
Pitfalls of virtual machine introspection on modern
hardware

Tamas K. Lengyel
Technische Universität

München
tklengyel@sec.in.tum.de

Thomas Kittel
Technische Universität

München
kittel@sec.in.tum.de

George D. Webster
Technische Universität

München
webstergd@sec.in.tum.de

Jacob Torrey
Assured Information Security
torreyj@ainfosec.com

Claudia Eckert
Technische Universität

München
eckert@sec.in.tum.de

ABSTRACT
Over the last few years there has been immense progress
in developing powerful security tools based on Virtual Ma-
chine Introspection (VMI). VMI offers unique capabilities
which can be used to check and enforce security policies
in the presence of a potentially compromised guest. With
the introduction of new hardware virtualization extensions,
VMI can be further enhanced to provide lightweight, in-band
control over the execution of virtual machines. In publica-
tions released before the extensions were available, security
researchers issued warnings that these new extensions may
be used to subvert VMI. Since hardware supporting these
extensions is now available, in this paper, we aim to dis-
cuss and re-evaluate claims made in prior-art. We further
continue the discussion by highlighting critical limitations
of the virtualization extensions. We go on to show that
thorough consideration and understanding of these limita-
tions is necessary when developing VMI based security ap-
plications. Otherwise, improper handling will inadvertently
expose these applications to subversion attacks. Finally, we
take a look at Intel’s normal and dual-monitor System Man-
agement Mode and discuss how they can be used to both
implement and subvert VMI based security applications.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Virtual Machine Introspection, Virtualization, System Man-
agement Mode

1. INTRODUCTION
Over the last decade, significant research and develop-

ment efforts have been made to create out-of-band security
systems that leverage virtualization techniques. One of the
unique features virtualization offers is the ability to observe
a running operating system from an outside perspective, oth-
erwise known as Virtual Machine Introspection (VMI). By
further merging the capability with forensic memory anal-
ysis (FMA) techniques [7], VMI is rapidly becoming a cor-
nerstone of cloud-security.

A common problem that security applications face is how
to appropriately interact with data-sources that may have

been tampered with. The problem is well known when us-
ing FMA techniques as they often rely on information con-
tained within the malicious guest OS’s memory. As has been
shown over the years, the OS under VMI monitoring can be
subverted to break the assumptions made about the OS’s
internal behavior [3, 10]. These attacks are widely known
and have recently been named the strong semantic gap prob-
lem [12].

A common characteristic of the above mentioned attacks
is that they are all software based attacks, aiming to subvert
the reconstruction of high-level state information regardless
of what hardware was used. While prior art briefly discussed
hardware based attacks [3], the literature on the topic is spo-
radic. Altough the information is generally available in the
hardware manuals, critical limitations are only mentioned
passingly or are only implied when carefully read. There-
fore, in this paper we aim to survey subversion attacks that
are rooted directly in the hardware virtualization extensions.
While some of the subversion attacks we will discuss are
academic, their relevance is based on our experience while
developing hypervisors and VMI tools.

On modern hardware there are a plethora of new virtual-
ization features that offer unique capabilities for enhancing
speed, and also to establishing in-band VMI security sys-
tems [5, 26, 14]. Most notable are Intel’s Extended Page
Table (EPT) and Virtual Processor Identification (VPID)
extensions. In the following we will examine these new ex-
tensions, their potential utility for VMI, and show in-detail
how their shortcomings can have unintended side-effects on
security applications aiming to make use of modern hard-
ware. Afterwards we turn our attention to Intel’s System
Management Mode (SMM) and discuss how this mode can
be used to both implement and subvert Virtual Machine
Monitor (VMM) based security systems.

2. A CLOSER LOOK AT THE TLB
In the following section we examine the system cache

known as the translation lookaside buffer (TLB). We begin
by briefly outlining the architecture and how it has been used
in the past for offensive purposes. We continue by discussing
how changes in recent Intel CPUs affect these techniques and
evaluate the impact on VMI applications. Afterwards, we
take a look at the new tagged TLB feature and discuss how



Figure 1: Overview of the split and tagged TLB
architecture.

modern open-source hypvervisors implemented support for
it.

