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Introduction 

It is well known that physical exercise is an important con-

tributing factor to a better quality of life via the changes that it

causes to the function of various physiological systems. Re-

cently, many of these changes were attributed to epigenetic al-

terations that are induced by exercise, thus altering the

expression level of various genes1. In general, epigenetics are

changes occurring in the DNA or the chromatin’s structure that

can influence the transcription of several genes independently

of their primary sequences (Figure 1). The most common epi-

genetic changes induced by exercise are histone modifications,

such as methylation and acetylation, DNA methylation, and

expression of different types of microRNAs (miRNAs)2.

Histone modifications are post-translational alterations on the

lysine-rich tail region of histones, especially of H3 and H4 his-

tones. Histone acyltransferases (HATs) and histone deacetylases

(HDACs) are enzymes that regulate DNA acetylation, with

HATs adding acetyl groups and HDACs removing them from

DNA. In general, histone lysine acetylation is a reversible

process which is associated with the transcriptional activation3,4,

while the balance between HATs and HDACs determines the

level of histone acetylation and, eventually, the level of tran-

scription4,5. Although there is little evidence regarding the his-

tone methylation, however, it is known that it is a reversible

process that occurs through histone methyltransferases (HMTs),

which are enzymes that add methyl groups to lysine tail regions

of histones. Other enzymes that were recently found, such as

peptidylarginine deiminase 4 (PADI4), lysine-specific demethy-

lase 1 (LSD1) and Jumonji C-domain-containing histone

demethylase (JHDM), remove the methyl groups6,7. 

DNA methylation is also a reversible epigenetic process

which is catalyzed by a family of DNA methyltransferases

(DNMTs). These enzymes add a methyl group, through a co-

valent modification, primarily on CpG dinucleotides. CpG din-

ucleotides are frequently found in clusters, called CpG islands,

however most of the DNAs methylation occurs at CpG island

shores, which are sequences close to CpG islands8. This usu-

ally results in gene silencing, either through a direct effect on

transcription factor(s) or through recruitment of methyl-CpG

binding domain (MBD) proteins, which interact with and ac-

tivate HDACs, and convert the chromatin to a repressive

state6,9, thus preventing the gene transcription.

Another mechanism of epigenetic regulation is mediated by

miRNAs. MiRNAs are a group of small noncoding RNA mole-
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cules, about 22 nucleotides in length, and they generally function

to mitigate or silence protein translation, often acting as subtle

regulators10,11. MiRNAs are also known to play a role in DNA

methylation12 and chromatin remodeling13. It should be noted that

a single miRNA may regulate a high number of target genes,

sometimes up to thousands. Recently, miRNAs have been sug-

gested as key regulatory molecules of the immune functions11,14,15

and the effectiveness of the immune response10, as well as im-

portant contributing factors to myocardium remodeling16,17. 

Epigenetic alterations induced by the “eustress” or “good

stress” of physical exercise have a positive impact on various

biological functions18, thus the known exercise-induced epi-

genetic regulations in different physiological systems and

pathophysiological mechanisms, as well as their potential clin-

ical implications, are discussed in the following sections of

this review. First, focus will be driven on specific epigenetic

regulations of metabolic and inflammatory processes; Then,

epigenetic mechanisms and effects of physical exercise on im-

portant pathologies such as cancer and aging are discussed;

Lastly, the existing evidence for the role of epigenetic alter-

ations in the function of the central nervous system and the

cardiovascular system are reviewed.

Epigenetic regulations of metabolic processes

induced by exercise

It is well established that physical exercise causes alter-

ations in the expression of human skeletal muscle genes, as a

mechanism of adaptation not only to the mechanical load but

also to the metabolic stress of exercise. Many of those changes

in gene expression can occur through epigenetic regulations

which are induced by exercise and are related to metabolic

processes19-21.

In general, acute exercise causes hypomethylation of the

whole genome in the skeletal muscle cells of sedentary people.

Although this hypomethylation is mainly related to promoters

of metabolic genes (e.g., PGC-1a, TFAM, PPAR-δ, PDK4, cit-

rate synthase) and results in increased gene expression, how-

ever the transcription of muscle-specific transcription factors,

such as MyoD1 and myocyte-specific enhancer factor (MEF)

2A, does not change both on human and mouse models1. More-

over, the promoter demethylation and the activation of associ-

ated genes depend on the intensity of the exercise; high

intensity exercise causes a reduction in the promoter methyla-

tion of genes such as peroxisome proliferator-activated receptor

gamma (PPAR-γ), coactivator 1 alpha (PGC-1a), transcription

factor A mitochondrial (TFAM), pyruvate dehydrogenase

lipoamide kinase isozyme 4 (PDK4) and MEF2A, immediately

after exercise, as well as a reduction in the promoter’s methy-

lation of peroxisome proliferator-activated receptor delta

(PPAR-δ), 3 hours after exercise. Similar results have been also

observed in ex vivo models1,8. 

