
Citation: Tony, A.; Badea, I.; Yang, C.;

Liu, Y.; Wells, G.; Wang, K.; Yin, R.;

Zhang, H.; Zhang, W. The Additive

Manufacturing Approach to

Polydimethylsiloxane (PDMS)

Microfluidic Devices: Review and

Future Directions. Polymers 2023, 15,

1926. https://doi.org/10.3390/

polym15081926

Academic Editor: Swee Leong Sing

Received: 12 March 2023

Revised: 10 April 2023

Accepted: 12 April 2023

Published: 18 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

The Additive Manufacturing Approach to Polydimethylsiloxane
(PDMS) Microfluidic Devices: Review and Future Directions
Anthony Tony 1, Ildiko Badea 2 , Chun Yang 1 , Yuyi Liu 1, Garth Wells 3, Kemin Wang 4, Ruixue Yin 5 ,
Hongbo Zhang 5,* and Wenjun Zhang 1,*

1 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
ant359@mail.usask.ca (A.T.); chy416@mail.usask.ca (C.Y.); yul994@mail.usask.ca (Y.L.)

2 College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
ildiko.badea@usask.ca

3 Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source,
Saskatoon, SK S7N 2V3, Canada; garth.wells@lightsource.ca

4 School of Mechatronics and Automation, Shanghai University, Shanghai 200444, China;
wangkemin@shu.edu.cn

5 School of Mechanical and Power Engineering, East China University of Science and Technology,
Shanghai 200237, China; yinruixue@ecust.edu.cn

* Correspondence: hbzhang@ecust.edu.cn (H.Z.); chris.zhang@usask.ca (W.Z.); Tel.: +13-069665478 (W.Z.)

Abstract: This paper presents a comprehensive review of the literature for fabricating PDMS mi-
crofluidic devices by employing additive manufacturing (AM) processes. AM processes for PDMS
microfluidic devices are first classified into (i) the direct printing approach and (ii) the indirect print-
ing approach. The scope of the review covers both approaches, though the focus is on the printed
mold approach, which is a kind of the so-called replica mold approach or soft lithography approach.
This approach is, in essence, casting PDMS materials with the mold which is printed. The paper also
includes our on-going effort on the printed mold approach. The main contribution of this paper is
the identification of knowledge gaps and elaboration of future work toward closing the knowledge
gaps in fabrication of PDMS microfluidic devices. The second contribution is the development of a
novel classification of AM processes from design thinking. There is also a contribution in clarifying
confusion in the literature regarding the soft lithography technique; this classification has provided a
consistent ontology in the sub-field of the fabrication of microfluidic devices involving AM processes.

Keywords: polydimethylsiloxane; 3D printing; microfabrication; microfluidics; post treatment

1. Introduction

Microfluidics is a discipline of circuitry devices, which studies the manipulation of
fluids in a logical manner [1–4]. Fluid flow in a microfluidic device is laminar due to the
size of the channel, and the flow may be a mix of flows to increase the function of such
devices [2,5,6]. Fast response during experimentation can be achieved and visualized via
small spaces along with their corresponding properties, including short inflow distance
and low diffusion. Also, a small volume means less consumption of reagents and energy,
and an easy integration of different domains (e.g., micro-optics in between two microfluid
flows) can lead to fast processing and efficient in situ testing [7].

Microfluidic devices made of polydimethylsiloxane (PDMS) are widely used in biomed-
ical science and technology [8–13] due to the biocompatibility of PDMS. Other impor-
tant properties with PDMS are optical transparency, thermal stability, curability at room
temperature, resistance to UV radiation, durability, hydrophobicity, physiological inert-
ness, high permeability to gases, and anti-friction. These properties consolidate potential
uses of PDMS microfluidic devices in biomedical systems and facilitate building of such
devices [14–16]. In addition, the surface of PDMS is modifiable to change its physical,
biological, and chemical properties to render to some unique applications with PDMS
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microfluidic devices [17–21]. However, PDMS also has some limitations, e.g., swelling,
which causes significant distortions in geometry, and these limitations need to be carefully
considered in printing of PDMS [13,22–24]. This paper focuses on PDMS microfluidic
devices for biomedical applications.