2.1 The split TLB
As virtual-to-physical (V2P) address translation is expen-

sive, even with hardware acceleration, modern CPUs main-
tain a TLB, which is a transparent cache to store the trans-
lation results. To further improve performance, Intel imple-
mented a split TLB architecture which separates the cache
into two disjoint sets. The iTLB stores translations for in-
struction fetches and the dTLB stores translations for data
fetches. In newer CPUs, Intel added a secondary cache
called the sTLB, which stores the evicted entries from the
iTLB or dTLB to offer even faster address resolution. An
overview of the TLB system is shown on Figure 1.

The split TLB architecture has been used both for de-
fense and offense. The first system to make use of the split
TLB was GRSecurity’s PAGEEXEC feature in which they
tackled the problem of marking a page non-executable with-
out explicit hardware support for it (like the NX-bit in later
CPUs) [9]. In recent years it has also been proposed and
used in similar fashion to ensure the integrity of code which
resides on pages that mix code and data segments [16, 20].

On the offensive side, the Shadow Walker rootkit lever-
aged this architecture for stealth purposes [18]. The rootkit
took advantage of the fact that a virtual address can point to
different physical addresses based on which TLB is utilized.
In such a split, the rootkit’s code can safely execute with-
out antivirus software being able to scan its code pages [28].
To further make the rootkit more persistent against TLB
flushes, the rootkit’s code pages are also marked as global.
The algorithm to perform this TLB poisoning is shown in
Table 1. The poisoned global pages can only be flushed if
the TLB is full and the entry is evicted by the hardware,
or by turning off and on the Page Global Enabled (PGE)
bit on the CR4 register. For example, Windows 7 actively
and frequently flushes the global pages from the TLB and
disabling the routine leads to a system crash almost imme-

Input: Splitting Page Address (addr),
Pagetable Entry for addr (pte)
1. invalidate_instr_tlb (pte);
2. pte = the_shadow_code_page (addr);
3. mark_global (pte);
4. reload_instr_tlb (pte);
5. pte = the_orig_code_page (addr);

Table 1: TLB poising algorithm as described by [3].

diately. This behavior effectively limits the life-time of the
poisoned TLB. Linux on the other hand does not perform
any such TLB flushes, making it a more potent target for
TLB poisoning.

In recent CPUs (Nehalem and newer), a secondary victim-
cache has been added to the Intel architecture: the sTLB.
The sTLB holds all entries which are evicted from either
the iTLB or the dTLB, and in the event of a TLB-miss, the
sTLB is checked before the system performs a real address
translation. If the sTLB contains a matching TLB entry, it
is brought back into both the iTLB and the dTLB. This fur-
ther complicates the development of stealthy rootkits, as the
sTLB can only hold one version of the evicted TLB entries.
For example, if the dTLB entry is evicted and then a data
fetch is performed with its virtual address, the entry from
the sTLB will overwrite the iTLB entry as well. This poses a
particular problem to a rootkit leveraging this technique, as
its custom #PF handler code is not invoked to re-split the
TLB. This leads to either a non-hidden rootkit code-page if
the iTLB entry is brought back from the sTLB, or a system
crash / infinite loop if the dTLB entry is brought back and
is being accessed as if it was code.

As we can see, malicious code running within the guest on
modern hardware is unable to leverage the split-TLB for hid-
ing malicious code from other applications running within
the guest. However, with a little help from the VMM, the
behavior of the CPU can be adjusted to skip entries be-
ing evicted into the sTLB. Unlike regular page-table entries,
EPT entries allow setting a page to execute-only; that is,
it can be accessed only by code-fetching. When the CPU
detects that the iTLB and dTLB have different EPT per-
missions (one with R/W for data and the other with X only
for code), evicted entries skip the sTLB. Thus, if the in-guest
TLB-split routine is created by or in coordination with the
VMM, the sTLB can be by-passed so that the address trans-
lation goes through the primed page-tables again [21] and
effectively enabling again the Shadow Walker technique.