In addition, exercise can lead to changes in the action of cy-

tosolic messengers such as Ca2+ and AMP, both in humans and

mice, which result in the activation of signaling cascades and

eventually to alterations in gene transcription. These alter-

ations occur through the activation of Ca2+/Calmodoulin-de-

pendent protein kinase (CaMK) and AMP-dependent protein

kinase (AMPK)22. AMPK can change the expression of genes,

such as the glucose transporter type 4 (GLUT4) and mitochon-

drial genes, by activating cellular transcription factors and co-

activators in mammalian skeletal muscle. Specifically for the

mitochondrial genes, it has been suggested that AMPK acti-

Figure 1. An overview of the possible epigenetic changes induced by exercise.
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vates the PGC-1α co-activator, which increases the expression

of other transcription factors that, in turn, lead to the transcrip-

tional changes23. Moreover, over-expression of PGC-1α and

nuclear respiratory factor 1 (NRF-1) appears to increase the

expression of the GLUT4 and the activity of MEF2 in mice24,25

implying that AMPK could increase the expression of GLUT4

protein through PGC-1α pathway. 

Nevertheless, the expression of GLUT4 can also be in-

creased through other pathways (Figure 2). Specifically in

human skeletal muscle, the class IIa HDACs, which consist of

HDAC4,5,7 and 9, are highly expressed5 and regulated by neu-

romuscular activity4, while their action, particularly at the pro-

moter’s region, is reduced by exercise. These regulations occur

through an ubiquitin-mediated proteasomal degradation26,27,

and through phosphorylation by CaMKII28,29, AMPK30, or pro-

tein kinase D (PKD)27,31,32, which leads to the exit of HDACs

from the nucleus (Figure 2). The class IIa HDACs can interact

with MEF2 and repress MEF2-dependent transcription33, by

creating a complex containing HDAC3, which removes acetyl

groups34. In this way, HDACs regulate the expression of ox-

idative genes35, which is increased after exercise. In particular,

the HDAC5 can regulate the expression of GLUT4 in skeletal

muscle. HDAC5 interacts with MEF2 resulting in a deacety-

lation of GLUT4 which, in turn, reduces its expression at rest30.

However, following acute exercise, AMPK phosphorylates

HDAC5, causing its dissociation from MEF2. This dissocia-

tion enables MEF2 to interact with co-activators such as

PPAR-γ, PPARGC1a and HATs, acetylating GLUT4 and, thus,

increasing its expression30,36,37, (Figure 2). The action of MEF2

can also be regulated by CaMK after acute exercise, through

a mechanism that also includes acetylation of GLUT4 and in-

fluences the binding of MEF2 at the promoter of this gene38,39.

The regulation of MEF2 during endurance exercise was found

to be independent of sex37. Moreover, HDACs can regulate the

expression of PGC-1α, which is increased after exercise in an

intensity-dependent manner40, and is a key factor in the human

muscle adaptation to exercise41.

Such exercise-induced genetic modifications could have

clinical implications. Specifically, in type 2 diabetic patients,

PPAR-γ and PGC-1α are hypermethylated in human skeletal

muscle. This hypermethylation has been correlated with re-

duced mRNA expression of PGC-1α and mitochondrial

DNA42. Thus, exercise may have a beneficial effect on the pre-

vention and confrontation of type 2 diabetes and other meta-

bolic disorders43,44 through the afore-mentioned epigenetic

mechanisms, since it can increase not only the expression of

GLUT4 in muscle, but also the hypomethylation of PPAR-γ

and PGC-1α.

Epigenetic alterations can also regulate the transcription of

myosin heavy chain genes (MHCs)45. In particular, acetylation

and methylation of histone H3 at specific states is related to a

differential expression of I MHC, IIx MHC and IIb MHC genes

Figure 2. Histone modifications regulate glucose transporter type 4 (GLUT4) expression in response to exercise. AMPK: 5’ AMP-dependent

protein kinase; CaMKII: Ca2+/calmodulin-dependent protein kinases II; HDAC: histone deacetylase; MEF2: myocyte-specific enhancer fac-

tor-2; Ub: ubiquitin-binding domain.
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in mouse soleus muscle following reduced muscular activity

(muscle deloading), as a result of changes in the chromatin

structure46,47. Moreover, HDAC5 has been found to increase the

number of type I oxidative fibers following exercise in mice26.

