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Abstract

A methodology was developed to interpret and assess land
cover change between 1991 and 1999 in Central Puget Sound,
Washington at several scales (landscape, sub-basins, and

90 m grid window) relevant to regional and local decision
makers. Land cover data are derived from USGS Landsat
(Thematic Mapper and Enhanced Thematic Mapper +) im-
ages of Central Puget Sound. Landsat data were registered, in-
tercalibrated, and corrected for atmosphere and topography
to ensure accuracy of land cover change assessment. We
apply a hybrid classification method to each image to address
the spectral heterogeneity of urbanizing regions. The method
combines a supervised classification approach with a spectral
unmixing approach to produce seven classes: >75 percent im-
pervious, 15 to 75 percent impervious, forest, grass, clear cut,
bare soil, and water. Land cover change is identified using the
direct spatial comparison of classified images derived inde-
pendently for each time period. We assess that the overall ac-
curacy of each classified image was 91 percent for 1991 and
88 percent for 1999 respectively, which produces an accuracy
of 85 percent for the change analysis. Our results show that
urban growth over the last decade has produced an overall
6.7 percent increase in paved area.

Introduction

Remote sensing is a powerful tool for monitoring rapid
changes in the landscape resulting from urban development.
Landsat Thematic Mapper (TM) and Enhanced Thematic Map-
per (ETM+) images provide moderate-resolution data sets over
large geographic regions. These data are critical to both the
natural and social sciences for quantifying urban landscape
patterns and testing formal hypotheses about the relationships
between urban patterns and various biophysical and ecologi-
cal processes. Interpretation and analysis of urban landscapes
from remote sensing, however, present unique challenges due
to the spatial-temporal characteristics of urban land cover
change which amplify the spectral heterogeneity of urban sur-
faces and make it extremely difficult to identify the source of
observed change in observed reflectance.

The spectral heterogeneity of urban surface areas together
with the spatial scale of urban phenomena cause significant
subpixel mixing (Foody, 2000; Small, 2002). This is due to the
complex mixtures of urban surface materials (i.e., concrete,
wood, tiles, asphalt, metal, sand, and stone) and vegetation
(grass, scrubs, shrubs, trees, and leaves) within the Landsat
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pixel resolution. Small (2002) indicates that while urban land
cover classes can be distinguished when they occur in homo-
geneous regions larger than the spatial resolution of the sen-
sor, this is rarely the case for moderate-resolution such as
Landsat. The greatest challenge for urban land cover classifi-
cation is to accurately determine the relative contribution of
various materials that make up urban surface reflectance. An
additional challenge is to compensate for temporal variability
and changes in surface reflectance (such as seasonal varia-
tions) that are unrelated to land cover change (Hornstra, et al.,
1999; Small, 2002).

Previous studies have proposed various strategies to im-
prove classification of urban landscapes. Ancillary data such
as population, zoning, housing density and other information
are frequently used in pre- and post-classification procedures
(Harris and Ventura, 1995; Mesev, 1998; Vogelmann, et al.,
1998; Stuckens, et al., 2000). Since urban areas typically have
significant texture resulting from buildings and roads, ana-
lysts also use texture analysis in addition to spectral features
to characterize urban land cover types (Gong and Howarth,
1990; Berberoglu, et al., 2000; Stuckens, et al., 2000; Stefanov,
et al., 2001). More recently, analysts have used data mining
techniques, in particular artificial neural networks (Schalkoff,
1992; Paola and Schowengerdt, 1995; Berberoglu, et al., 2000;
Foody, 2001), to detect complex spectral urban patterns. Other
analysts have emphasized classification strategies using multi-
temporal images (Martin and Howarth, 1989).

An alternative method for detecting urban land cover ma-
terials is spectral unmixing (Small, et al., 2002). The Spectral
Mixture Analysis (SMA) methodology (Adams, et al., 1986) as-
sumes that radiance from a heterogeneous surface mixes lin-
early within the Instantaneous Field of View (IFOV) according
to the aerial percentages of each pure material present. Ac-
cording to this methodology, if a limited number of distinct
endmembers are known apriori, it is possible to define a mix-
ing space within which mixed pixels can be unmixed into
percentages of constituent materials using a system of linear
equations (Adams, et al., 1986). A spectral unmixing ap-
proach is desirable in areas where features on the landscape
are smaller than the spatial resolution of the satellite instru-
ment (Small, 2002). This is especially true in urban areas
where pixels are highly mixed. While spectral unmixing can-
not reliably identify exact urban materials, it can determine
relative amounts of vegetation and urban surfaces providing a
good estimate for urban intensity.

In this study we integrate multiple pre-processing, land
cover classification, and change analysis techniques to de-
velop a methodology to interpret and assess land cover
change between 1991 and 1999 in Central Puget Sound at
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Figure 1. Location Map for the Puget Sound Central Region.
(Figure 1 is also available on the ASPRS Web site:
WWW.asprs.org)

several scales relevant to regional and local decision makers
(Figure 1). We classify land cover using Landsat T™M and ETM+
images of the Central Puget Sound, Washington from 1991
and 1999. We then perform a land cover change analysis be-
tween the two images at the landscape, regional, sub-basin,
and 90 m grid scale.