2.2 The tagged TLB
In the first implementations of Intel VT-x, the TLB entries

were completely flushed during VMENTRY and VMEXIT
operations. As a side-effect, this provided a good security
counter-measure to a Shadow Walker style TLB technique
for hiding in the guest. With newer VT-x implementation,
the concept of the tagged TLB has been added to Intel,
dubbed VPID. With VPID, the hardware does not flush
TLB entries during VMENTRY and VMEXIT. This is be-
cause the CPU can now distinguish between entries based
on the assigned tag. This naturally results in significant
performance boosts on modern hardware.

In a footnote Bahram et. al. [3] speculated that with
tagged TLB being available, hiding in the TLB will reemerge



Figure 2: EPT Overview

Figure 3: Handling an EPT violation on Xen.

as a method of achieving stealth against VMI applications.
However, at the time no hardware was available with tagged
TLB support. In contrast, nowadays most modern Intel
CPUs have both the sTLB and the VPID feature. As we al-
ready discussed, the introduction of the sTLB already affects
how TLB-splitting can be performed, which consequently
diminishes the utility of the split-TLB as a technique to
hide malicious code in a guest. However, hiding from VMI
doesn’t necessarily require malicious code to use a split TLB.
For VMI applications, the TLB itself is the problem, as VMI
always emulates address translation in software using the
page tables. Any translation cached in the TLB that is no
longer reflected in the page tables is effectively invisible to
external monitors. In the following, we aim to highlight the
different VPID implementations available in modern open-
source hypervisors to highlight how these implementations
affect VMI applications.

The Intel VPID is a 16-bit field included in the Virtual
Machine Control Segment (VMCS) for each vCPU. The as-
signment of tags is left to the hypervisor with the exception
being that tag 0 is a magic tag specifying the VMM. The
tagged TLB entries can be flushed by specifying the tag,
flushing all tagged entries, or assigning a new tag to the
vCPU so the hardware will eventually evict the stale tags.
While the description of the tagged TLB is straight forward,
the actual implementation in open-source hypervisors varies
greatly.

Xen implemented the VPID as a round-robin counter,
where a tag is assigned in the VMCS simply by increment-
ing the counter. When an overflow occurs, all TLBs are
flushed, and the iteration restarts at 1. During regular op-
erations, the tagged TLBs are never flushed, instead a new
VPID is assigned to the vCPU. As the comment describes
it in the Xen source: ”Each time the guest’s virtual address
space changes (e.g. due to an INVLPG, MOV-TO-CR3,
CR4 operation), instead of flushing the TLB, a new [VPID]
is assigned. This reduces the number of TLB flushes to at
most 1/#[VPID]s. The biggest advantage is that hot parts
of the hypervisor’s code and data retain in the TLB”. How-
ever, on a closer look at the source we see that the comment
is only partially true: the VPID does not get invalidated
on MOV-TO-CR4. Additionally, with new VPIDs being as-

signed on MOV-TO-CR3, the hypervisor effectively disables
the guest’s ability to use global pages.

If we recall, the purpose of having global pages is to make
the TLB entries survive a MOV-TO-CR3 so that the trans-
lation can be shared across processes. On Xen, the hardware
won’t be able to utilize global TLB entries as the VPID tag
of the global page is stale after the context switch. As a
side-effect, the TLB priming would have to be performed on
every context switch.

On KVM the VPID implementation is done by using a
bitfield. When KVM creates a new vCPU structure, the first
unused bit is reserved to this vCPU. As a peculiar decision,
the tag is assigned even to vCPUs that never execute; that
is, it is assigned during the creation of the vCPU, not during
the first VMENTRY. When the VMM runs out of available
tags to assign, it simply disables VPID in the VMCS. This
implementation means KVM guests can prime the TLB with
global pages without having to perform this operation on
every context switch.

3. A CLOSER LOOK AT EPT
In the following section we take a closer look at the EPTs

from a VMI tracing perspective. We briefly introduce the
extension and how it is used for great effect in various VMI
applications. Afterwards we turn our attention to the limi-
tations of the extension and discuss various pitfalls that need
to be taken into consideration when building security appli-
cations relying on the extension. While these limitations do
not automatically break VMI applications, without proper
handling they could lead to subversion attacks. While de-
veloping real-world security applications the authors have
encountered these limitations. In this section we aim to
clearly spell out the implications for future VMI developers
and security researchers.