Also, it has been shown that the percentage of type I muscle

fibers and the maximal aerobic capacity (VO2 max) in humans

are positively correlated with the expression of the acetyltran-

spherase MYST4 (monocytic leukemia zinc finger protein-re-

lated factor)48, a HAT that regulates the expression of

Runt-domain transcription factor (RUNX2)49, which is in-

volved in osteoblast differentiation and bone formation50.

Moreover, another epigenetic regulatory mechanism which

is involved in skeletal muscle physiology includes miRNAs.

As it has been already mentioned, miRNAs are tissue specific

molecules that have the tendency to silence protein translation

and decrease genes transcription. Particularly in muscle cells,

the miRNAs (myomiRNAs) contribute to the myocyte prolif-

eration and differentiation, the determination of muscle fiber

types, and to muscle hypertrophy and atrophy, while their

deregulation is typical in muscle diseases and dysfunction51.

The regulation of the myomiRNAs is controlled by various

transcription factors, such as the key myogenic regulatory fac-

tors (MRFs), which include MyoD1 and myogenin, MEF2,

serum response factor (SRF) and myocardin-related transcrip-

tion factor-A (MRTF-A)52. Apart from myomiRNAs, there are

also ‘‘circulating’’ miRNAs (c-miRNAs) in the plasma, which

mediate many physiological processes such as angiogenesis,

inflammation, skeletal and cardiac muscle contractility and is-

chemia adaptations. Some of these miRNAs can be altered by

acute exhaustive aerobic exercise (miR-21 and miR-221), or

by sustained aerobic exercise training (miR-20a), or even by

both types of exercise (miR-146a and miR-222), others remain

unchanged (miR-133a, miR-210, miR-328) by aerobic exer-

cise, and others (miR-133) can change through resistance ex-

ercise while remain unchanged following aerobic exercise53,54.

Aerobic exercise has been shown to cause mainly a reduc-

tion in the expression of various types of miRNAs in human

skeletal muscle, 22% of which target genes that regulate tran-

scription and 16% target genes that are involved in muscle me-

tabolism, especially in oxidative phosphorylation55. Thus, the

decrease in miRNAs expression causes an increase in the ex-

pression of mitochondrial and lipid oxidation enzymes, with-

out affecting the amount of the mRNA of metabolic genes.

Also, four miRNAs that are down regulated by endurance (aer-

obic) exercise target the genes RUNX1, PAX3 and SOX9,

which may be modulators of the muscle adaptations induced

by aerobic exercise55. In addition, miRNAs in skeletal muscle

may play a role in the regulation of muscle cell size after re-

sistance exercise and ingestion of essential amino acids that

stimulate the anabolic process, although such a role is still un-

defined. Nevertheless, it has been shown that such anabolic

stimulus changes the expression of different types of miRNAs

and those changes differ between young and old men56. Fur-

thermore, endurance exercise has been shown to alter the ex-

pression of various types of miRNAs in mice, which play a

key role in the remodeling and maintenance of skeletal muscle

mass. Specifically, these endurance exercise-induced alter-

ations in miRNAs expression modulate the expression of key

genes, such as PGC-1a and PDK4, without affecting the ex-

pression of cytoplasmic or nuclear complexes57,58, and also af-

fect the process of angiogenesis which naturally occurs in

skeletal muscle after physical exercise training59. Similarly in

humans, an acute bout of endurance exercise has been shown

to increase the expression of myomiRNAs that target genes

which participate in TGF-β, MAPK and other signaling path-

ways, while a 12-week endurance training program surpris-

ingly resulted in a decrease of all myomiRNAs60.

Exercise-induced epigenetic regulation of 

inflammatory processes

It is well known that exercise is associated with inflamma-

tory responses61-63. Apoptosis-associated speck-like protein

containing a caspase recruitment domain (ASC) is a mediator

of the cytosol-type inflammatory signaling pathway64,65. It ac-

tivates procaspase-166 and promotes the activation of inter-

leukins67,68, ultimately leading to the initiation of innate

immunity. The transcriptional status of ASC gene is regulated

by epigenetic mechanisms. Specifically, the methylation of its

CpG island surrounding exon 1 is inversely correlated with

ASC protein expression69,70. It has been shown that chronic

moderate exercise up-regulates the methylation status of ASC,

resulting in a decreased activity of the gene in human mono-

cytic cells71 and, thus, preventing the activation of inflamma-

tory cytokines, such as interleukins and tumor necrosis factors

(TNF)72. Thus, exercise can protect the cell from an inflam-

matory environment, which could favor carcinogenesis or the

development of several age-related diseases, as discussed in

the following sections.