The study focuses on the Central Puget Sound Region,
which extends across four counties (King, Snohomish, Pierce,
and Kitsap) with a total population of 3.3 million in 2000
(PSRC, 2001). The Central Puget Sound Region is one of the
most rapidly growing and urbanizing regions in the United
States. The total population and incorporated land have in-
creased respectively by 19.2 percent and 48 percent since
1990 (PSRC, 2001). The study focuses particularly on lowland
urban, suburban, and rural basins, which are increasingly af-
fected by land cover change associated with urbanization. The
remaining contiguous forests are quickly being replaced with
fragmented urban landscapes. Growth is being moderately
well regulated along a statute-defined urban-rural boundary,
but the effectiveness of growth management strategies has not
been established.

Image Processing and Classification

The methodology used in this project is summarized in Fig-
ure 2. Several image preprocessing steps were applied to
make the images comparable before classification. We com-
bine a supervised classification approach with a spectral un-
mixing approach (Adams, et al., 1986; Gillespie, et al., 1990;
Smith, et al., 1990) to discriminate among urban land cover
classes. A supervised classification approach (using training
sample areas and maximum likelihood distance thresholding)
was used to discriminate across top-level classes. We then ap-
plied Spectral Mixture Analysis (SMA) methodology to unmix
mixed pixels using a linear combination of the spectra of
known endmembers. The challenge of SMA in urban land-
scapes is to accurately determine the relative contribution of
different endmembers which make up the mixed pixel. For
temporal analyses of images, the additional challenge is com-
pensating for the temporal variation due to atmospheric or
climatic factors.

Data Processing

Landsat satellite images from 1991, 1999, and 2000 were ob-
tained for the Central Puget Sound Region to perform a land
cover change analysis (Table 1). These images were all taken
in July during peak foliage. The latter two are Landsat 7 and
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Figure 2. Image Processing and classification methodology.

the former Landsat 5. All six VIS-SWIR light spectral bands
were used in the study.

Image Rectification and Registration
The Landsat TM data were geocorrected to a UTM projection
(Zone 10N, Spheroid Clarke 1866, Datum: NAD27). The 1991
image has been registered to a 30 m resolution Digital Eleva-
tion Model (DEM). Registration to a DEM is important for two
primary reasons. First, the image is registered to real-world
topographic features such as rivers, coastlines, ridges, and
slopes. Most digital geographic data are associated with a digi-
tal elevation model, which enables the classified image to be
compatible with other digital geographic data. Second, and
most important, is that image registration to a DEM is required
before a topographic (illumination geometry) correction can
be applied to the image.

The 1991 image was registered to a Digital Elevation
Model using a 1*-Order polynomial equation incorporating
the location of known ground control points. The image was

TABLE 1. GENERAL INFORMATION FOR 1991 TM AND 1999 ETM+ IMAGES

Data Characteristics

Sun Elevation Azimuth Resolution RMS Error

Time ) ©) (meters) (control points)
7 July 1991 56 128 30 Reference
5 July 1999 60.35 138.37 30 .4(40)
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resampled to 30 m resolution using nearest-neighbor resam-
pling. The same methodology has been used to co-register the
1999 and 2000 images to the 1991 image. Points with high
Root Mean Square Error (RMSE) were removed leaving about
50 points with an acceptable RMSE of 0.40 pixels. Registra-
tion of the 1999 and 2000 resulted in average RMSE less than
one-half a pixel, and all images were resampled to 30 m pixel
resolution.

Atmospheric Correction

Different surface types tend to have different spectral re-
flectance properties at specific wavelengths, and it is this prop-
erty that allows features on the landscape to be distinguished
in a multispectral image. However, there are other factors that
can change the apparent spectral reflectance observed by a
satellite which include the sensor calibration and atmospheric
effects. Not only is a given object’s spectral signature different
at ground level than at the satellite sensor, it is also likely to
vary temporally from image to image because of atmospheric
changes with time (Miller, et al., 1998). An additional source
of change, not related to land cover change, is the seasonal
variation in vegetation greenness.

A two-step approach is used to normalize the Landsat
data. First, an atmospheric correction is applied to the 2000
image, which is considered the reference image. The 2000
image was chosen as the reference image because, as a Land-
sat 7 level 1G product, it has received superior radiometric
correction compared to the 1991 Landsat 5 image. After this
image has received the appropriate corrections, the 1991 and
1999 images are then inter-calibrated to the reference image.

The atmospheric correction model used for this project
corrects for two main sources of error: atmospheric scattering
and absorption. Atmospheric conditions affects radiance
recorded by the sensor in two primary ways. First, some de-
gree of incoming radiation, prior to reaching the earth’s sur-
face, is reflected and scattered by the atmosphere. Some of
this path radiance is detected by the sensor and thus con-
tributes a certain degree of noise that does not represent
ground reflectance. Second, reflected energy from the earth’s
surface is absorbed by the atmosphere. The amount of energy
that is transmitted through the atmosphere and recorded by
the sensor depends on both wavelength and atmospheric con-
stituents (Lillesand and Keifer, 1994). The first atmospheric
affect can be corrected for by performing a dark object subtrac-
tion. Dark objects within the images, such as the ocean, are as-
sumed to reflect close to zero radiation at all wavelengths in
the vis-SWIR. The amount of radiation that the satellite records
for these objects can then be considered to be the amount of
radiation that is scattered by the atmosphere, prior to reaching
the ground. Subtracting a value representing dark objects from
each band corrects for this particular effect. Before making
any corrections, each band was converted from digital number
to absolute units of radiance using the instrument derived
calibration gains and offsets provided with the ETM+ image.
Histograms for each band were visually inspected to deter-
mine a value representing the beginning of the histogram to
the right of zero. These values were then subtracted from each
band.

