ABSTRACT

The proliferation of the internet has created new opportunities to study the mechanisms behind the emergence and dynamic behaviour of online popularity and celebrity. In this paper we examine how common epidemic models, specifically SIR and SEIR models, can be applied to model the evolution of outbreaks of celebrity interest on the internet. A major challenge when using such models is to parameterise them to fit data as an outbreak unfolds over time, without knowing the initial number of susceptibles in the target population. We present a methodology capable of fitting the model’s parameters from a single trace, while the outbreak unfolds, and of forecasting the epidemic’s progression in the coming days. We present results on three kinds of data: simulated epidemic data, data from a real Influenza virus outbreak and data from music artists BitTorrent download and YouTube video views activity.

Keywords
Epidemiology, Mathematical Modelling, Celebrity

1. INTRODUCTION

A person who has a prominent profile and commands a great degree of public fascination and influence in day-to-day media.

Celebrities pervade our social existence and media, not only as the faces of popular culture but also as the focus of intense public interest. In the information age, celebrity is born and spreads relatively quickly thanks to the rapid dissemination of information via multiple channels, many of them internet-based (e.g. social networks, video websites and peer-to-peer file sharing networks). For the same reason, outbreaks of celebrity tend to be very ephemeral as public interest is at first excited and then dissipates as focus shifts. Indeed, Andy Warhol’s famous prediction that “in the future, everyone will be world-famous for 15 minutes” [34] seems to becoming reality.

Similar to a disease’s behaviour, an outbreak of celebrity interest starts with a few susceptible individuals who are exposed to an originating event and some of whom become “infected”. These individuals then interact with others, passing on the disease or information. Eventually the infected individuals recover/lose interest and the outbreak dies out.

By way of example, let us consider the outbreak of public interest following the death of the music artist Whitney Houston. The left side of Figure 1 presents Whitney’s YouTube music videos’ views as recorded immediately after her death. We observe a rapid surge in interest which remains particularly high for 7 days, and then gradually begins to drop down to previous levels. The right-hand side of Figure 1 presents occurrences of Influenza-like Illness incidents as reported in 2013 in Kansas [12]. The two curves appear to share a similar shape profile.

As noted in [15], until very recently, the study of celebrity was widely held in “serious” academic circles to be a marginal pursuit. However, in the last two decades, many disciplines, from sociologists to computer scientists, have begun to actively study this ubiquitous modern status phenomenon.

Despite numerous qualitative analyses of celebrity [15, 30, 34], there is very little quantitative understanding of the origin and evolution of celebrity. While some researchers have developed quantitative models of the popularity dynamics of certain items of online content such as Wikipedia articles [28] and YouTube video views [18], quantitative studies of celebrity are still at an early stage [10, 32].

By contrast, in the domain of disease modelling, there has been a large amount of work on epidemiology (e.g. [26, 3, 36, 25]). Our research aims to explore to what extent the lessons learnt in epidemiology can be used in a study of the way celebrity spreads on the Internet. It turns out there is no direct translation, because this kind of research comes with some extra challenges, such as not knowing the initial number of susceptibles in an online user population.

The main contribution of this paper is the study of how epidemiological models can adapted for modelling and predicting the spread of celebrity. Two classical infectious disease models, namely the SIR and SEIR models, are used within a model parameter fitting framework that takes as input a truncated dataset describe some “outbreak” of online activity following an event involving a celebrity. Given an outbreak, a prediction technique is developed for the online fitting of infectious disease model parameters using an optimization method that employs the Nelder–Mead algorithm with a least-squares-based objective function.
A novel aspect of this research is connected to one of the major challenges: not knowing or being able to estimate from past data the initial number of susceptibles in the population. As this is one of the initial conditions, it causes potentially large uncertainties in the estimation procedure. Under these conditions, this paper is validated using synthetic and real disease data as well as real data describing online activity related to music artists.

The rest of this paper is organised as follows. Section 2 presents related research. Section 3 describes the main optimisation methods used for fitting the models, estimating the parameters and a metric for quantifying the goodness of our fits, namely the coefficient of determination. Section 4 gives the results of our analysis on the studied datasets. The paper concludes with a summary of the results and a discussion on future work.