In addition, it has been shown that exercise can differen-

tially influence the expression patterns of miRNAs in leuko-

cyte subtypes, such as granulocytes and peripheral blood

mononuclear cells (PBMCs)73,74. As far as neutrophils are con-

cerned, Shlomit et al.73 analyzed neutrophil-specific miRNAs

and genes whose expression was significantly altered by aer-

obic exercise, and identified three pathways in which a con-

nection between miRNAs and gene expression was plausible.

The most predominant was the ubiquitin-mediated pathway,

which is known to be indispensable in the regulation of im-

mune and inflammatory functions75. The second one was the

janus kinase-signal transducer and activator of transcription

(Jak-STAT) pathway, which is known to modify granu-

lopoeiesis, neutrophil immune function and apoptosis76,77. The

third one was the Hedgehog pathway, which is thought to have

a role in chronic inflammation78. Taking all the above evidence

into consideration, it is suggested that exercise can alter neu-

trophil function through epigenetic mechanisms.

With respect to PBMCs, in an interesting analysis of the

thirty four PBMC-specific microRNAs and genes whose ex-

pression was significantly altered by exercise, twelve signaling

pathways were identified74. Some of those pathways play an

important role in the regulation of pro- and anti-inflammatory
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cytokines during exercise, such as MAPK and TGF path-

ways79-81. Other pathways are known to play a key role in cell

communication82 and in regulating the activation and differ-

entiation of lymphocytes83, while some others are associated

with cancer and are likely to establish a link between physical

exercise and cancer prevention84. Moreover, changes in indi-

vidual miRNAs result in multiple effects, such as interactions

between different types of miRNAs and a greater T-cell re-

sponsiveness along with reduced susceptibility to infection85,86,

regulation of toll-like receptors (TLRs) in monocytes87,88 and

T-regulatory lymphocytes89, and down-regulation of DNA

methylation in CD4+ T-cells90. All these effects are induced

by exercise and can alter the pathogenesis and progression of

diseases, such as systematic lupus erythematosus and rheuma-

toid arthritis, which are associated with some of the above

mentioned epigenetic changes91.

Epigenetic effects of exercise on cancer

Physical activity is currently suggested as a protective factor

against cancer, which lowers the risk of cancer occurrence and

mortality92,93. A hypomethylation in repetitive elements in

many cancer cells has been reported and it appears to be ac-

companied by the overall genomic methylation status of the

patients94. Physical activity is usually associated with higher

levels of global genomic DNA methylation and, thus, it could

restore, at least to some extent, the hypomethylated genome

in cancer95.

Another underlying mechanism for carcinogenesis is

chronic inflammation that can be mediated by ASC protein71.

As it has been aforementioned, physical exercise decreases the

expression of ASC gene through epigenetic mechanisms, and,

in turn, the activation of inflammatory cytokines. Thus, exer-

cise can protect the cell from an inflammatory environment

which could promote carcinogenesis.

Not only hypomethylation but also hypermethylation has

been associated with neoplasmatic mutations in the genome.