Determining average transmissivity values for each band
and then dividing each band by its respective transmissivity
value, corrects for error associated with absorption as radiation
is reflected from the earth’s surface and moves out through
the atmos@Phere. We calculated transmissivity (Table 2) using
MODTRAN® (http://www.vs.afrl.af.mil/Division/VSBYB/
modtran4.html, last accessed 17 June 2004), a radiative trans-
fer model that calculates the spectrally variant atmospheric
transmissivity (7), path radiance (Lp), and downwelling irradi-
ance for a specific atmosphere (Berk, et al., 1989). Transmis-
sivity is simply the percentage of light at a given wavelength
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TABLE 2. TRANSMISSIVITY VALUES FOR 2000 ETM+ IMAGE

Radiometric Corrections

Gain Bias/Offset Transmissivity
Band 1 0.775686 —6.1999969 0.577586392
Band 2 0.795686 —6.3999994 0.639359791
Band 3 0.619216 —5 0.707731317
Band 4 0.96549 —5.1000061 0.787354206
Band 5 0.125726 —0.999981 0.896109355
Band 7 0.043726 —0.3500004 0.871986658

that is absorbed by the atmosphere. To restore the missing data
that has been absorbed by the atmosphere, an appropriate at-
mospheric transmissivity must be calculated for each spectral
band of the satellite sensor. This is done by convolving each
band’s spectral response function with the atmospheric trans-
missivity as a function of wavelength (calculated for a standard
mid-latitude atmosphere). This is in effect a weighted average
transmissivity value for each band’s range of wavelength. Next,
each band is divided by this value to complete the correction.
This in effect, restores reflected energy that has been attenuated
by the atmosphere (Miller, et al., 1998).

Inter-calibration

The atmospheric correction is applied only to the 2000 image.
Since this image is a Landsat 7 ETM+ product we assume that
the predominant source of data error is from the atmosphere
and not instrument calibration. To correct the 1991 and 1999
image for atmosphere, they are simply inter-calibrated to the
2000 using the following process: pixel values from various
materials that are assumed to have remained (relatively) un-
changed through out the study period are taken from each
image to use as inputs in a linear regression model for each of
the six bands. To inter-calibrate the 1991 image, the gains and
offsets from the regression equations are applied to each band.
The result is that an invariant material will have the same
spectral properties in the 1991 image as it has in the 2000
image. There are two main assumptions made for the inter-
calibration procedure: one is that the effect of atmosphere is
linear throughout the image, and the other is that we have
identified unchanged pixels in the images.

It is important to note that the inter-calibration process
does not eliminate the effects of seasonal changes that affect
conditions on the ground. Climatic data show, for example,
lower than average precipitation in 1991 and record high pre-
cipitation in 1999 (NOAA, 2001). The vegetation cover re-
sponds accordingly to these rainfall changes and is clearly
greener in 1999. These effects need to be taken into account
in the interpretation of land cover change analysis.

Topographic Correction

The orientation of the land surface with respect to the sun
controls the amount of incident radiation, which in turn af-
fects the amount of reflected radiation. Sun-facing slopes are
brighter than shaded slopes. An image can be normalized for
the effects of topography using several different techniques;
we use a Lambertian topographic correction. This involves
dividing each band of each image by a shaded relief model
(the cosine of the solar incidence angle). First, a shaded relief
model is calculated using a Digital Elevation Model and the
sun’s elevation angle and azimuth at the time and date of
image acquisition. The result is a topographic image with a
range from 0 to 1, with a value of 1 indicating a perfectly flat
surface that is perpendicular to the incident solar radiation.
As the range approaches zero, the greater is the impact of
slope and solar position. Each atmospherically-corrected
band is divided by the shaded relief model to normalize for
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Plate 1a. Land Cover Classification 1991.
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Plate 1b. Land Cover Classification 1999.

topography. Since this technique works only for gentle to
moderate topography, each image has been subsetted to in-
clude only areas below 500 m.

Land Cover Classification
We develop a hybrid classification method to address the

spectral heterogeneity characteristic of urbanizing landscapes.

The classification methodology includes two steps that com-
bine a supervised classification approach with a spectral un-
mixing approach based on fractions of endmembers. Spectral
Mixture Analysis (SMA) assumes that a pixel’s radiance is a
linear combination of the radiance emitted by a limited num-
ber of spectral end-members (Adams, et al., 1986; Gillespie,
et al., 1990; Smith, et al., 1990). We first identify mixed urban
pixels using a supervised classification that distinguishes
between paved urban (>75 percent paved) and mixed urban
pixels (<75 percent paved). We then apply a three end-
member mixing model from which the percentage of impervi-
ous surface is derived. Spectral end-members (i.e., pure spec-
tral classes) were developed by visual interpretation of the
spectral feature space images and a supervised training sam-
ple set of known classes. The mixture model was used to esti-
mate the relative proportions of the spectral end-members
which were then used to classify into appropriate land cover
types. Our final classification includes seven classes (Plate 1a
and 1b, Tables 3 and 4).