3.1 Overview of EPT
Historically, a VM was required to perform a software

based address translation from Guest Virtual Address (GVA)
to Guest Physical Address (GPA). The hypervisor performed
this action through the shadow page table and it had a
significant performance cost. In response, Intel introduced
EPT, a new virtualization extension. This extension rec-



tified the situation by providing hardware assisted address
translations at both stages, as shown in Figure 2. With
EPT, the VM no longer needed to invoke the hypervisor to
perform page table operations. This provided a boost in per-
formance by alleviating the necessity to perform a VMEXIT
when doing an address translation and by freeing the hyper-
visor from having to maintain the shadow page table.

Security software running outside of the VM has a long
history of using the second stage translation to trigger traps
for active monitoring. This technique was first used by
Ether [6] to trace system calls through modifying the access
permissions in the shadow page tables. In newer systems,
such as CXPinspector [26], the EPT itself has been used for
this purpose because violations in the second stage transla-
tion traps into the hypervisor. Combined with other CPU
extensions, such as the eXecute-Never (NX) bit, EPT allows
for tracing arbitrary memory R/W/X operations.

During an EPT violation, the VMCS further describes the
location of the violation, both as a GPA and as a GVA. Addi-
tionally, the VMCS also describes if the violation occurred
during a first-stage GVA translation (violation during the
CPU’s first-stage page-table lookup) or with the final GPA
obtained from the translation.

While tracing memory accesses with EPT is stealthy, the
performance overhead is considerable. Each violation on a
monitored page needs to be first cleared and then reset to
allow the VM to continue the execution but to still catch
all subsequent events. On Figure 3 we show the common
handling of EPT violations on Xen. In case only a certain
section of a page is of interest, the tracer also needs to fil-
ter unrelated violations, further adding to the performance
overhead and complexity of handling EPT violations.

3.2 Catching modifications
Now that we have a brief overview of how EPT viola-

tions can be used to trace memory accesses performed by
a VM, we aim to highlight the limitations of EPT through
some examples. While the limitations are not necessarily
prohibitive, without proper consideration while developing
security applications, they can result in a knowledgeable in-
guest attacker hiding from ’naive’ protection schemes.

Direct Kernel Object Manipulation (DKOM) attacks are
a well-known way of breaking both FMA and VMI tools.
DKOM works by modifying data-structures in the kernel’s
heap. The classic example of this is by hiding a malicious
process by unhooking its data-structure from the linked-list
that the OS uses to report active processes to tools such
as ps. As the linked-list is a non-critical and independent
structure from what the OS uses to schedule processes, this
type of DKOM attack breaks the assumption that the list
is well maintained and accurately describes the list of active
processes.

In the context of detection of unhooked processes, a se-
curity application can trace when updates are made to the
linked list via the EPT. This is done by checking the vio-
lation information contained in the VMCS to see whether
it is at the offset of the pointers next and prev, as a secu-
rity application has direct knowledge of the updates made to
the linked-list. Such an approach may seem straightforward
because during normal operations the offset at which the
violation is reported matches the location of the pointers.
That is, the operating system updates the pointers directly.
However, a critical limitation in the way the hardware re-

Figure 4: The critical memory region at which EPT
violations may occur that could mean an access to
the protected region (void *next).

ports EPT violations needs to be taken into consideration
in this scenario. During an EPT violation, the CPU only
records the starting address where the violation occurred on
the monitored page. However, the violation may involve a
read/write operation up to 8-bytes. This short-coming is
known by Intel, as they already patented the solution [22].
As such it may be the case that some future CPUs will pro-
vide this information as well.