Actually, in most types of human neoplasms, a methylation of

cytosine in CpG dinucleotides in gene promoters appears to

be associated with transcriptional gene silencing96,97. An aber-

rant DNA methylation may result in silencing of a tumor-sup-

pressor gene, which is a crucial component of the mechanism

of carcinogenesis98. CACNA2D3 is a calcium channel related

tumor suppressor gene, the silencing of which has the potential

to lead to gastric cancer98. Yuasa et al.98 found that

CACNA2D3 methylation was more frequent in patients with

no physical activity compared to those with some kind of phys-

ical activity, indicating that physical exercise may decrease the

methylation status of this particular gene and can have a pos-

itive effect against tumorigenesis. L3MBTL1 is another tumor

suppressor gene the methylation of which is also inversely cor-

related with gene expression and is higher in tumors99. Zeng

et al.99 observed a decrease in L3MBTL1 methylation after a

six month-exercise training that resulted in higher expression

of that specific gene, which was associated, possibly in a dose-

response manner, with low grade and hormone receptor posi-

tive tumors, as well as with low risk of cancer recurrence and

breast cancer death. Two other genes with the same character-

istics are APC and RASSF1A 100. These particular genes have

been associated with breast cancer tumorigenesis and are used

as epigenetic markers of breast cancer risk. Coyle et al.100 have

provided evidence indicating that physical exercise diminishes

or reverses promoter hypermethylation of these tumor suppres-

sor genes in non-malignant breast tissue, allowing their ex-

pression. Furthermore, physical exercise decreases estrogen

levels, which have been proposed as inducers of promoter hy-

permethylation of tumor suppressor genes and are implicated

in breast cancer carcinogenesis100,101. Also there is evidence

that physical exercise favors the expression of tumor suppres-

sor protein p53, which is down-regulated in many types of can-

cer, through epigenetic mechanisms including miRNAs18. To

conclude, exercise may prevent the progression of carcinogen-

esis and improve cancer survival through its influence on the

epigenetic regulation of either tumor suppressor genes or the

inflammatory processes.

Exercise-regulated epigenetic mechanisms in

aging process

Aging is a natural process that is usually associated with nu-

merous pathologies and homeostatic deregulations. It is known

that epigenetic mechanisms are involved in the pathogenesis

of some of the age-related diseases. Wilson et al.102 and Tra et

al.103 have shown that a general demethylation pattern, causing

genomic instability, is associated with the aging process. The

essential role of microRNAs in the aging process has been also

indicated, in regard to the manifestation of many pathological

situations104. Furthermore, aging is usually associated with

great shortening of telomeres that can lead to cellular dam-

age105. Telomeres are sequences of nucleotides at the ends of

chromosomes that protect their integrity and are shortened

with each successive cell division106. It has been shown that

telomeres are transcribed in order to express non-coding RNAs

that may regulate telomere length and chromatin status107, in-

dicating that epigenetic modifications can alter telomeres’

length. There are studies, both in animal models108-110 and in

humans109, suggesting that physical exercise is an inducer of

telomerase activity and gene transcription, coding for proteins

that stabilize telomeres, through epigenetic mechanisms. Fur-

ther, it has been shown that in some cases physical exercise

increases the methylation status of DNA, causes histone mod-

ifications and induces the production of miRNAs2. All these

effects constitute epigenetic modifications that can restore, to

some extent, the deregulation of the right epigenetic pattern

during aging process.

Another family of molecules related to aging is sirtuins111.

Sirtuins constitute a highly conserved family of proteins with

a possible key role in cell survival112, since they are associated

with a variety of cellular functions, such as cell cycle regula-

tion, cell survival and life span extension. Sirtuins not only

deacetylate histones and several transcriptional regulators in

the nucleus, but also modulate specific proteins in the cyto-
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plasm and in mitochondria113. It has been shown that Sirt1 is

activated by an epigenetic regulatory mechanism including the

miRNA miR-134, and is associated with synaptic plasticity

and memory formation in mice114-116. Recent studies, reviewed

in106, indicate that physical exercise has different effects on

Sirt1 activity, depending on the type of exercise and on the part

of the animal or human body where the Sirt1 activity was

measured. It is supposed that physical exercise regulates, prob-

ably through epigenetic mechanisms, the Sirt1 activity which,

in turn, regulates important signaling molecules, such as PGC-

1a, p53, NF-κB (nuclear factor kappa-light-chain-enhancer of

activated B cells) and other transcriptional factors. All these

molecules play a key role in cellular energy metabolism, gene

transcription and, consequently, in cell survival. Thus, it has

been proposed that exercise could have some beneficial neu-

rophysiological effects and promote successful brain aging,

with as less as possible neurodegenerative dysfunctions106.

In addition, there are several age-related diseases such as

rheumatoid arthritis117, atherosclerosis118, and type II dia-

betes119 which are associated with chronic inflammation.

Chronic exercise training may reduce the expression of pro-

inflammatory cytokines through epigenetic modifications and,

therefore, help against chronic inflammatory diseases72. Lastly,

although aging is usually related to increased frailty, as a result

of the aging of muscles, however, epigenetic mechanisms in-

duced by exercise regulate the expression of myogenic regu-

latory factors, such as Myogenin, MyoD, Myf5 and MRF4,

which are associated with muscle atrophy prevention and mus-

cle growth18.

Exercise-induced epigenetic alterations in 

central nervous system

Various studies in the last few years have revealed new ev-

idence that strongly indicate an important role of exercise on

brain plasticity and cognition. Those effects of exercise are

mainly mediated through the actions of brain-derived neu-

rotrophic factor (BDNF), a neurotrophin which is highly ex-

pressed in hippocampus and contributes to neuronal

development120. In particular, it has been shown that BDNF is

associated not only with the effect of exercise on brain plas-

ticity121-123, but also is involved in neuronal excitability, and

particularly in the functions of learning and memory124-127.