Top Level Supervised Classification

Supervised classification includes three stages: training,
allocation, and testing (Anderson, et al., 1976; ERDAS®, 1997).
Training is the identification of a sample of pixels of known
class membership obtained from reference data. These train-
ing pixels are used to derive spectral signatures for classifica-
tion, and signature statistics are evaluated to ensure adequate
separability. Then, the pixels of the image are allocated to the
class with greatest similarity to the training data metrics. An
accuracy assessment is employed to assess the agreement of a
random selected testing sample with ground truth points.

We applied a supervised top-level classification by ex-
tracting spectral signatures from homogenous surface types
from the image using orthophotos as references. We define
training samples and extract spectral signatures from these
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homogeneous areas. These signatures include water, pavement,
coniferous forest, deciduous forest, grass, crops, shrub, and bare
soil. These spectral signatures were combined to produce five
categories that were applied to each image using a supervised
classification: water, paved, mixed urban, vegetation (vegetation

TABLE 3. LAND COVER CLASSES UTILIZED IN VARIOUS CLASSIFICATION LEVELS

Top Level Classes 2" Level Classification Final Classification

Paved Urban Paved Urban >75% Paved Urban >75%
Mixed Urban Mixed Urban >75%
Mixed Urban 15-75% Mixed Urban 15-75%
Mixed Urban <15% (reassigned to
vegetation)
Vegetation Coniferous Forest Forest
Deciduous Forest
Grass Shrub Crops Grass Shrub Crops
Bare Soil Bare Soil
Clear Cut Clear Cut
Water Water

TABLE 4. LAND COVER CLASS DESCRIPTIONS FOR DETERMINING
ASSIGNMENT IN CLASSIFICATION MODELS

Land Cover Class Description

No. Class Definition

1 Mixed Urban A combination of urban materials and
vegetation. Predominantly low and mid-
density residential

Surfaces with an impermeable area >75%.
This includes high-density development,

parking lots, streets and roof tops

2 Paved Urban

3 Forest Surface dominated by trees

4 Grass, Shrubs, Agricultural fields, golf courses, lawns and
Crops regrowth after clear cuts

5 Bare Soil Land that has been cleared, rocks and sand

6 Clear Cut Clear cut forest that has not had significant
regrowth and very dry grass

7 Water Lakes, reserviors, streams
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classes combined), and bare soil. These classes are then used as
a mask for the second-level classification. Bare soil, pavement,
and water are considered to be classified at this top-level stage,
meaning they will not undergo any further classification. Spec-
tral unmixing is then applied to the mixed urban and vegetation
classes only.

Spectral Unmixing Applied to Mixed Urban

A spectral unmixing model based upon pixel constituents

in the mixed urban class is applied to the mixed urban image.
The end-members have been determined to be pavement,
green vegetation, and shade. The results of the unmixing
analysis are three end-member fraction images and an error
image. Error terms (expressed as RMSE) indicate the average
error for each pixel across all bands (Rashed, et al., 2001). The
RMSE is used to assess the results of the model. If the frac-
tions are normalized to exclude the shade fraction, then the
fraction image contains a percentage value for each cell indi-
cating the aerial proportion of that end-member in the pixel
in question. The aerial percentages are thus calculated for
vegetation and pavement only. Finally, the fraction images
are reclassified into ranges.

Specifications of finer classification of urban land cover
depend on the uses that the data will need to serve. The pri-
mary motivation for this analysis is determining changes in
categories representing different degrees of impervious sur-
face. Using the spectral unmixing output we reclassify urban
classes to greater than 75 percent paved and between 15 to
75 percent paved for minimizing error in the change analysis.
Using a 3 X 3 nearest neighbor focal majority filter, we reas-
signed pixels below 15 percent impervious surface to the
dominant class in the neighborhood.

Spectral Un-mixing Applied to Vegetation

We apply a spectral un-mixing model using green vegetation,
shade, and bare soil end-members to the vegetation class to
identify grass and forest classes. We use the shade end-
member fraction image to differentiate between grass and
forest cover. The shade endmember fraction image was used
to discriminate between grass (including grass, shrub, and
crops), deciduous forest, and coniferous forest. This was
achieved by examining the shade fraction histogram for image
subsets of known vegetation type. Shade cutoff values for
each vegetation type were determined based upon the his-
tograms for each vegetation type. The final breakdown is as
follows: Grass: =32 percent shade, Deciduous: >32 percent
and <52 percent shade, and Conifer: =52 percent shade.
Unfortunately, The conifer and deciduous classes were not
separable at a sufficient accuracy level according to a prelimi-
nary accuracy assessment and were combined into a com-
bined forest class.

Bare Soil and Clear Cuts

Agricultural bare soils and clear cuts proved difficult to sepa-
rate from pavement and mixed urban classes, since their
spectral signatures are similar. Clear cuts are composed of
slash, vegetation, and soil which is spectrally similar to the
mixed urban class that is a mix of vegetation and pavement.
The result was that some urban pixels were classified as clear
cut or agricultural bare soil and vise versa. For the most part,
the misclassified pixels were relatively isolated producing a
salt and pepper look. We apply the following techniques to
isolate and remove the clear cut and agricultural bare soil pix-
els from the image. Using the assumption that forest clearcuts
should comprise at least several contiguous pixels, first a

5 X 5 nearest-neighbor filter was applied to the top-level su-
pervised classification. This resulted in a smoothed image that
eliminated isolated pixels and produced clumps of contiguous
land cover types. Then, binary mask images were created for
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both bare soil and clear-cut pixels. The clump operation in
ERDAS® was applied to each binary image to clump pixels
with their connecting neighbors to form discrete patches. We
used the sieve operation in ERDAS® to keep only those patches
of clear-cut and bare soil that were greater than 40 pixels in
area. This enabled us to eliminate small patches of clear-cut
and bare soil that might have been misclassified as pavement,
mixed urban or dry grass. We assume that clear cuts and agri-
cultural bare soil are larger than 40 pixels in area and that iso-
lated pixels that were classified as clear cut and bare soil are
most likely not either of those classes.