Microfluidic devices are not conventional MEMS, which usually require that their
overall size is less than 100 microns. In microfluidic devices, only their channels or holes
are less than 100 microns, but their overall size is usually in the mm range [1–3]. The
lithography (including soft lithography) approach may not be quite suitable to fabricating
microfluidic devices; instead, additive manufacturing (AM) technology has promising
potential to build microfluidic devices, especially PDMS microfluidic devices. This paper
focuses on PDMS microfluidic devices by AM processes.

The requirements for building a PDMS microfluidic device include: (1) 3D structures
with channels (R1), (2) micron scales of the channel size as well as holes (R2), (3) accuracies
in the shape and geometry of channels as well as pores (about 1–5 microns) (R3), (4) proper
surface features of the channel (especially for easy assembly or bonding of multiple PDMS
parts) (R4), (5) mass production (R5), and (6) production rate (R6).

This paper presents a critical review of the AM approach to PDMS microfluidic
devices, aiming to identify knowledge gaps and to suggest future work to close these
gaps. Specifically, Section 2 presents a unique classification of AM processes based on
our observation that there is much confusion about the understanding of the AM process,
e.g., the relationship of the AM and 3D printing. With the background presented in
Section 2, Section 3 presents a review and analysis of AM processes for PDMS microfluidic
devices, including our ongoing work. Section 4 concludes the paper by summarizing the
knowledge gaps and suggesting future work to close the gaps. There is also a summary of
the contributions of this paper in the last section.

2. The AM Process along with Its Classification

Applying an approach called ‘design thinking’ to any process or system [25], any AM
process needs to fulfill two functions: F1: create one layer of solid; F2: glue two layers of
solids. It is noted that the processes for F1 and F2 may be simultaneously carried out. For
instance, while one layer may not completely form a solid, a subsequent layer is spread
on top of the first layer, and both layers become solids simultaneously. A particular AM
process can thus be divided into two sub-processes to fulfill F1 by Sub-process 1 and F2 by
Sub-process 2, respectively. Each process transforms material, energy, and/or data [26]. As
such, each AM can be classified in terms of (i) the starting statuses of materials and (ii) the
principles of processes (Sub-process 1, Sub-process 2) to achieve F1 and F2, respectively
(see Table 1, where the process name and equipment name, if any, are included). Special
attention is given to fused deposition modeling (FDM) (in Table 1), which was also called
3D printing in the early days when FDM was developed. According to Table 1, 3D printing
is a kind of AM. However, today, the term ‘3D printing’ has become a nickname for all
AM processes in the literature. Therefore, in this paper, AM and 3D printing are used
interchangeably unless otherwise their difference is stated explicitly. Care must also be
taken that there is effort on developing ISO standard for classification of AM, e.g., ISO
ASTM 52900. However, in our view, the criteria for rendering the classification of AM in
the ISO standard are different from ours in this paper; in the ISO standard, the criteria
appear to be more on how the material is delivered on the substrate, which may be more
suitable to industry but not to science of AM. Several specific remarks are further made
and discussed below.
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Table 1. Classification of the AM processes.

Starting Status
of Material

Principle of Sub-Process
1 for F1

Principle of Sub-Process
2 for F2

Selected
Materials Name

Polymer melt
or resin Melt solidification Fusion and diffusion

Polycarbonate (PC), acrylonitrile butadiene styrene
(ABS), polylactic acid (PLA), polyetherimide
(ULTEM), nylon, carbon-filled nylon, acrylonitrile
styrene acrylate (ASA)

Fused deposition modeling
(FDM), 3D printing
(nickname)

Solid
(sheet)

Laser cutting of sheet Diffusion Adhesive-coated paper, plastic, or metal laminates Laminated object
manufacturing (LOM)

Laser cutting of sheet Diffusion and glue Polyamides (PA), polystyrenes (PS), thermoplastic
elastomers (TPE), polyaryletherketones (PAEK).

Selective deposition
lamination (SDL)

Mechanical cutting
of sheet

Diffusion under
ultrasonic pressure

Various aluminum alloys, nickel alloys, brass, and
steels, etc.