Moreover, it can act as a mediator between metabolism and

brain plasticity, because it is regulated by protein molecules,

such as AMPK, which have been shown to be up-regulated by

physical exercise in rats128.

Among the BDNF promoters, the promoter IV is subjected

to epigenetic regulation and is related to neuronal activity,

learning and memory functions6. Methyl-CpG-binding protein

(MeCP2) contributes to the gene-silencing effect of DNA

methylation129 and, in the absence of stimulation, occupies a

site on the BDNF promoter IV, thus resulting in the repression

of BDNF transcription130. Neuronal depolarization dissociates

MeCP2 from the BDNF promoter IV, resulting in the pro-

moter’s demethylation and BDNF transcription, modification

and release131. This eventually leads to the binding and activa-

tion of its tyrosine kinase receptor (TrkB) at both pre- and post-

synaptic sites, which, in turn, results in the activation of

MAPK cascade132. Vaynman et al.133 have shown that exercise

is likely to establish a positive feedback loop through tran-

scriptional regulation, which results in increasing the mRNA

levels of both BDNF and its receptor (TrkB).

Exercise has been shown to induce an increase in BDNF

levels in the hippocampus of mouse, a vital area for learning

and memory formation133-135. Vaynman et al.121 have suggested

that the impact of exercise on BDNF, which in turn is associ-

ated with hippocampal synaptic plasticity, learning and mem-

ory, is mediated by the calcium/calmodoulin-dependent

protein kinase II (CaMKII) signaling system and by the tran-

scription regulator cAMP response element binding protein

(CREB) in rats.

Interestingly, Gomez-Pinilla et al.136 showed that physical

exercise engages epigenetic mechanisms to promote stable el-

evations in BDNF expression in rats. Specifically, the finding

of that study indicated that exercise reduces methylation of

CpG in BDNF promoter IV and affects the MeCP2 level in

conjunction with BDNF. Furthermore, it was shown that ex-

ercise induces acetylation of histone H3 in the BDNF promoter

IV, without changing the acetylation status of total histone H3.

However, the acetylation of histone H3 along with a reduction

of HDAC5 levels result in the transcription of BDNF gene, in-

dicating that H3 is an important molecule which mediates epi-

genetic regulations following exercise. 

In addition, Gomez-Pinilla et al.136 found that exercise ele-

vated the phosphorylation levels of CREB and CaMKII. The

activated (phosphorylated) CaMKII accelerates the phospho-

rylation of CREB, which can recruit CREB-binding protein

(CBP). These molecules have strong histone acetylation trans-

ferase-promoting activity and, in their turn, activate BDNF

transcription. Specifically, CBP functions not only as a molec-

ular scaffold for components of the transcriptional machinery,

but it has also the ability to regulate gene expression through

its histone acetyltransferase activity, thus inducing chromatin

remodeling and activating BDNF transcription. Further, it

should be noted that various studies have revealed the impor-

tance of the HAT activity of CBP in the transfer of short-term

memory to long-term memory in rats, humans and non-human

primates137-139.

The above described exercise-induced effects are likely to

contribute to the promotion of mental health and resistance to

neurological disorders and brain syndromes, since many of

them, such as Alzheimer, depression, manic episodes, bipolar

disorder, REM sleep deprivation, and attention deficit hyper-

activity disorder (ADHD) are caused by the lack of BDNF121,140-

143. More specifically, Archer et al.144 have shown that physical

exercise alleviates the symptoms of ADHD. It has been previ-

ously indicated136, that it has a beneficial effect on remodeling

the chromatin region which contains BDNF gene, making it ac-

cessible to the indispensable transcriptional factors and, thus,

inducing the expression of BDNF. In this way, physical exer-

cise, regardless of its type (i.e., endurance or resistance exer-
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cise), can partially restore the decreased levels of BDNF, im-

proving both the neurobehavioral deficits and the biomarkers

associated with ADHD144. With regard to the REM sleep dep-

rivation, Zagaar et al.145 studied the role of regular physical ex-

ercise on cognition in REM sleep deprived mice and found that

regular exercise prevents impairments in short-term memory

and hippocampal E-LTP caused by sleep deprivation. Thus, ex-

ercise-induced compensatory mechanisms, regulated by epige-

netic modifications136, prevent down-regulating changes in the

basal and post-stimulation levels of P-CaMKII and BDNF,

which are associated with sleep deprivation145.

