A note on the not 3-choosability of some families of planar graphs

Mickaël Montassier

LaBRI UMR CNRS 5800, Université Bordeaux I, 33405 Talence Cedex, France

Received 6 July 2005; received in revised form 21 October 2005; accepted 21 October 2005

Available online 20 March 2006
Communicated by L. Boasson

Abstract

A graph G is L-list colorable if for a given list assignment $L = \{L(v) : v \in V\}$, there exists a proper coloring c of G such that $c(v) \in L(v)$ for all $v \in V$. If G is L-list colorable for any list assignment with $|L(v)| \geq k$ for all $v \in V$, then G is said k-choosable. In [M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995) 325–328] and [M. Voigt, A non-3-choosable planar graph without cycles of length 4 and 5, 2003, Manuscript], Voigt gave a planar graph without 3-cycles and a planar graph without 4-cycles and 5-cycles which are not 3-choosable. In this note, we give smaller and easier graphs than those proposed by Voigt and suggest an extension of Erdős’ relaxation of Steinberg’s conjecture to 3-choosability.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Combinatorial problems; Coloring; List-coloring; Choosability

1. Introduction

Let G be a graph. Let $V(G)$ be its set of vertices and $E(G)$ be its set of edges. A proper vertex coloring of G is an assignment c of integers (or labels) to the vertices of G such that $c(u) \neq c(v)$ if the vertices u and v are adjacent in G. A graph G is L-list colorable if for a given list assignment $L = \{L(v) : v \in V(G)\}$ there is a proper coloring c of the vertices such that $\forall v \in V(G), c(v) \in L(v)$. If G is L-list colorable for every list assignment with $|L(v)| \geq k$ for all $v \in V(G)$, then G is said k-choosable.

In [4], Grötzsch proved that every planar graph without 3-cycles is 3-colorable and in 1976, Steinberg conjectured that every planar graph without cycles of lengths 4 and 5 is 3-colorable (see Problem 2.9 [5]). In [7] and [8], Voigt proved that we cannot extend this result and this conjecture to list coloring: She gave a planar graph without 3-cycles having 166 vertices and a planar graph without 4-cycles and 5-cycles having 344 vertices which are not 3-choosable.

In this note we present smaller and easier graphs than those proposed by Voigt: We give a planar graph without 3-cycles having 128 vertices and a planar graph without 4-cycles and 5-cycles having 209 vertices which are not 3-choosable. Moreover we pose the problem of the sufficient conditions of 3-choosability of planar graphs.

2. A not 3-choosable planar graph without 3-cycles

Let $G(u, v)$ be the graph depicted by Fig. 1. Given the color a and b of the vertices u and v ($a \neq b$) and the list assignment $L_{a, b}$ given by Fig. 2, we cannot choose
for each vertex a color from its list such that the coloring obtained is proper: For the vertices x_1 and x_4, we have only one choice; we must color these vertices with the color 1 (since these two vertices are adjacent to u and v colored by a and b). Now for the vertices x_2 and x_3, there are two cases: Either we color x_2 with 2 and x_3 with 3 or we color x_2 with 3 and x_3 with 2. In the first case (resp. second case), observe that we must then color the 5-cycle $y_1 y_2 y_3 y_4 y_5 y_1$ (resp. $z_1 z_2 z_3 z_4 z_5 z_1$) with the two colors 4 and 5 which is impossible.

Now, we construct the graph G^* as follows: For each pair $(a, b) \in \{6, 7, 8\} \times \{9, 10, 11\}$, let $G(u_i, v_j)$ ($1 \leq i \leq 9$) be a copy of $G(u, v)$ with the list assignment $L_{a,b}$. So, we have nine copies of $G(u, v)$: $G(u_1, v_1)$ with the list assignment $L_{6,9}$, $G(u_2, v_2)$ with the list assignment $L_{6,10}$, $G(u_3, v_3)$ with the list assignment $L_{6,11}$, and so on. We then identify all the vertices u_i (resp. v_j), $1 \leq i \leq 9$ to a vertex u^* (resp. v^*).

We assign the list $\{6, 7, 8\}$ to the vertex u^* and the list $\{9, 10, 11\}$ to the vertex v^*. Now, for any coloring of the vertices u^* and v^* with the colors c_1 and c_2, there exists a copy $G(u_j, v_j)$ with the list assignment L_{c_1, c_2} which we cannot color. The graph G^* contains $14 \times 9 + 2 = 128$ vertices and does not contain any 3-cycles.

3. A not 3-choosable planar graph without 4- and 5-cycles

By the same way, let $H(u, v)$ be the graph depicted by Fig. 3 and $L_{a,b}$ its list assignment given by Fig. 4. Given the colors a and b of the vertices u and v, we cannot proper color the vertices of $H(u, v)$ with a color from their list: Given the colors a and b of the vertices u and v, the vertices x_i, y_i for $i = 1, 2$ must be colored with 2, 3 and so z_i with 1. Now there are two cases: Either we color z with 2 and t with 3 or we color z with 3 and t with 2. In the first case (resp. second case), it is easy to see that we cannot color the 3-cycle $u_1 u_2 u_3$ (resp. $v_1 v_2 v_3$): We have only the two colors 4 and 5.

