that do not vanish in par-
tially coherent light.

The coherence properties of optical vortices have be-
come an active branch of inquiry in singular optics over
the past several years. Coherence filtering properties of
an optical vortex were recently investigated numerically’
and experimentally.® We employed the MCF, which de-
scribes the correlation between two points in a beam, to
study the propagation of partially coherent beams.® Re-
cently the MCF was used to study phase singularities in
partially coherent light emerging from two pinholes'®!
and to analyze sources with separable phase.!?

Here we describe our numerical investigation of the
MCF of a partially coherent vortex beam. We found spa-
tial correlation vortices (SCVs) in the MCF, which are
analogous to the composite vortices in coherent beams.>1?
Furthermore we demonstrate how both the coherence
length and the displacement of the conventional vortex in
a beam affect the SCVs. An on-axis vortex in a partially
coherent beam may result in a circular dislocation line in
the MCF.'* We found that this dislocation breaks into
two spatial correlation vortices as the conventional vortex
is moved off axis.

2. OPTICAL VORTEX IN THE INITIAL
PLANE

A single optical vortex in a coherent scalar beam that has
an otherwise planar wave front may be represented by
the complex electric field in the initial transverse plane
(z = 0) (Refs. 2 and 13):
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E(r, ¢,t) = A(r')g(r)exp(im ¢ ")exp(iwt)exp(iB), "

where the transverse polar coordinates (r, ¢) and
(r', ¢') are measured with respect to the center of the
beam and to the vortex core, respectively (see Fig. 1), w is
the angular frequency, ¢ is the time, m is the topological
charge, and Bis an arbitrary phase. We assume that the
beam envelope, g(r), is radially symmetric about the
beam center (r = 0) and has a characteristic size wy.
Furthermore, we assume that the vortex core function,
A(r'), is symmetric about the vortex core (r' = 0). The
vectors r and r’ are related by displacement vector s: r
= r' + s. If the vortex core coincides with the beam
center (s = 0), we refer to an on-axis vortex; otherwise
(s # 0) the beam is said to contain an off-axis vortex.
Intensity and phase profiles of an off-axis vortex are de-
picted in Figs. 1(a) and 1(b), respectively. When m is a
nonzero integer the field described by Eq. (1) has an un-
defined phase at r' = 0; hence the field there must van-
ish. Physically this zero-field point is attributed to total
destructive interference.

In this paper we discuss two types of initial vortex core
profile: large-core and pointlike profiles. Large-core
vortices, which occur naturally in laser modes and
speckle, have a core function that may be expressed as
A(r') = (r'lwg)™.  “Large” refers to the fact that the
core function has infinite extent; the effective core size is
limited by envelope function g(r). We note that when s
= 0 alarge-core vortex and a Gaussian envelope function
represent a Laguerre—Gaussian mode. Pointlike vortices
have a localized core that may be approximated by
A(r') = tanh""‘(r’/b), assuming that the radial core size,
b, is much smaller than the envelope size, w 215,16 pro.
ducing pointlike vortices requires diffractive masks or ho-
lograms. For example, one may create a point vortex by
transmitting a planar Gaussian beam (m = 0) through a
phase mask of variable thickness d = d,
— mM\gp2m(ng — ngy), where d is the maximum thick-
ness, A\, is the intended wavelength, and n; and n are
indices of refraction of the substrate and of the surround-
ing medium, respectively.'61
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Fig. 1. Initial (a) intensity and (b) phase profiles of an electromagnetic field vortex of topological charge m = 1. Vector s shows the
displacement of the vortex core from the centroid of the beam envelope. Position vectors r and r’, respectively, make angles ¢ and ¢’
with the x axis and are related: r =r' +s. When m = 1 the vortex phase is equivalent to angle ¢'.

Fig. 2. Notation used to describe the mutual coherence function
in the (a) initial and (b) far-field planes. Unprimed (primed)
variables are measured from the beam envelope (vortex) center.
FT, Fourier transform.