Another area, where physical exercise has positive effects

by up-regulating the BDNF levels, is neurogenesis. Data from

a genetically modified mouse model indicated a strong asso-

ciation of BDNF with the epigenetic mechanisms by which

exercise stimulates adult neurogenesis146. Indeed, the survival

and the integration of the newborn neurons in adult rat brain

rely on the good functioning of BDNF/TrkB signaling147. In

this context, the positive impact of exercise on neurogenesis

may be beneficial against various neurodegenerative disorders,

such as Alzheimer’s disease.

Apart from up-regulating BDNF, exercise can also alter the

activity of hippocampus by changing the HAT/HDAC ratio.

As it has been shown in mice, exercise reduces HDAC activity

and increases HAT activity in the hippocampus, thus increas-

ing the HAT/HDAC ratio148. This hyperacetylation status has

been found to be associated with enhanced transcriptional ac-

tivity4,27,149-155. Also, there is evidence supporting that a loss of

neuronal acetylation is associated with neurodegeneration,

since under neurodegenerative conditions, there is a decrease

of histone acetylation levels in mice156. The loss of CBP-HAT

activity results in a cascade of events towards neurodegenera-

tion. Thus, the HAT/HDAC balance is disturbed in favor of

HDAC availability and enzymatic function. In that context,

exercise, which induces histone acetylation and restores

HAT/HDAC balance, has been regarded as an important strat-

egy in neuroprotection and memory function157, in order to pre-

vent or accelerate recovery in neurodegenerative diseases158,159. 

All the above taken together, it could be suggested that ex-

ercise increases synaptic integrity and neuroplasticity in the

brain, and simultaneously improves memory, learning and

stress responses160, (Figure 3). Collins et al.155 have also pro-

vided evidence that exercise enhances epigenetic mechanisms

and gene expression in dentate gyrus of mice hippocampus,

improving cognitive response to psychological stress. This oc-

curs through increased phosphoacetylation of dentate histone

H3 and higher c-Fos responses, which are caused by exercise.

The phosphoacetylation of H3 and the induction of c-Fos are

epigenetic responses that provoke gene expression changes in

the dentate gyrus, where some of the neuroplasticity processes

take place161. Furthermore, exercise increases the expression

of glucocorticoid receptors (GRs) and, thus, enhances the ef-

fect of stress-induced elevations of glucocorticoid hormone

levels in rodents161,162. Hence, physical exercise causes epige-

netic modifications, which regulate the transcriptional mech-

anisms of several genes in the brain, coordinating the adaptive

behavioral responses to stressful events.

Epigenetic effects of exercise on cardiovascular

system 

Physical exercise exerts also a great impact on cardiovas-

cular system163. The molecular mechanisms that promote the

necessary cardiovascular adaptations include an increase in

free radicals in association with improved antioxidative activ-

Figure 3. A proposed model for the effect of exercise on molecular, neuroplastic and cognitive patterns through epigenetics. IGF-1: Insulin-

like growth factor-1; VEGF: Vascular endothelial growth factor; BDNF: Brain-derived neurotrophic factor.
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ity, alterations in the composition and the architecture of the

extracellular matrix, and epigenetic modifications164. 

With regard to the epigenetic alterations, there is not enough

evidence to establish a direct connection between epigenetic

modulations and changes in heart and vessels induced by ex-

ercise, however, recent data indicate such a possibility. It has

been shown that epigenetic modifications caused by physical

exercise regulate the activity of genes which are responsible

for the expression of pro-inflammatory cytokines, such as the

ASC gene, the methylation of which is increased by exercise71.

Epigenetic alterations can also regulate the binding of tran-

scriptional factor NFκB to DNA, which is indispensable for

various pro-inflammatory cytokines to be expressed165. The

HDACs reinforce the NFκB-DNA binding, while HATs impair

it166. Apart from that, transcriptional co-activators, like CREB-

binding protein (CBP) and P300-CBP-associated factor

(PCAF), can function as HATs and, thus, regulate the expres-

sion of pro-inflammatory cytokines167.

All these epigenetic modifications ensure the proper func-

tions at the cellular level, because the inflammatory responses

are balanced by the expression of anti-inflammatory genes168.

However, it is possible that a deregulation of these epigenetic

mechanisms can lead to various cardiovascular diseases,

through changes in vessels that can ultimately result in the de-

velopment of atherosclerosis and stenosis71,169. Deregulation

of HAT/HDAC ratio, or of their function, can also lead to mod-

ified expression of matrix metalloproteinases (MMPs), which

are related to pathological alterations of vascular walls170, to

altered proliferation of endothelium myocytes in heart and ves-

sels171, and even to lethal cardiomyopathy172. Regular physical

exercise can have a protective role against cardiovascular dis-

eases, by restoring HAT and HDAC activity to the normal con-

dition, and by regulating these epigenetic mechanisms164.