2. RELATED WORK

Celebrity Studies

“A celebrity is a person who works hard all his life to become known, then wears dark glasses to avoid being recognized”, Fred Allen.

While the topics of fame and celebrity were ignored by sociologists for many years, it has recently been taken up by both theorists and empirical researchers in sociology and a variety of related fields (e.g. [6, 15, 20]).

A famous person turns into a celebrity through narratives. Narratives have entertainment value and represent the lives lived by people who capture our interest and the interest of the media. Celebrity is suspenseful as it is constantly unwinding and as it is the product of a process [31]. One needs a performer, a personal life, a narrative and fans [30]. In other words, one needs an audience to appreciate the narrative and admire its star. The audience is represented by the internet population that can capture and share the narratives over Online Social Networks [20].

Social Network Analysis

Social Networks represent online environments in which a user can have an online presence via their individual profile, make links and interact with other users in various ways [9]. Data published on Facebook's website state that Facebook alone has over 500 million users and that it is now used by 1 in every 13 people on earth, with over 250 million that log in on a daily basis. The average active adult internet user has about 130 friends. 53% of all the adult internet users follow a brand, while 32% follow a celebrity [23].

Much of the researchers’ interest can be attributed to the appealing focus of OSN analysis on relationships among social entities, and on the patterns and implications these relationships have on content spreading dynamics. Internet users promote viral information dissemination and create powerful electronic word-of-mouth (WoM) effects [35] that result in the creation of online trends [1]. Data coming from Social Networks and search engine queries offer significant insight into predicting and controlling infectious diseases, such as measles and influenza [5, 8].

Computational Epidemiology and Social Modelling

Computational epidemiology is an interdisciplinary area setting its sights on developing and using computer models to understand and predict the diffusion of disease through populations [19]. In 1964, Goffman and Newill were the first to bring a social context to epidemiology, as their work emphasized that a mathematical model for the spreading of rumours can be constructed depending on the mechanism postulated to describe the growth and decay of the spreading process [3]. More recently, Tweedle and Smith attempted to apply mathematical models for the dynamics of emerging infectious diseases to data acquired from Google Trends. Specifically, they modeled music artist Justin Bieber’s popularity based on user search queries [32]. Other works of Social Phenomena Modelling consider the problem of finding the graph on which an epidemic spreads, given only the times when each node gets infected [22]. The probability of an infection in a social context is defined as the likelihood of a user tweeting on a topic (contagion), shortly after having himself been exposed to it. Several models have been developed that determine the probability of a user adopting a content based on what other content (s)he was previously exposed to [21] and hence to determine the ideal times at which to spread a message in order for it to go viral (e.g. [13, 11]). Also, the early prediction of trending topics has been previously studied by comparing a recent activity signal for
a topic to a large collection of historical activity signals for trending and non-trending topics [7], as well as the popularity life-cycle of YouTube videos which has been studied either by examining their popularity distribution versus their age [2] or by analyzing early measurements of view data [17].

3. METHODOLOGY

3.1 Modelling Epidemic Processes

We are developing optimisation-based frameworks based on traditional epidemiological models [33], in order to shed light on the following question: Given a snapshot of a social behaviour with some behaviour occurrences (i.e. an emerging trend), how early on in the outbreak will we be able to predict aspects of its future evolution? We study the relationship between popularity dynamics and virus infectivity by calculating certain time points of interest. As illustrated in Fig. 2, these are: the time when the epidemic reaches its peak in terms of number of infectious individuals, the time by which at least half of those individuals have recovered, and the time when the epidemic ends.

Figure 2: Sample infectious disease outbreak data with marked points of interest.

3.1.1 The SIR model

An epidemic is said to arise in a community when cases of a disease or other health-related events occur in excess of normal expectancy. We define an outbreak as an event in a celebrity’s career or personal life that has attracted the interest of the media, such as a TV appearance, a gig, a release of a new single/album, or even larger events such as a marriage, divorce, scandal or death.