3. MUTUAL COHERENCE FUNCTION IN
THE INITIAL PLANE

A partially coherent beam propagating through a vortex
mask may be expected to gain the characteristic vortex
phase factor exp(im¢ ') even though the wave front is ran-
domized. We may formalize this assertion by interpret-
ing the phase B in Eq. (1) as a spatially distributed ran-
dom variable. For computational convenience we
assume that the statistical distribution of B corresponds
to a Schell-model correlator: C(ry, ry) = C(|r; — 15),
where C(0) = 1 and r; and r, are arbitrary points in the
initial plane (see Fig. 2). Coherence properties of a sta-
tistically stationary field may be described by the MCF:

F(rl’ 1‘2) = <E(r1’ t)E*(r25 t)>’ (2)

where ( ) denotes an ensemble average. The MCF for a
partially coherent vortex field may therefore be expressed
by insertion of Eq. (1) into Eq. (2):

[(ry, ry) = C(ry — ry)A(r1)A(ry")g(r1)g(ry)
X explim(dy’ — ¢')], (3)

wherer; = r;’ + sandry, = ry’ + s. Equation (3) may
be understood as a four-dimensional field containing two
vortices that have topological charges +m and —m, i.e., a
vortex dipole.

The four-dimensional MCF may be partially character-
ized by two two-dimensional functions: intensity I(r)
and normalized cross correlation x(r). The latter may be
experimentally determined by use of a wave-front folding
interferometer.? In the initial plane these functions are
given by

I(r) = I'(r, r) = A%(|r — s|)g%(r), (4a)
x(r) = L(r, —v)/[I(xr)I(—1)]"
= C(2r)exp(im®), (4b)

where  exp(i®) = exp[i(¢;’ — ¢o')] = —[r% — 5% + 2i(ys,
— xs,)/(Jr — s||r + s|) and where (x, y) and (s,, s,) are
the Cartesian coordinates of vectors r and s, respectively.
The intensity at the origin, I(0) = A2%(s)g2(0), is equal to
zero when s = 0. The phase, ®, is undefined at the sin-
gularities located at r = *s. Furthermore, we note that
exp(i®) = +1atr = 0(s # 0) and exp(i®) = —1 when s
= 0(r#0).

Thus in the initial plane a single dark core appears in
the intensity profile at r = s [as shown in Fig. 1(a)], and
two oppositely charged phase singularities, or correlation
vortices, appear at r = *s. The magnitude of x(r) is
given by correlator C(2r) at all points except the singu-
larities, where |y(*+s)| must abruptly vanish because ® is
undefined at r = *s. The distance over which the value
of |x| changes from C(2r) to zero is negligible. Each
near-field normalized cross-correlation vortex may there-
fore be categorized as a point vortex in the initial plane.
Experimentally these correlation vortices may be mani-
fest as points of zero fringe visibility in the measured out-
put of a wave-front folding interferometer. When s = 0
the correlation vortices are annihilated and we find that
x(r) = (=1)™C(2r) (except at the origin). We also see
that when s = 0 the beam uniformly switches between
correlation and anti-correlation values when the value of
m is changed from even to odd. This result reflects the
fact that the points at r and —r are in (out of) phase when
m is even (odd). These results, which follow from Egs.
(4), are independent of the explicit forms of the vortex
core function, the amplitude function, and the correlator.
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4. FAR FIELD MUTUAL COHERENCE
FUNCTION

Both the optical field and the MCF change as the beam
propagates through free space. This change is most eas-
ily understood for the far-field regime (i.e., at a propaga-
tion distance z,; > kw,2), where both large-core and
point vortices in the initial plane are transformed into
large-core vortices when the beam is coherent.>1%16
Lacking a priori knowledge of the far-field correlator, one
may calculate the MCF from Eq. (3) (Ref. 3):

I'“(kq, ky) = (1/7\2d)2fJ I'(ry, ro)exp[ —i(ky 1y

— ky-ry)]drdr,, (5)

where k; and ky are transverse wave vectors in the far-
field plane [Fig. 2(b)]. As we did for the initial plane, we
focus our attention on the far-field intensity, I”(k)
= I'(k, k) and on the normalized cross-correlation func-
tion, x*(k) = I'*(k, —K)/[I"(K)I*(-k)]"2