If an attacker knows that only the exact addresses are go-
ing to set off an alarm and the rest are filtered as unrelated
violations, it then becomes possible to perform a successful
DKOM attack. The only task is to break the assumption
that the violation will be at exactly the pointer locations.
Figure 4 highlights the entire critical memory region that se-
curity applications looking for EPT violations need to con-
sider. For example, overwriting the pointers in two steps
could perform the attack: first, write 8-bytes starting at
(N-1); second, write 1-byte starting at (N+7). The DKOM
attack will still trigger VMEXITs, but our naive protection
scheme would disregard the violations as unrelated write-
events.

3.3 Catching data-leaks
Now we will turn our attention to another potential se-

curity feature that EPT could be used for: data-leak pre-
vention. In data-leak prevention systems, it is crucial that
specific memory locations are accessed only under certain
circumstances. An external security application can poten-
tially use EPT’s read protection to enforce a mandatory ac-
cess control system. The limitation described in the previous
section is applicable under this scenario as well. However,
EPT has another crucial limitation which could be utilized
to siphon protected data without triggering an alert.

The limitation is in how EPT violations are reported when
a read-modify-write (r-m-w) instruction is executed. Ac-
cording to the Intel manual: ”An EPT violation that occurs
during as a result of execution of a read-modify-write opera-
tion sets bit 1 (data write). Whether it also sets bit 0 (data
read) is implementation-specific and, for a given implemen-
tation, may differ for different kinds of read-modify-write
operations” [11]. The implications of this behavior are ap-
parent: any memory event subscriber solely looking for read
EPT violations as the trigger for enforcing an access control
system can be subverted by employing r-m-w operations in-
stead to access the data.

Despite the fact that such unpredictable behavior sur-
rounds these operations, current hypervisors make no at-
tempt in mitigating it in software. For example, up until re-
cently Xen simply forwarded the violation information from
the hardware to memory event subscriber applications. Only
with our recent patch does Xen mask the hardware limita-



tion from applications by unconditionally marking all write
violations also as read violations.

3.4 Virtual DMA and emulation
Thus far we have looked at the hardware limitations of

using EPT and its effects on VMI application. In the fol-
lowing we discuss two more scenarios where EPT protected
memory regions can be accessed without triggering EPT vio-
lations, based on a recent discussion thread on the xen-devel
mailinglist [13].

In modern virtualization environments device emulation is
a critical component in allowing off-the-shelf operating sys-
tems to run without requiring it to be virtualization-aware.
For example, Xen uses QEMU to provide various emulated
device backends for Windows (or Linux) virtual machines,
such as VGA, disk, and network devices. Device emulation
however is known to be complex and error-prone, thus being
a fertile ground for various exploits. For example, it has been
used in the past for breaking out KVM virtual machines [8].

As to mitigate the risk involved in running the QEMU
instance in the Trusted Computing Base (TCB), Xen in-
troduced the concept of stub-domains, where the QEMU
instance is running in a light-weight paravirtual VM next
to the main VM it provides emulation for. Thus, even if
an attacker breaks out of the VM via the emulated devices,
it only gains access to another de-privileged VM. Neverthe-
less, such break-outs are not without consequence from a
VMI perspective.

On Xen, even the de-privileged QEMU stub-domain re-
quires Direct Memory Access (DMA) into the main VM in
order to provide the I/O emulation it is tasked with. In a
hypothetical break-out where an attacker successfully com-
promised the QEMU stub, the DMA functionality can be
used to by-pass any type of EPT traps set on the main do-
main. That is because the stub can request any memory
page of the main VM to be mapped into its own address
space by the hypervisor. However, the stub being a paravir-
tual domain, does not use EPT to access the same memory.

Similar problems can be potentially found with the emu-
lated interrupts and timers. For performance and scalability
reasons with many-vcpu guests, Xen provides a fast-path
emulation for a variety of interrupts and timers, such as
RTC, PIT, HPET, PMTimer, PIC, IOAPIC, and LAPIC.
Since the emulation happens within the hypervisor, any up-
dates to pages with EPT traps, that happen as a result of
emulation, avoid triggering these traps.