The sieve operation results in final classes for both clear-
cut and agricultural bare soil. A masking approach is then
used to remove these pixels from the actual image. A second
top-level supervised classification is applied to the image
without the agricultural bare soil and clear-cut pixels. This
includes signatures for water, paved urban, mixed urban,
vegetation, and a barren land use class (representing non-
agricultural bare soil). The barren land class behaved simi-
larly to agricultural bare soil, resulting in many isolated pixels
that should have been classified as paved. Another 5 X 5 filter
was applied only to the barren land class to reassign isolated
pixels. The barren land class is then merged with the agricul-
tural bare soil class to make one bare soil class. Paved urban
and water are considered classified and removed from the
image. Vegetation pixels and mixed urban pixels are separated
into two distinct images.

Final Classified Image

The final classified image consists of paved urban (>75 per-
cent paved), mixed urban (between 15-75 percent paved),
grass (grass, shrub, and crops), forest (conifer and deciduous),
clear cut, bare soil, and water. The paved urban class includes
the top level classification paved and the part of the mixed
urban class >75 percent impervious extracted from spectral
unmixing. The mixed urban class is split into three categories:
below 15 percent impervious, between 15 to 75 percent im-
pervious and greater than 75 percent impervious. Pixels
below 15 percent impervious are reassigned to their neighbor-
ing classes via a 3 X 3 nearest neighbor focal majority filter.
Pixels between 15 to 75 percent impervious constitute a dis-
tinct mixed urban class. Deciduous and coniferous forest are
combined into a combined forest class.

Accuracy Assessment
The accuracy was determined by comparing known control
points in digital orthophotos to the equivalent sites in the
classified scene (Foody, 2002). We generate an error matrix, a
user’s and producer’s accuracy assessment, and a Kappa coef-
ficient for each classification. Kappa Statistic is an index that
compares the agreement against what might be expected by
chance. Kappa is the chance-corrected proportional agree-
ment, and its possible values range from +1 (complete agree-
ment) through 0 (no agreement above that expected by
chance) to —1 (complete disagreement). Error matrices for
both images are in Tables 5 and 6.

We randomly selected approximately 400 points for each
image to perform the accuracy assessment (approximately
50 points for each class) using ERDAS®. We defined a 3 X 3 pix-
els window size for the assessment. The center pixel assign-
ment is determined based on a cluster of uniformly classified
pixels within the window. Coordinates from the center pixel
are used to create a vector grid showing each 3 X 3 window
centered on the center pixel. This coverage is used as an over-
lay reference when comparing the classes to the digital or-
thophotos. The windows are overlaid on the orthophotos so
that 3 X 3 spatial dimensions of the 3 X 3 pixels are clearly
defined when performing the assessment.

A top-level classification accuracy assessment is applied
to the 1999 image to make sure the top-level classification is

September 2004 1047



TABLE 5. ACCURACY ASSESSMENT FOR 1991 LAND COVER CLASSIFICATION

Accuracy Assessment 1991

Observed
Mixed Urban
(15-75% Paved (>75% User’s
Impervious) Impervious) Forest Grass Bare Soil Clear Cut Water Totals Accuracy
Mixed urban 46 4 0 0 0 0 0 50 92.0%
(15-75%
Impervious)
Paved (>75% 1 47 0 0 0 0 0 48 97.9%
= Impervious)
& | Forest 0 0 45 0 0 3 0 48 93.8%
7 | Grass 0 0 2 38 0 10 0 50 76.0%
@ | Bare Soil 0 0 1 0 41 0 0 42 97.6%
O | Clear Cut 0 0 2 3 0 43 0 48 89.6%
Water 0 0 0 0 0 0 50 50 100.0%
Totals 47 51 50 41 41 56 50 336
Producer’s 97.9% 92.2% 90.0% 92.7% 100.0% 76.8% 100.0%
Accuracy
Observed Agreement 0.923
Kappa Coefficient 0.910
TABLE 6. ACCURACY ASSESSMENT FOR 1999 LAND COVER CLASSIFICATION
Accuracy Assessment 1999
Observed
Mixed Urban
(15-75% Paved (>75% User’s
Impervious) Impervious) Forest Grass Bare Soil Clear Cut Water Totals Accuracy
Mixed Urban 43 1 1 4 1 0 0 50 86.0%
(15-75%
Impervious)
Paved (>75% 1 46 0 0 3 0 0 50 92.0%
= Impervious)
2 | Forest 0 0 70 1 0 0 0 71 98.6%
‘= | Grass 1 0 0 48 0 0 0 49 98.0%
& | Bare Soil 0 2 1 1 46 0 0 50 92.0%
O | Clear Cut 0 0 0 18 3 28 0 49 57.1%
Water 0 0 0 0 0 0 50 50 100.0%
Totals 45 49 72 72 53 28 50 369
Producer’s 95.6% 93.9% 97.2% 66.7% 86.8% 100.0% 100.0%
Accuracy
Observed Agreement 0.897
Kappa Coefficient 0.879

accurate enough to warrant sub-pixel classification for the
mixed urban classes. Since the results from the top-level clas-
sification accuracy assessment supported the classification
methodology, we completed the accuracy assessment of top
and sub-pixel classification classes for 1991 and 1999. Ran-
domly selected pixels for each class are compared to the digi-
tal orthophotos using the following decision rules to produce
a confusion matrix:

e Paved Urban: A clear majority of the pixel in the window is
paved (impervious surface >75 percent), i.e. streets, rooftops,
parking lots. We know that coastlines and edges of rivers and
lakes often get classified as paved. These will not be counted
as wrong, but they will be masked out.