Efficient fast-Fourier-transform algorithms'® may be
used to integrate Eq. (5) numerically. Although the four-
dimensional computation is generally memory intensive,
it is possible to choose envelope and core functions that
allow Eq. (5) to be computed from two-dimensional inte-
grals. For this reason we assume that the optical field in
the initial plane is described by a large-core vortex of to-
pological charge m = 1 on a Gaussian envelope, g(r)
= Eqexp(—r?w,y?), where E, and w, characterize the
field amplitude (assumed to be real) and the radial beam
size, respectively. Furthermore we assume a Gaussian—
Schell correlator:

C(r; — ry) = exp(—|r; — ry|?/lc?), (6)

where [ is the transverse coherence length in the initial
plane. For the planar (nonvortex) case, m = 0, Eq. (5)
reduces to 2 ok, ky) = (Eq/\z)%(f[ Tydxdx,
X [[T,dy,dys), where

T, exp(—(x12 + x22)/rb52 + 2x1x2/lC2)

X exp(ikgyxy — ikq1.X1), (7a)

T, = exp(—(y1® + y2°)/rps® + 2y1y2/1c%)
X exp(ikgyys — ik1yy1), (7b)

where (x;, y;) and (k;,, k;,) are the coordinates of r; and
k;, respectively, and the beam spread parameter is de-
fined r, = [(Vwy2) + (W3] V2

A. On-Axis Case, s=0, m=1

It is instructive first to consider the on-axis case for a fun-
damental charge, m = 1, whereby Eq. (5) may be ex-
pressed:
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ff x12x9T  dx1dxy

X JJ T,dydys

+ ff xlTxdxldx2ff 1yoTydy1dys
+ jf x2Txdx1d_x2fJ iy1Tydydyo
+ ff Txdxldxsz y1y2Tydy1dy2)-

€))

2k, ky) = (Eq/wohzy)?

The far-field intensity, I*(k), and both the modulus'® and
the phase of y”(k) are shown in Fig. 3 for different values
of the relative coherence length o, = [./w,. As ex-
pected, the intensity profiles in Figs. 3(a)-3(c) depict
greater diffusion of light into the vortex core as the value
of o, decreases.

A striking dark ring, which persists as o, is varied, is
evident in the normalized cross-correlation function
shown in Figs. 3(d)-3(f). The phase profiles in Figs.
3(g)—3(i) depict a 7 phase difference on either side of the
ring, and thus the ring is said to be a phase dislocation.'*
The ring’s radius, ky, increases as the value of o, de-
creases, i.e., as the beam becomes less coherent. Unlike
in the initial plane, the far-field intensity at the origin is
nonzero, I”(0) # 0, unless the beam is coherent. And
rather than being singular, the normalized cross correla-
tion at the origin is unity: x*(0) = 1 (except when o,
— ). The far-field beam is therefore correlated for %
< ky and anticorrelated for £ > ky. From an experi-
mental point of view this ring suggests that black (white)
fringes generated by a wave-front folding interferometer
will shift to white (black) on either side of the ring.

B. Off-Axis Case, s#0, m=1

Without loss of generality we may assume that the vortex
is displaced along the x axis: s, =s, s, = 0. The far-
field MCF may then be written as

Ffzzl(kh ky) = (Eo/xzdwo)zlff [x1x9 — s(x9

+ x1)]Txdx1dx2fj T,dydy,

+ Szfj TxdxldeJ'f Tydyldyz
+ jf Txdxldx2ff [yiye

+ is(ye — y1)1T,dy dy,

+ fJ x2Txdx1dx2fJ iy Tydydys
- ff xlTxd-xldx2ff iy2Tydy1dy2].

9
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Fig. 3. Numerically calculated far-field distributions of intensity I”(k) and normalized cross correlation xy”(k) for an initial on-axis
vortex (s = 0) of topological charge m = 1. Intensity profiles (a)—(c) depict an increasingly distinct vortex core as the relative coherence
length, o, = [./w, increases from low ( o, = 1) to medium ( o, = 2) to high ( o0, = 5) coherence. The corresponding magnitudes (d)—
(f) and phases (g)—@1) of x“(k) demonstrate the formation of a ring dislocation of diameter 2%y that persists for arbitrary values of o, .
When s = 0, x“(k) is real and positive (negative) inside (outside) the dislocation ring. Line plots of values along the &, and %, axes are

overlaid on the corresponding images as an aid to the eye.