We construct the graph H^* as follows: For each pair $(a, b) \in \{6, 7, 8\} \times \{9, 10, 11\}$, let $H(u_i, v_j)$ ($1 \leq i \leq 9$) be a copy of $H(u, v)$ with the list assignment $L_{a,b}$. So, we have nine copies of $H(u, v)$: $H(u_1, v_1)$ with the list assignment $L_{6,9}$, $H(u_2, v_2)$ with the list assignment $L_{6,10}$, $H(u_3, v_3)$ with the list assignment $L_{6,11}$, and so on. We then identify all the vertices u_i (resp. v_j), $1 \leq i \leq 9$ to a vertex u^* (resp. v^*). We assign the list $\{6, 7, 8\}$ to the vertex u^* and the list $\{9, 10, 11\}$ to the vertex v^*. Now, for any coloring of the vertices u^*
and \(v^*\) with the colors \(c_1\) and \(c_2\), there exists a copy \(H(uj, vj)\) with the list assignment \(L_{c_1, c_2}\) which we cannot color. The graph \(H^*\) contains \(23 \times 9 + 2 = 209\) vertices and does not contain any 4- and 5-cycles.

4. Concluding remarks

In [6], Thomassen proved that every planar graph with girth 5 is 3-choosable. He gives a partial answer of the following problem:

Problem 1. What are the sufficient conditions for a planar graph to be 3-choosable?

In 1990, Erdös suggested the following relaxation of Steinberg’s conjecture: Which is the smallest integer \(i\) such that every graph without \(j\)-cycles for \(4 \leq j \leq i\) is 3-colorable. The best known result is \(i = 7\) [2]. The following problem is an extension of the relaxation of Erdös.

Problem 2. Which is the smallest integer \(i\) such that every graph without \(j\)-cycles for \(4 \leq j \leq i\) is 3-choosable?

Since there exists not 3-choosable planar graphs without 4- and 5-cycles (see Section 3), then \(i \geq 6\). Moreover we know that:

Observation 1. Every planar graph without \(j\)-cycles, \(4 \leq j \leq 9\), is 3-choosable.

And so, \(i \leq 9\). This observation is based on the following structural theorem due to Borodin [1]:

Theorem 1. ([1]) Let \(G\) be a plane graph without two triangles sharing an edge. Then the following statements are valid in which all numerical parameters are best possible:

1. \(\delta(G) \leq 4\) (where \(\delta(G)\) is the minimum degree of \(G\));
2. if \(\delta(G) \geq 3\), then there are adjacent vertices \(x, y\) such that \(d(x) + d(y) \leq 9\);
3. if \(\delta(G) \geq 3\), then there is either an \(i\)-face where \(4 \leq i \leq 9\) or 10-face incident with ten vertices of degree 3 and adjacent to five triangles.

Proof of Observation 1. Let \(H\) be a counterexample with the minimum order and \(L\) a list assignment such that there does not exist a proper coloring \(c\) such that \(\forall v \in V(H), c(v) \in L(v)\). Clearly, \(\delta(H) \geq 3\) and by Theorem 1.3, \(H\) has a 10-face \(f\) with all incident vertices of degree 3. By minimality of \(H\), the graph \(H'\) obtained from \(H\) by removing all the vertices incident to \(f\) is 3-choosable and so there exists a proper coloring \(c\) of \(H'\) such that \(\forall v \in V(H'), c(v) \in L(v)\). Now we can extend \(c\) to the whole graph \(H\). For each vertex incident to \(f\), we have two available colors and since even cycles are 2-choosable, we can extend \(c\) to \(H\). \(\square\)

Recently in [9], Zhang and Wu proved that:

Theorem 2. ([9]) Every planar graph without cycles of length 4, 5, 6, or 9 is 3-choosable.

We conjecture:

Conjecture 1. Every planar graph without cycles of length 4, 5, 6, is 3-choosable.

Let \(n_1\) (resp. \(n_2\)) be the minimum number of vertices of a planar graph without 3-cycles (resp. without 4- and 5-cycles) which is not 3-choosable. By our examples, we have \(n_1 \leq 128\) and \(n_2 \leq 209\). However, the first result is not the best known: In [3], Glebov et al. give the smallest known not 3-choosable planar graph without 3-cycles; their example contains 97 vertices. And so, \(n_1 \leq 97\).

Problem 3. What are the exact values of \(n_1\) and \(n_2\)?

Fig. 4. The list assignment \(L_{a,b}\) of the graph \(H(u,v)\).
References