In addition, miRNAs contribute to the process of my-

ocardium remodeling through, as yet, not fully understood

mechanism(s). Exercise training causes a non-pathological in-

crease of the myocardial mass, resulting in cardiac hypertrophy

and neo-angiogenesis – “the athlete’s heart”17. During the ex-

ercise-induced cardiac hypertrophy, new sarcomeres are added

both in parallel and in series, increasing the length of the car-

diac cells. This results in an increased ventricular stroke vol-

ume and cardiac output, which improves aerobic capacity16. It

has been shown that aerobic exercise training modulates nu-

merous miRNAs, which in turn regulate their target mRNAs

and, thus, provoke the physiological cardiac hypertrophy,

through different signaling pathways173. In animal models, aer-

obic exercise has been shown to cause a decrease in the ex-

pression of miRNA-1, -133a and -133b, which provoke an

increase in the expression of the Ras homologue gene family-

A (RhoA), the cell division control protein 42 (CDC42), the

negative elongation factor A (NELFA) protein, and of the

Wolf-Hirschhorn syndrome candidate 2 (Whsc2)174. In addi-

tion, aerobic exercise causes an increase in the levels of

miRNA-29a, -29b and -29c, resulting in decreased expression

of collagens I and III (COLIAI and COLIIIAI)175, an increase

in the expression of miRNA-27a and -27b, resulting in de-

creased levels of angiotensin-converting enzyme 1 (ACE)16,

and a decrease in the levels of miRNA-143, which increases

the expression of angiotensin-converting enzyme 2 (ACE2)16.

All the above effects promote the growth and differentiation

of cardiac cells, the ventricle compliance, the anti-fibrosis and,

eventually, the physiological cardiac hypertrophy174. More-

over, cardiac hypertrophy includes neo-angiogenesis as well

and, in animals, it has been proposed that aerobic exercise up-

regulates the expression of miRNA-126 which, in turn, de-

creases the expression of its target mRNAs (PI3KR2 and

Spred-1). Thus, aerobic exercise promotes the cardiac angio-

genesis through the VEGF pathway and its targets that con-

verge in an increase in the angiogenic pathways MAPK and

PI3K/Akt/eNOS176.

It should be noted that the signaling pathways that lead to car-

diac hypertrophy and are induced by exercise protect the heart

from fibrosis and pathological remodeling, and they are different

from those that provoke pathological hypertrophy and may pres-

ent a different expression pattern of miRNAs173,174. Taking into

consideration that cardiac hypertrophy is a major problem in

many cardiac diseases, either the enhancement of miRNAs via

miRNA-mimics, or the silencing of miRNAs, via miRNA-an-

tagonists, could be regarded as a hopeful approach that may help

the onset of new therapeutic strategies against cardiac dis-

eases17,177. New data derived from animal models suggest that

the targeted regulation of specific miRNAs might be also useful

in therapeutic methods against vascular diseases59.

Conclusions and prospects

This review provides evidence for the role of epigenetic al-

terations induced by physical exercise in various physiological

systems and pathologies. Those epigenetic modifications are

crucial for the activation of signaling cascades associated with

genes that regulate metabolism and energy consumption in

skeletal muscle. They also regulate numerous molecular path-

ways related to inflammatory processes. Moreover, some epi-

genetic modifications that possibly occur due to physical

exercise can have a positive effect on restoring the genomic

stability in cells with carcinogenesis potential, as well as on

partially restoring age deregulated epigenetic patterns. Further

insight into the epigenetic mechanisms involved in the aging

process and their regulation by physical exercise might reveal

ways in which exercise could be used as a preventive and/or

complementary therapeutic strategy against age-related dis-

eases. Furthermore, epigenetic alterations have a significant

effect on the limbic system and especially on hippocampus,

while the cardiovascular system is also affected by epigenetic

changes caused by exercise, however, the evidence available

for a clear association between them is not robust. It is sug-

gested that exercise-related epigenetic changes could have an

important role in preventing and/or confronting various disor-

ders, such as metabolic or neurodegenerative diseases, that are

either directly or indirectly associated with deregulation of nor-

mal epigenetic procedures and affect many people worldwide.

A profound understanding of human epigenetic procedures
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during physical exercise could explain, in a more global and

integrated approach, the possible cross talking between cas-

cades which are involved in the regulation of human physio-

logical systems. In this context, exercise remains an essential

factor for promoting important biological adaptations that have

profound implications for public health. 
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