Ultrasonic additive
manufacturing (UAM)

Solid
(powder)

Powder glued
with binder Diffusion and gluing ABS, ASA, PLA, polycaprolactone (PCL), Vero Binder jetting

Thermal diffusion Thermal diffusion PCL, PLA, metal Selective laser sintering (SLS)

Liquid

Photo-resistivity Photo-resistivity Thermosetting acrylates and epoxy Stereolithography (SLA)

Photo-resistivity Photo-resistivity 405 nm clear resin (Anycubic) Digital light processing (DLP)

Liquid solidification Diffusion Thermosetting resin with adequate viscosity Direct writing (DW) or direct
ink writing (DIW)

Droplet/photo-
resistivity Photo-resistivity Vero white, rubber, polypropylene Polyjet

Extrusion/microwave
irradiation or heating

Microwave irradiation or
heating

Concrete, ceramics, wood, clay, food products,
biomaterials, silicon, polyurethane (PU)

Liquid deposition modeling
(LDM)

Droplet/extrusion Thermal diffusion or
UV curing

Hydrogels, bio-compatible copolymers, and cell
spheroid binders and powders, polymers, and
small molecules

Inkjet bioprinter and material
extrusion bioprinter

Extrusion Thermal diffusion or
UV curing

Low-viscosity resins, poly(ε-caprolactone) (PCL),
silver paste

E-Jet printing and
Electric-Field-Driven (EFD)
printing

Remark 1. FDM processes are simple, cost effective, and common; commercially available in the
market; and they work on the principle of depositing molten material layer by layer. FDM supports a
variety of thermosetting and thermoplastic materials, such as acrylonitrile butadiene styrene (ABS),
polylactic acid (PLA), and polyethylene terephthalate (PET) [27]. Microfluidic devices made with
FDM have several drawbacks, such as the irregular channel shape, dimension inaccuracy, low optical
transparency, poor reliability, and limited air permeability [28]. FDM processes also have some
difficulty in creating products with the surface characteristics of biocompatibility, which is crucial
to chemical and biological applications. However, in recent years, some enhancements to FDM
were reported in literature, e.g., [29–31], some of which have potential to be used to print PDMS
microfluidic devices [30].

Remark 2. In the literature, there is a notion called soft lithography, which was originally
proposed in [21] to fabricate micro-systems made of polymers (such as PDMS). According to [32],
the soft lithography process was defined as producing polymer products, e.g., PDMS products, by
using the lithography approach to build a mold. Usually, the mold in the context of soft lithography is
made of hard materials such as silicon-based materials. Such a soft lithograph method has difficulty in
fabricating rounded [33,34], non-planar [35], sloped [36], and tapered [37] cross-sectional channels
in microfluidic devices. Recently, it has been shown that the mold can be made by other fabrication
approaches, e.g., micro-milling, AM, etc. Nonetheless, the name ‘soft lithography’ is kept for all of
these methods (including the 3D printing method) to make a mold. This paper is focused on making
molds using the 3D printing method. In the literature, the general term “printed mold” [38] may
also be used for this approach. Hereafter in this paper, the terms ‘printed mold’ and ‘soft lithography’
are used interchangeably unless otherwise their difference is mentioned. The present paper is not
only about the printed mold approach but also about other printing approaches to fabricating PDMS
microfluidic devices.

Remark 3. In general, FDM can produce a rough surface (10.97 µm) compared with Polyjet
(0.99 µm) and digital light processing (DLP)-SLA (0.35 µm). Therefore, FDM is usually used for
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fabricating microfluidic devices for the task of mixing two or more fluids [39], while DLP-SLA is used
for fabricating microfluidic devices suitable for precise flow control applications. Further, Polyjet is
usually used for fabricating microfluidic devices suitable to cell culture or droplet generators, where
splitting of multiple flows is avoided. For specific comparisons of different AM processes in terms of
the material used, we refer to [40].