o Mixed Urban: The window contains vegetation and evidence
of development (impervious surface is between 15 and 75 per-
cent), i.e. parts of houses, roads, garages.

e Water: A clear majority (>75 percent) of the window is water.

e Bare Soil: A clear majority (>75 percent) of the window is
bare soil.
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e Forest: A clear majority (>75 percent) of the window is
forested.

e Grass/shrub/crops: A clear majority (>75 percent) of the area
is grass, crops or shrub.

e (Clear Cut/cleared land: This class has picked up on a few
types of covers that are very related, including clear cuts, very
dry grass, shrub and recently cleared land for development. If
a majority of these cover types exist in the window, then it has
been accurately classified.

o Mixed Urban unmixing: The results of the unmixing analysis
are three end-member fraction images. We use these fractions
to calculate the percentage of impervious and vegetation.

Results are converted to themes based on ranges of per-
centage of impervious. Ranges of Mixed Urban used for the
classification include: >75 percent impervious, 15 percent—
75 percent impervious and <15 percent impervious. We use
the same methodology for sampling and accuracy assessment
of the disaggregated urban categories. Ranges of impervious
surface within categories are compared to actual amounts of
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impervious surface and vegetation within each 3 X 3 pixel
window. For the 1991 image, an accuracy assessment is per-
formed on the final 1991 classified image (instead of treating
top-level and unmixed categories separately).

Overall assessment indicates that the classification is
highly accurate at the 90 m resolution. Kappa coefficients in
1991 and 1999 were respectively 0.92 and 0.88. Accuracy of
individual classes vary. Paved urban, mixed urban, and forest
are the most accurate classes, clear cuts and bare soil are the
least accurate. The limiting factor in our accuracy assessment
is the limited spatial extent of the digital orthophotos. This
has reduced the number of sample points available to assess
the accuracy of these last two categories.

Change Analysis

The change detection technique employed is based on a pixel
by pixel comparison of land cover derived independently for
each time period (Richards and Xiuping, 1999). The change
analysis and smoothing procedure are illustrated in Figure 3.

Change Detection
Change detection involves comparing one date of imagery to a
second date that has been registered and intercalibrated to the

Land Cover Change Methodology

Land Cover
Classificaions earest neighbor

ajorit yfitter

e,

7 ids Overlay

Implement
change inthe

Figure 3. Land Cover Change Methodology.
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first. Several iterations of the change analysis provided impor-
tant feedback that helped formulate our final methodology
(Figure 2). The spatial resolution and actual classifications
used in the change analysis has been adjusted to incorporate
this new information. The various change analysis iterations
indicated the extent to which errors associated with registra-
tion and spatial heterogeneity (complex local texture) affected
the analysis. The effect of different climatic regimes in the two
time periods and resulting impacts on maturing vegetation
were observed to impact the accuracy of the change analysis
for several classes. Most obvious were pixels that had gone
from mixed urban in 1991 back to forest or grass in 1999. Such
pixels were typically isolated and located in older, lower den-
sity residential neighborhoods comprised of mixed, heteroge-
neous surface types. Air photo comparisons from 1990 and
1999 confirmed that this error was due to a combination of the
aforementioned seasonal climatic factors.

The 1991 and 1999 classified images are converted to
change codes prior to the overlay/change analysis process
(Table 5). The two grids are then compared to create an output
grid containing values indicating if a cell changed class and
the nature of that change. The land cover grids were overlaid
(added) resulting in one grid (referred to as the change grid
hereafter) with unique values for each type of scenario (e.g.,
forest-forest = 44, forest-mixed urban = 42). Using a moving
window analysis, additional grids were calculated for each
change class (in the change grid) representing the number of
immediate neighbors sharing the same value. For example,
if a pixel has a value of 42, and 4 of its immediate neighbors
also had a value of 42, the corresponding grid cell would re-
turn a value of 4. This computation was done for each class
individually resulting in separate grids for each class.

A set of decision rules was then established to determine
whether a grid cell had changed classes or remained the same.
In order for a cell to switch from one type to another, a mini-
mum number of cells in its immediate neighborhood also had
to change to the same cover type. Problems associated with
mis-registration and landscape heterogeneity make it difficult
to measure change at the individual pixel level. Moreover,
anthropogenic landscape changes (recognizable by Landsat 5
and 7) typically occur in areas larger than a 30 X 30 m grid
cell. We have chosen this method over resampling to a courser
resolution, which does not necessarily filter out error associ-
ated with mis-registration, mis-classification, or landscape
heterogeneity. The following decision rules were used after
various iterations of land cover change accuracy:

e Forest to Paved and Mixed Urban: at least five of the pixels in
a 3 X 3 window have to change from forest to Mixed urban or
Paved urban. Change to Paved Urban or Mixed Urban is deter-
mined by the majority rule.

e Changes from Mixed Urban to other land cover classes are im-
plemented with a more conservative threshold: at least six of
the pixels in a 3 X 3 window have to change from Mixed
Urban to other land cover classes in order for the land cover
change to be implemented. This higher threshold is justified
by the higher heterogeneity of the Mixed Urban class.

o All other changes: at least five of the pixels in a 3 X 3 window
have to change from the original class to the changed class.

e Pixels not fitting into any of these criteria were assigned to
their 1991 classes.