Kermack and McKendrick’s classical models of 1927 have suggested the use of Ordinary Differential Equations (ODEs) [14] as an appropriate modelling formalism. The most basic, the SIR model, counts the number of susceptible, infected, and recovered individuals in a population. The SIR model and other derived infectious disease models (e.g. [25, 26]), allow us to answer questions such as how many people need to be vaccinated to prevent an epidemic? or how many people will be infected at a particular point in time? Given a closed population of individuals, we define three subpopulations:

- $S(t)$ the number of individuals who are susceptible to become infected by the disease at time t,
- $I(t)$ the number of individuals who are infected by the disease at time t with rate β,
- $R(t)$ the number of individuals who have recovered from the disease at time t. We assume that the rate of recovery γ is constant and therefore the infectious period follows the exponential distribution.

The initial values of SIR need to satisfy the conditions:

$$S(0) = S_0 > 0 \quad (1)$$
$$I(0) = I_0 > 0 \quad (2)$$
$$R(0) = 0 \quad (3)$$

To illustrate how the SIR model evolves, we solve the system of differential equations above for chosen input values: $\beta = 0.001, \gamma = 0.1$ with initial conditions $S_0 = 500, I_0 = 10$. Consider the resulting numbers of the susceptibles, infectious and recovered individuals through time in Fig. 3. Note how the equality $N = S + I + R$ is preserved throughout.

3.1.2 The SEIR model

The main difference the SEIR model has compared to the SIR model, is an additional subpopulation, the Exposed E, consisting of individuals who are infected but not yet infectious. If we assume that the sojourn time of individuals in the latent period follows an exponential distribution with expectation α^{-1}, the differential equations for the model are:

$$\frac{dS(t)}{dt} = -\beta S(t)I(t) \quad (4)$$
$$\frac{dE(t)}{dt} = \beta S(t)I(t) - \alpha E(t) \quad (5)$$
$$\frac{dI(t)}{dt} = \alpha E(t) - \gamma I(t) \quad (6)$$
$$\frac{dR(t)}{dt} = \gamma I(t) \quad (7)$$

Fig. 4 presents a sample evolution of the SEIR model with pre-supplied parameters. Compared to the SIR model’s evolution, the SEIR model’s curve is more platykurtic and its infectious peak is reached later in time.
3.2 Model Fitting Procedure

An important application of mathematical models is to estimate parameters that cannot be measured directly. Here we discuss how we fit the parameters of our models in the context of ongoing outbreaks. We particularly consider the challenge of estimating the initial number of susceptibles in populations where this quantity is not known, and there is no principled way for estimating it. Traditional methods for estimating parameters in SIR/SEIR models involve only the estimation of β, γ and (where applicable) α. This is because the initial number of susceptibles has traditionally been considered to be a known quantity or one that can be readily estimated from the context [24, 29, 33].

3.2.1 Isolating Outbreaks

Isolating an outbreak from background trend data requires rules which define the start and end of an outbreak. Observation to mark the beginning of an outbreak if the next observation exceeds the mean of the observations so far by three standard deviations (cf. Fig. 5). We regard a particular outbreak as having ended when the standard deviation of a sliding window formed from the most recent k observations falls to or below the level observed just before the start of the outbreak.

3.2.2 Online Model Fitting

We attempt to make predictions while each outbreak unfolds, over time. For that reason, we apply our fitting methodology on truncated datasets. For each dataset, we start by taking the first 3 observations of the outbreak. We then create a new truncated dataset by adding 1 more new observation at a time, until the end of the outbreak.

Parameters need to be estimated for each truncated dataset. The vector of parameters that needs to be estimated for SIR models is β, γ and S_0 and for SEIR models β, γ, α and S_0. For technical reasons to do with the optimisation method employed and the fact that all rates are known to be positive, we actually work in log space and fit $\log(\beta)$, $\log(\gamma)$, $\log(\alpha)$ (where applicable) and $\log(S_0)$.

3.2.3 Searching the Parameter Space

In order to perform a search of the parameter space for the set of model parameters which gives the best least-squares fit to the data, we make use of the Nelder–Mead method. The Nelder–Mead algorithm is a method for multidimensional unconstrained optimization that does not require the calculation of derivatives. It is widely used to solve parameter estimation and maximum likelihood problems, where the objective function is not smooth [16].

In our case we make use of a least-squares-based objective function that characterises how well a candidate model fits the real data. That is, our approach produces a solution that minimizes the sum of squared residuals. Algebraically this corresponds to minimizing

$$S = \sum (y_i - f(x_i, \theta))^2$$ \hspace{1cm} (8)

where y_i is the observed value, and the model is $f(x_i, \theta)$ where θ is the vector of unknown parameters. The model fits are performed by solving first-order ODEs using the R package lsoda. Note that it is important to specify a small number for the absolute error tolerance, which determines the error control performed by the solver. Alternatively, one can specify the maximum value for the integration step-size.