4. A CLOSER LOOK AT SMM
In recent years there has been a number of attempts to

move VMI to the SMM. However, SMM poses particular
challenges for VMI applications, especially when faced with
non-cooperating or malicious VMMs. In the following we
present a quick overview of the SMM and discuss potential
problems that have been described in recent literature in
utilizing it as a platform for VMI. Finally, we present an
overview of Intel’s new dual-monitor mode SMM and how
it relates to the outlined problems.

4.1 Normal-mode SMM
SMM, according to the Intel manual [11], was designed to

provide an alternative, transparent operating environment
to chipset manufacturers and BIOS vendors. This mode can

Figure 5: Overview of relationship between SMM,
VMM, and VM.

be used to monitor and manage various critical system re-
sources for more efficient energy usage, control system hard-
ware, and respond to thermal emergencies in the event of
a non-responsive OS. It is highly privileged and cannot be
interrupted by regular interrupts (including non-maskable
interrupts), thus guaranteeing the execution of the SMM
code once it is triggered. Furthermore, code running within
the SMM has full access to the system and can perform ar-
bitrary modifications to the system RAM. In recent years
the SMM has received considerable attention from security
researchers; for example, it has been shown that SMM could
also be used to implement stealthy rootkits [19, 25], VMM
integrity verification systems [17, 23] and full-scale VMI ap-
plications [29].

In order to trigger the execution of code within the SMM,
a System Management Interrupt (SMI) is issued via the lo-
cal Advanced Programmable Interrupt Controller (APIC)
or via the SMI# pin. In practice the APIC method is the
preferred trigger mechanism as the SMI# pin requires ex-
tra hardware to be attached [4]. When the interrupt is re-
ceived, the active CPU context is saved into a dedicated
memory region, known as System-Management RAM (SM-
RAM). The chipset can be configured to trigger an SMI on
a multitude of possible events, from USB activity, writes to
certain I/O ports, thermal events, and even periodically [24].
When the SMI handler (which executes from within SMM)
finishes executing, the previous interrupted operating mode
is restored from the snapshot that was saved into SMRAM.
An overview of this operation is shown in Figure 5 with the
dotted lines. While the SMI handler can modify the CPU
register values that were saved, the CPU always returns to
the same operating mode that was active when the SMI was
received: VMX root or VMX non-root.

As pointed out by Jain et al. [12]: ”A limitation of any
SMM-based solution [...] is that a malicious hypervisor could
block SMI interrupts on every CPU in the APIC, effectively
starving the introspection tool. For VMI, trusting the hyper-
visor is not a problem, but the hardware isolation from the
hypervisor is incomplete.âĂİ While it is true that the VMM
could starve the SMM in such a way, nothing prevents the
SMM from modifying the VMM’s code to remove such code-
paths. As the SMM is initialized as part of the BIOS before
the VMM, any protection the VMM may attempt to lever-
age against the SMM could be potentially circumvented.



4.2 Dual-monitor mode SMM
The Intel manual also describes an additional CPU mode

referred to as dual-monitor mode SMM (DMM)). DMM was
created to prevent or limit the damage from the exploitation
of vulnerabilities in SMI handlers to gain control of SMM.
An example of such an attack can be found in [27]. While
the original idea behind this implementation was to com-
partmentalize the SMI handlers into less privileged SMM
VMs [15], the capabilities of the hypervisor running in SMM,
the SMM Transfer Monitor (STM), in our opinion far exceed
what would be warranted.

The primary difference between the two SMM modes is
that in dual-monitor mode the SMM enters VMX root mode
itself. In this mode, the STM is allowed to create virtual ma-
chines within the SMM to run the SMI handlers. In compar-
ison, AMD and ARM simply enabled the regular hypervisor
mode to trap SMIs, thus being able to compartmentalize
SMI handlers into regular VMs [1, 2].

With the introduction of this new mode, the behavior of
the VMCALL instruction has also been extended. On CPUs
without DMM support, the VMCALL instruction is only
valid if executed in VMX non-root - that is, in a virtual
machine. On CPUs with dual-monitor mode, the VMCALL
instruction is valid even in VMX root and triggers an un-
conditional transfer into the SMM.