Change Analysis Accuracy

We randomly select approximately 730 points on the change
image to perform the accuracy assessment of the change
analysis (approximately 40 points for each class change). The
accuracy assessment methodology uses the same approach ap-
plied for the classification. Randomly selected pixels in each
change class are compared to change observed by comparing
digital orthophotos for 1991 and 1999. We assess both pixels
that have changed and pixels that have remained the same.
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We distinguish the accuracy of the change analysis by separat-
ing the error matrices of the individual classification from the
error matrix of change detection. The latter is constructed
from points that we have determined to be correctly classified.
In this way we can discriminate between the accuracy of indi-
vidual classes from the accuracy of individual class changes.
Overall accuracy is 0.85, but the accuracy of individual
class changes vary considerably. It is particularly noticeable
that our change analysis is conservative in the sense that
change classes of pixels that have remained the same are
highly accurate. Relatively high accuracy is observed for the

TABLE 7.

classes that have changed from forest to mixed urban (90 per-
cent) and to bare soil (88 percent) and lower accuracy for
classes that have changed from grass or bare soil to mixed
urban (65 percent). Less accurate but still within acceptable
level of accuracy are the change classes from mixed urban to
paved (80 percent) and bare soil to paved (83 percent).

Results

The magnitude of land cover change over the period 1991 to
1999 in Central Puget Sound is summarized in the change
matrices (Tables 7, 8, and 9). We analyze land cover changes

REGIONAL CHANGE ANALYSIS

Change Analysis: Entire Image below 500 m in hectares

1999
Mixed Urban Paved Forest Grass Bare Soil Clear Cut Water
% % % % % % % Total Area (ha)
1991 Mixed Urban 93.8% 0.8% 0.7% 2.2% 0.6% 1.8% 0.1% 207426
Paved 2.4% 85.8% 0.3% 2.5% 2.4% 1.1% 5.3% 42823
Forest 1.9% 0.4% 85.4% 8.9% 0.3% 2.9% 0.3% 765137
Grass 3.2% 0.6% 11.2% 80.9% 1.4% 2.5% 0.2% 311806
Bare Soil 6.8% 3.6% 0.5% 5.9% 78.2% 0.7% 4.3% 23457
Clear Cut 4.1% 0.7% 16.6% 43.6% 1.0% 33.7% 0.3% 36522
Water 0.1% 0.3% 2.1% 0.1% 0.1% 0.0% 97.3% 311001
Total Area (ha) 223646 45695 702332 343415 27905 46369 308808 1698171
TABLE 8. METROPOLITAN AREA CHANGE ANALYSIS
Change Analysis: Seattle-Bellevue-Everett PMSA in hectares
1999
Mixed Urban Paved Forest Grass Bare Soil Clear Cut Water
% % % % % % % Total Area (ha)
1991 Mixed Urban 95.9% 0.7% 0.7% 1.9% 0.4% 0.3% 0.1% 110867
Paved 2.6% 90.4% 0.3% 2.3% 1.9% 0.5% 2.0% 22485
Forest 1.7% 0.2% 90.0% 5.8% 0.2% 2.1% 0.1% 316417
Grass 3.5% 0.7% 12.2% 80.4% 1.8% 1.2% 0.1% 125085
Bare Soil 7.9% 4.3% 0.7% 8.0% 75.7% 0.5% 2.9% 10264
Clear Cut 3.8% 0.5% 36.5% 39.5% 1.0% 18.5% 0.0% 13911
Water 0.2% 0.3% 17.0% 0.4% 0.5% 0.1% 81.5% 29859
Total Area (ha) 117993 23250 310978 127969 11845 11290 25564 628889
TABLE 9. CHANGE MATRIX IN SEVEN WASHINGTON WATER RESOURCE INVENTORY AREAS
Land Cover Summary by Watershed
Watershed Resource Mixed Urban Paved Forest Grass Bare Soil Clear Cut Water Total
Inventory Area Year % % % % % % % Hectares
WRIA 7 Snohomish 1991 8.6% 1.7% 58.4% 20.3% 1.3% 2.9% 6.7% 244771
1999 9.5% 1.8% 59.0% 19.8% 1.5% 2.4% 5.9%
WRIA 8 Cedar-Sammamish 1991 31.7% 5.1% 32.6% 11.3% 1.4% 0.2% 17.7% 150729
1999 33.2% 5.5% 31.4% 10.8% 1.5% 0.2% 17.4%
WRIA 9 Duwamish-Green 1991 24.2% 6.9% 32.7% 19.9% 1.6% 1.8% 12.8% 94021
1999 25.3% 7.3% 32.2% 19.3% 1.8% 1.7% 12.5%
WRIA 10 Puyallup-White 1991 20.5% 4.4% 40.1% 24.5% 3.2% 2.1% 5.2% 97954
1999 22.6% 4.9% 35.2% 26.0% 3.6% 2.7% 5.0%
WRIA 11 Nisqually 1991 8.4% 1.3% 59.1% 25.1% 0.6% 2.9% 2.6% 114163
1999 8.7% 1.4% 51.9% 27.4% 1.1% 6.8% 2.6%
WRIA 12 Chambers-Clover 1991 37.3% 6.4% 28.9% 13.9% 1.7% 1.5% 10.3% 46428
1999 40.5% 7.4% 23.8%  12.6% 2.3% 3.0% 10.4%
WRIA 13 Deschutes 1991 14.8% 2.7% 45.9% 22.5% 1.2% 2.5% 10.4% 66999
1999 16.6% 3.3% 38.1% 26.0% 1.7% 3.6% 10.8%
WRIA 15 East Kitsap 1991 8.4% 1.4% 44.2% 12.0% 1.0% 0.9% 32.0% 255062
1999 9.5% 1.6% 41.0% 13.0% 1.0% 1.6% 32.2%
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Figure 4. Land cover change for entire image (a), Seattle metropolitan area (b), and metropolitan area inside the urban