Regarding initial conditions, we take I_0 to be the number of infectious individuals on the first day of the outbreak, while R_0 is assumed to be 0. In the case of the SEIR model, we also assume E_0 to be 0.

To mitigate the likelihood of the Nelder–Mead optimisation procedure becoming trapped in a local minimum, we restart it with 20 different random initial parameter vectors (sensibly constrained such that $\gamma > \beta > 0$ for example), and select as our final candidate that vector which yields the lowest S across all runs.

3.2.4 Assessing Goodness of Fit

In order to assess how well a chosen parameter vector fits a truncated dataset, we make use of the coefficient of determination, denoted as R^2. Normally reported in the context of techniques such as regression, R^2 describes the proportion of the total variation present in the observations explained by the model. Assuming that y_i are the observed data points
and f_i are the model predictions, the mean of the observed data is given by $\bar{y} = (\sum_{i=1}^{n} y_i)/n$. Then we calculate the total sum of squares, SS_{tot}, which is proportional to the sample variance, and the residual sum of squares SS_{res}, which gives a measure of how far the estimated values are from the observed. The formulae are the following:

$$SS_{\text{tot}} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad (9)$$

$$SS_{\text{res}} = \sum_{i=1}^{n} (y_i - f_i)^2 \quad (10)$$

Then the coefficient of determination is given by

$$R^2 = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}} \quad (11)$$

Normally, the value of R^2 will be in the range between 0 and 1. The closer R^2 is to 0 the least improvement our model has made over the simple model of taking the average of the observed data as our fitted value. The closer R^2 is to 1 the better our model explains the variability in the data. As can be observed by the formula above, if $SS_{\text{res}} > SS_{\text{tot}}$, then R^2 can have negative values as well. In such situations, the mean of the data provides a better estimate than the model fitted values, thus meaning the model should be discarded.

3.2.5 Confidence Intervals on Model Trajectories

The evolution of any realised trajectory of an epidemic process is stochastic in nature. We therefore use multiple independent runs of Gillespie’s Stochastic Simulation algorithm [27] in order to capture the possible variation in the independent runs of Gillespie’s Stochastic Simulation algorithm.

Specifically, for the set of simulation generated observations at each time point t and a confidence level of $(100-c)\%$, we report the lower end point of the confidence interval as the cth percentile of the observations and the upper end point of the confidence interval as the $(100-c)$th percentile of the observations.

Naturally, this formulation does not take into account the additional uncertainty that may be associated with the model parameterization itself. We acknowledge that this issue is important and needs to be considered in future work.

3.3 Data Sources

3.3.1 Synthetic SIR/SEIR Data

Synthetic datasets generated by SIR and SEIR models with known parameters were generated using stochastic simulation. A number of packages are suitable for this purpose including R, Dizzy and Matlab. The purpose of using synthetic datasets is to evaluate the ability of our methodology to recover model parameters using a single trace for which the ground truth is known.

3.3.2 Real Influenza Data

Influenza is one of the most common infectious diseases in humans, with regular annual outbreaks. One institution that reports on the impact of flu in the US is the Center for Disease Control and Prevention (CDC). From the CDC’s FluvView Web Portal\(^1\), we obtained a dataset of influenza positive tests (summed over all subtypes of the flu virus) reported to the CDC for the 2012/2013 Influenza season.

3.3.3 MusicMetric Data

We were able to gather time-series data for BitTorrent downloads and YouTube video views of various music artists using the MusicMetric API. This is an online artist analytics toolbox that contains detailed information on fan trends and popularity for particular artists.

4. RESULTS

In this section, we present results illustrating the application of our online model fitting methodology to our different datasets. We use the coefficient of determination as a metric to assess the efficacy of our models.