This behavior has particular importance when we consider
how a VMM would attempt to starve the SMM, as we dis-
cussed for normal-mode SMM. To recall, in normal mode the
APIC could be configured by the VMM to starve the SMM.
Now with a dedicated instruction it is no longer possible, as
the instruction unconditionally triggers the switch without
relying on the APIC to trigger the required interrupt.

As this instruction is no longer pre-emptible from the
VMM, it can also be utilized by the STM to position it-
self inline into the execution of the rest of the system. The
STM could inject this instruction as a trap to trigger the
transfer of control when code-paths of interest are executed
within the VMM. While the presence of these hooks may be
detectable if the VMM performs code-integrity checks on it-
self, the SMM could disable such integrity checks. While this
instruction cannot be used to instrument virtual machines -
as it would trap into the VMM - it can be used to hook the
VMM’s trap handlers. Afterwards, the STM can use any
of the regular instrumentation methods the VMM has over
VMs, thus attaining total control over the execution of the
entire system.

Another particularly powerful addition in the dual-monitor
mode is that the SMM can jump into any of the other execu-
tion modes of the system. In a non-DMM configuration, ex-
ecution is returned to the same mode that was active before
the SMI was triggered whereas in DMM, there are no such
restrictions. For example, this mechanism allows the SMM
to schedule the execution of VMs that the VMM deliberately
suspended. Interestingly, the stm can also specify if further
SMIs should be blocked for the duration of a VMENTER:
”VM entries that return from SMM and that do not deac-
tivate the dual-monitor treatment may leave SMIs blocked.
This feature exists to allow an SMM monitor to invoke func-
tionality outside of the SMM without unblocking SMIs” [11].
This design decision is particularly interesting, as now even
SMIs can be blocked.

While Intel is unclear about which CPUs support this fea-
ture, in our experience it is supported in all CPUs with the

VT-x extension. In the VirtualBox source-code we also find
a comment for the definition of an MSR 1 that suggests
that in their experience this is also the case: ”Whether the
processor supports the dual-monitor treatment of system-
management interrupts and system-management code. (al-
ways 1)”. Unfortunately, Intel generally locks access to the
SMM. To gain control of the mode without Intel’s approval
would require an exploitable vulnerability, as has been demon-
strated in the past [27]. Nevertheless, the dual-monitor
SMM mode has many advantageous features that would aid
the development of SMM-based hypervisor-agnostic VMI
applications. On the other hand, it would also be a prime
location to implement applications to subvert VMM-based
VMI applications.

5. CONCLUSION
In this paper, we have revisited VMI subversion attacks

proposed in prior research using modern hardware virtual-
ization extensions and evaluated their pertinence on open-
source hypervisors. We further discussed inherent limita-
tions in using hardware virtualization extensions for VMM-
based security monitoring and highlighted how these limita-
tions can have unintended side effects when not taken into
consideration. We concluded with exploring Intel’s system-
management mode and discussed how it can be used to both
implement and to subvert VMI applications.

Acknowledgments
The research leading to these results was supported by the
Bavarian State Ministry of Education, Science and the Arts
as part of the FORSEC research association.

6. REFERENCES
[1] AMD. AMD64 Architecture Programmer’s Manual

Volume 2: System Programming, October 2012.

[2] ARM. ARM Architecture Reference Manual:
ARMv7-A and ARMv7-R edition, July 2012.

[3] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li,
D. Srinivasan, J. Rhee, and D. Xu. Dksm: Subverting
virtual machine introspection for fun and profit. In
Reliable Distributed Systems, 2010 29th IEEE
Symposium on. IEEE, 2010.

[4] R. R. Collins. The caveats of system management
mode.
http://www.rcollins.org/ddj/May97/May97.html,
October 29 2014.

[5] Z. Deng, X. Zhang, and D. Xu. Spider: Stealthy
binary program instrumentation and debugging via
hardware virtualization. In Proceedings of the 29th
Annual Computer Security Applications Conference,
ACSAC ’13, New York, NY, USA, 2013. ACM.

[6] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization
extensions. In Proceedings of the 15th ACM conference
on Computer and communications security. ACM,
2008.