within the Central Puget Sound region with elevations below
500 meters. We summarize the results for the entire image
(Table 7, Figure 4a), the Seattle Metropolitan area (Table 8,
Figures 4b and 4c), and nine Washington Water Resource In-
ventory Areas (WRIA) (Table 9).

Using the developed area including paved urban (>75 per-
cent impervious) urban and mixed urban (between 25 percent
and 75 percent impervious) in 1991 as a baseline, the area cov-
ered by development within the entire study area (the Central
Puget Sound Region) increased respectively by 28 = 4 km?* and
162 = 24 km?, representing a 6.7 percent increase in paved
urban and a 7.8 percent increase in mixed urban areas (Fig-
ure 4a). Overall the region has added 1 percent of the total area
to development. Forest cover has declined by 628 + 94 km* a
8.2 percent decline over the same period. Overall the region has
lost forest cover corresponding to 5 percent of the total area.

Almost half of the land conversion to development has oc-
curred in the Seattle metropolitan area with about 80 + 12 km?
land converted to mixed and paved urban, a 6 percent increase
in overall developed area since 1991 (Figure 4b). The most in-
tense development has occurred primarily within the urban
growth boundary (UGB) where the increase in paved area ac-
counts for 13 = 1.9 km?, a 7.9 percent increase (Figure 4c). The
increase in mixed urban area adds to 45 *+ 6.7 km?, a 5.8 per-
cent increase over the 1991 baseline. This represents a 2.6 per-
cent increase in the total metropolitan area within the UGB being
now mixed urban area and about 1 percent more of the total met-
ropolitan area within the urban growth boundaries now paved.
Forest areas have declined by about 44 = 6.6 km?* within the UGB
boundaries an 11.1 percent decrease over the same period.

Conversion of forestland to mixed urban and paved is
also marked in WRIA 8, 10, 11, 12, and 13. More than 2 percent
of the Cedar-Sammamish watershed (WRIA 8) area has been
converted to urban land. This represents more than 4.3 per-
cent of 1991 forest land and 5.3 percent of 1991 grass land
converted to mixed urban and paved urban over the eight-
year period. Similar trends can be observed for Duwamish-
Green (WRIA 9), Nisqually (WRIA 11) and Deschutes (WRIA 13).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Even more marked are the changes in Puyallup-White
(WRIA 10) and Chambers-Clover (WRIA 12) where the loss of
forest land to clear cuts and development accounts respec-
tively 7 percent and 5 percent of the total area.

Conclusions

The objective of this project was to discriminate categories of
urban land cover using USGS Landsat T™M and ETM+ images

of the Puget Sound (Washington) from 1991 and 1999 and to
perform a land cover change analysis between the two images.
Specific objectives of the study are: (1) to develop a protocol
to process and classify the land cover to explicitly discrimi-
nate a number of land cover classes that effectively represent
a mix of impervious surfaces and natural vegetation; and (2) to
perform a land cover change analysis at the regional and
watershed scales.

We combine a supervised classification approach with a
spectral unmixing approach to discriminate among seven
urban land cover classes. Transition matrices were derived for
the entire image, at the metropolitan scale, and at the basin
level to enable comparisons and analysis in relation to socio-
economic, ecological, and hydrological processes. Change im-
ages were also created to quantify and display the changes to
land cover that occurred between two time periods for target
land cover classes. The images capture key trends such as the
loss of forested land to urban development or to grass, shrubs,
and crops, reflecting re-growth after timber harvests.

Registration errors and seasonal variations necessitated a
degradation in the spatial resolution of the change analysis
from the 30 m pixel resolution; overall assessment indicates
that the classification is highly accurate at a 90 m resolution.
Kappa coefficients in 1991 and 1999 were respectively
92 percent and 88 percent. Individual class user’s accuracy
ranged from 76 percent (grass) to 98 percent (paved urban)
for 1991 and from 57 percent (clear cut) to 99 percent (forest)
for 1999. 100 percent of the water pixels were accurately
classified in both years. The overall accuracy of the change
analysis is 85 percent, with higher accuracy observed for the
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classes that have changed from forest to mixed urban (90 per-
cent) and to bare soil (88 percent) and lower accuracy for
classes that have changed from grass or bare soil to mixed
urban (65 percent). The methodology described here is cur-
rently being refined to improve separability of vegetation
classes by using multiple images and leaf-off additional im-
ages of the same years.
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