4.1 Synthetic datasets

SIR Data

The artificial dataset used in this section is shown in Fig. 6 and is generated from the SIR model with parameters $\beta = 0.001, \gamma = 0.1$ and initial conditions $S_0 = 500, I_0 = 10$. At a very early stage, and operating on a single set of only 8 observations, our model manages to predict with surprising precision not only that in 4 days there will be a peak of infectiousness, but also the number of infectious individuals at that point. As time progresses, the fit becomes more and more stable and adjusts only slightly with the addition of new observations. Finally, we can see that the estimated best fit parameters are very close to their true values, the curve fits the data points well and the confidence intervals are providing a good indication of the predicted values.

SEIR Data

Similarly, we generate synthetic data from the SEIR model as shown in Fig. 7, with parameters $\beta = 0.001, \gamma = 0.1, \alpha = 0.5$, and initial conditions $S_0 = 500, E_0 = 0, I_0 = 10$. We manage to predict the curve and the peak before it actually occurs with a good precision. Note that because of the extra parameter we initially observe that the curve is much smoother and changes much more with additional observations. However, after observing 25 data points, the fit manages to predict the tail well.

4.2 Actual Influenza outbreak dataset

SIR Data

This data set is taken from reports of the US Center for Disease Control (CDC) for the 2012-2013 Influenza season and provides the number of individuals testing positive for flu over time. As seen in Fig. 8, we manage to predict the peak in infectious individuals from only 7 observations to be around day 10 and of magnitude around 6800. In reality, it occurs to be only 1 day later, with slightly more people infected, about 7000. The accuracy of predicting from partial information on a single trace the time of the peak, the magnitude of the peak and the tail of the infection is remarkable.

\(^1\)http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
Figure 6: SIR Model fit to a synthetic data set with known parameters at various time points.

Figure 7: SEIR Model fit to a synthetic data set with known parameters at various time points.

Figure 8: SIR Model fit to actual daily Influenza positive tests reported to the CDC at various time points.
4.3 Case Studies of Music Artists

Whitney Houston’s death, SIR model of YouTube views

Fig. 9 is based on an SIR model fit to YouTube video plays of Whitney Houston’s songs online immediately after her death on 11 February 2012. Note the huge jump in views on the day after the event, where views skyrocket from around 2000 to 53,000 in only a day. We speculate that this effect is due to the intense social media activity and saturation news coverage surrounding the event. In fact our model does not manage to predict the peak before it occurs, as it is very early on the outbreak. Also, while there is reasonable qualitative agreement between the fitted model and the data overall, the limitations of our current strategy for generating confidence intervals without due regard for parameter uncertainty become very apparent.

Whitney data, SEIR model of BitTorrent Downloads

Fig. 10 presents a SEIR model fit to the daily BitTorrent downloads of Whitney Houston’s music shortly after her death. The extra parameter allows for good flexibility in the model fit. Indeed, the fitted curve follows the data points fairly closely from day 14 of the outbreak. The fit remains relatively stable with the addition of new observations, which allows us to predict the tail of the outbreak with a good amount of certainty.

Etta James SEIR BitTorrent downloads after her death

Turning now to an SEIR model of the BitTorrent downloads following the death of soul and blues singer Etta James on 20 January 2012, we observe in Fig. 11 that from day 5 of the outbreak the model is able to accurately predict the landing point of the downloading epidemic.

5. CONCLUSIONS

This paper represents a preliminary attempt to understand the origins and dynamic evolution of celebrity on the internet by drawing on, and extending, the classical theory of the epidemiological modelling of infectious diseases. It is promising that the proposed framework appears to be able to successfully recover the parameters of synthetic datasets at an early stage, and is flexible enough to be applied with some success to real data ranging from BitTorrent music download traffic and YouTube video views to Influenza incidence.

This effort forms part of a broader framework which aims to be able to answer questions such as: What sort of actions create the greatest outbreaks of public interest? How long will a given increase of public interest last? and At what point in time the public interest will reach a peak. Further, by applying quantitative models to the domain of modern music, we want to shed light on how the internet affects our preferences and evolving tastes in music artists. Wider application areas are also worthy of investigation, e.g. prediction of computer virus spread and mobile application downloads.

6. REFERENCES

Figure 9: SIR Model fit to Whitney Houston YouTube video views per day at various time points after her death.

Figure 10: SEIR Model fit to Whitney Houston music BitTorrent downloads per day at various representative time points after her death.

Figure 11: SEIR Model fit to Etta James’ music BitTorrent downloads per day at various representative time points after her death.