[7] B. Dolan-Gavitt, B. Payne, and W. Lee. Leveraging
forensic tools for virtual machine introspection.
Gt-cs-11-05, Georgia Institute of Technology, 2011.

1MSR IA32 VMX BASIC INFO VMCS DUAL MON



[8] N. Elhage. Virtunoid: Breaking out of kvm. Black Hat
USA, 2011.

[9] GRSecurity. Pageexec.
https://pax.grsecurity.net/docs/pageexec.txt,
December 30 2006.

[10] T. Haruyama and H. Suzuki. One-byte modifications
for breaking memory forensic analysis. Black Hat
Europe, 2012.

[11] Intel. Intel 64 and IA-32 Architectures Software
Developer’s Manual Volume 3C: System Programming
Guide, Part 3, June 2013.

[12] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and
R. Sion. Sok: Introspections on trust and the semantic
gap. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 605–620,
Washington, DC, USA, 2014. IEEE Computer Society.

[13] A. Lagar-Cavilla and A. Cooper. Xen-devel: Handle
resumed instruction based on previous mem event
reply. http://www.gossamer-threads.com/lists/
xen/devel/347492#347492, September 11 2014.

[14] T. K. Lengyel, S. Maresca, B. D. Payne, G. D.
Webster, S. Vogl, and A. Kiayias. Scalability, fidelity
and stealth in the drakvuf dynamic malware analysis
system. In Proceedings of the 30th Annual Computer
Security Applications Conference.

[15] P. Markowsky. Ring -1 vs. ring -2: Containerizing
malicious smm interrupt handlers on amd-v.
ShmooCon, 2010.

[16] R. Riley, X. Jiang, and D. Xu. An architectural
approach to preventing code injection attacks.
Dependable and Secure Computing, IEEE
Transactions on, 7(4):351–365, 2010.

[17] J. Rutkowska and R. Wojtczuk. Preventing and
detecting xen hypervisor subversions. Blackhat
Briefings USA, 2008.

[18] S. Sparks and J. Butler. Shadow walker: Raising the
bar for rootkit detection. Black Hat Japan, pages
504–533, 2005.

[19] S. Sparks and S. Embleton. Smm rootkits: A new
breed of os independent malware. Black Hat USA, Las
Vegas, NV, USA, 2008.

[20] J. Torrey. More: measurement of running executables.
In Proceedings of the 9th Annual Cyber and
Information Security Research Conference, pages
117–120. ACM, 2014.

[21] J. Torrey. More shadow walker: Tlb-splitting on
modern x86. BlackHat, 2014.

[22] K. Tseng, B. Liu, R. Sood, M. Castelino, and
M. Tallam. Determining policy actions for the
handling of data read/write extended page table
violations, June 27 2013. WO Patent App.
PCT/US2011/067,038.

[23] J. Wang, A. Stavrou, and A. Ghosh. Hypercheck: A
hardware-assisted integrity monitor. In Recent
Advances in Intrusion Detection, pages 158–177.
Springer, 2010.

[24] J. Wang, K. Sun, and A. Stavrou. An analysis of
system management mode (smm)-based integrity
checking systems and evasion attacks. George Mason
University Department of Computer Science Technical
Report, 2011.

[25] F. Wecherowski. A real smm rootkit: Reversing and
hooking bios smi handlers. Phrack Magazine, 13(66),
2009.

[26] C. Willems, R. Hund, and T. Holz. Cxpinspector:
Hypervisor-based, hardware-assisted system
monitoring. Technical report, Ruhr-Universitat
Bochum, 2013.

[27] R. Wojtczuk and J. Rutkowska. Attacking smm
memory via intel cpu cache poisoning. Invisible Things
Lab, 2009.

[28] G. Wurster, P. Van Oorschot, and A. Somayaji. A
generic attack on checksumming-based software
tamper resistance. In Security and Privacy, 2005
IEEE Symposium on, pages 127–138. IEEE, 2005.

[29] F. Zhang, K. Leach, K. Sun, and A. Stavrou. Spectre:
A dependable introspection framework via system
management mode. In Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on, pages 1–12. IEEE, 2013.