Numerical calculations for the partially coherent case o,
= [, /wy = 2 are shown in Fig. 4 for two cases: s/w,
= 0.2 and s/w, = 0.4. Each intensity profile [Figs. 4(a)
and 4(b)] exhibits a diffuse dark core that is translated in
a direction that is perpendicular to the initial displace-
ment vector, s. One may understand this far-field dis-
placement by considering that each coherent field in our
ensemble undergoes a Gouy phase shift on propagating
from the near field to the far field. The position of a vor-
tex in a propagating coherent beam is described in Ref.
15.

The corresponding values of | y*“(k)|, shown in Figs. 4(c)
and 4(d), and of ®(k), shown in Figs. 4(e) and 4(f), depict
a pair of large-core vortices rather than a ring dislocation
[Fig. 3(e)]. The variation of phase near the singularities
in Figs. 4(e) and 4(f) indicate topological charges of M
= latk,=kyand M = —1 at k, = —ky. The pres-
ence of large-core correlation vortices suggests that large
patches of the far-field beam are uncorrelated and may
therefore serve as low-coherence light sources. Similarly

to the on-axis case, Figs. 4(e) and 4(f) indicate that the
beam is anticorrelated (® = ) for £ > k, and correlated
(® =027 fork <k,.

To develop an understanding of the ways in which the
initial coherence length affects the far-field MCF we com-
puted the far-field intensity and the normalized cross-
correlation function for several values of o,. Figure 5
shows these results when s/w, = 0.2 for low coherence,
0. = 1, and high coherence, o, = 4. As expected, the
low-coherence intensity profile, Fig. 5(a), reveals no evi-
dence of a vortex core, whereas the core is easily distin-
guished in the high-coherence case, Fig. 5(b). Comparing
the corresponding distributions of |y*(k)|, we can see
that the low-coherence profile, Fig. 5(c), is highly local-
ized, whereas the high-coherence profile, Fig. 5(d), is
broad. The phase distributions in Figs. 5(e) and 5(f) sug-
gest that the distance between the far-field correlation
vortices decreases with increasing values of o, .

Figure 6 shows the relation between the far-field dislo-
cations and the initial vortex displacement for three val-
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ues of o,. For a coherent beam ( o, > 1) we find that &y
is a linear function of s: ky = 2s/w,2. For partially co-

herent beams we see that 2w, always exceeds the coher-
ent value for a given value of s/w,. For example, the on-

axis case (s = 0) exhibits a dislocation ring that
14

increases inversely in size with o, .
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5. CONCLUSIONS

Spatial correlation vortices in a cross-correlation function
were analytically and numerically investigated. When a
single vortex of topological charge m = 1 is present in a
partially coherent beam, a pair of oppositely charged

Fig. 4. Numerically calculated far-field distributions of intensity (k) and normalized cross correlation y”(k) for an initial off-axis
vortex (s, # 0,s, = 0) of topological charge m = 1 and medium coherence ( o, = 2). Intensity profiles depict a diffuse core along the
—k, axis for (a) s, /w, = 0.2 and (b) s, /w, = 0.4. The magnitudes (c) and (d) and the phases (e) and (f) of x”(k) reveal a pair of oppo-
sitely charged spatial correlation vortices separated by 2k and that have opposite topological charges.

Fig. 5. Same as Figs. 4(a), 4(c), and 4(e) except for the low- (o, = 1) and high- (o, = 4) coherence cases.
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Fig. 6. Plots of radial distance between spatial correlation vor-
tices, kv, as a function of initial electromagnetic vortex displace-
ment s for three values of initial relative coherence length o,
= l.,/wy. Values along both axes are normalized by the initial
beam size, w,. Numerically calculated values are shown as
data marks, and second-order polynomial fits are included to aid
the eye.

SCVs (i.e., a dipole) is manifest in both the initial plane
and the far-field regions. Those in the initial plane are
characterized as point vortices, and they occur at r
= =s, where s is the displacement of the vortex from the
beam center. We found large-core SCVs in the far-field
region at positions *ky, where ky depends on both the
initial position and the initial coherence length and the
direction of k, is perpendicular to s. Having examined
only the self- and cross-correlation projections of the four-
dimensional mutual coherence function, we have not yet
explored the four-dimensional path of the singularities.
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