3. Printing of PDMS Microfluidic Devices

As suggested from Remark 2 in Section 2, great attention is paid to involving AM
in the fabrication of microfluidic devices, especially those made by PDMS, aimed for
biological applications. The AM approach to microfluidic devices can be classified into two
kinds: direct printing and indirect printing. Indirect printing means that the PDMS product
is completely printed out but produced by involving other manufacturing approaches,
e.g., casting. Figure 1 shows some developments in the literature on the indirect printing
approach. It can be seen from Figure 1 that there are four situations with the indirect
printing approach to PDMS microfluidic devices. The first three situations, (a) to (c), refer to
situations where (a) PDMS is a tool to make another microfluidic device, (b) PDMS is part of
the final product with the printed part added on it, and (c) PDMS is the final product, where
channels are printed by another material and then this material is vaporized. In Figure 1d,
a mold needs to be made first, and then the PDMS is cast with the mold. Direct printing
means that the PDMS product is completely printed; see Figure 2, where several direct
printing processes are illustrated [33–36]. It is worth mentioning that Figure 2e–h refer to
the process of LDM with differences being how the material is delivered to the board or
substrate. In the following, the selected processes of indirect printing (Sections 3.1–3.4) and
direct printing (Section 3.5) are reviewed.
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Figure 1. The classification of the indirect PDMS printing techniques. (a) Surface patterning technique,
commonly known as microcontact printing, using PDMS as a stamp mold for transferring the ink
pattern, (b) printing on PDMS, (c) printing within PDMS and subsequent selective removal of the
printed part giving the required feature, and (d) printed mold PDMS.

3.1. Indirect PDMS Printing: Micro Contact Printing

Functionalization of certain chemical or biological samples onto PDMS surfaces
(Figure 1a) can be done using micro contact printing with PDMS. In this process, PDMS
is replicated from a master mold, acting like a stamp after curing. Applications of this
idea with PDMS range from protein printing, pattern of hydrophobic alkanethiols [57],
arrangement of patterned neuronal cells [58], chemical synthesis [59], embedding carbon
nanotube composites [60], and bilayer polymer solar cells [61]. Printing processes of this
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kind create essentially a 2D feature, as the third dimension or the height of the printed lay-
ers is negligible (nanometer). Moreover, the aspect ratio (width to height) of the printable
layers is very low. Clearly, this approach poorly meets R1 for PDMS microfluidic devices
(see the discussion in Section 1).
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Figure 2. The classification of the direct PDMS printing techniques. (a) FDM extrudes solid ther-
moplastic PDMS filament and melts and deposits using a heated nozzle [41,42]. (b) SLA or vat
polymerization, showing bottom-up and top-down approaches to printing PDMS using a UV laser or
DLP-UV light [43–46]. (c) DIW, in which PDMS-based liquid ink flows through a nozzle and solidifies
upon UV exposure after deposition [47]. (d) SLS uses irradiation via a laser which creates localized
melting inside a bed of solid powder PDMS [48]. (e) Inkjet printing ejects small droplets of PDMS
which solidify when exposed to light or heat [49,50]. (f) Micro extrusion printers dispense liquid
PDMS resin, either using pneumatic, piston, or screw actuation through a needle [51–54]. (g) Elec-
trohydrodynamic (EHD) or E-jet printing provides very fine, even submicron-scale, PDMS printing
driven by an electric field [55]. (h) Electric-field-driven (EFD) printing, which closely resembles EHD
printing, does not require conductive substrates while printing [56].

3.2. Indirect PDMS Printing: Printing of Materials on PDMS

Printing on top of PDMS (Figure 1b) is an emerging sub-field due to growing demand
for high-performance devices such as stretchable, wearable, electronic skins, and soft con-
ductive materials [38,62]. Traditionally, the following processes are used to add materials
on top of PDMS: chemical reduction, evaporation and sputtering, screen printing, lift-off,
pattern transfer, and soft lithography [63]. These processes are time consuming, expensive,
and involve complex protocols. A more effective process is AM. The inkjet printing of
conductive materials onto PDMS is one of the simplest processes to add materials onto
PDMS. The coalesced inkjet droplets tend to become larger droplets due to the driving force
and low adhesion of the PDMS surface [62,64]. Printing of silver nanoparticle (NP)-based
ink on top of a pre-stretched PDMS enables the possibility of making the circuit stretchable
and more adaptable [65]. Patterning of metals on PDMS for control and detection are
also reported [62]. This can be integrated with roll-to-roll (R2R) screen printing, a type of
lamination technique, to achieve a high-dimensional precision PDMS microfluidic device
with multi-functionalities [66].
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Printing of materials, particularly conductive metals or electrodes, on PDMS has some
challenges due to the low surface energy (~25 ± 4 mN/m) and hydrophobic property (static
contact angle of 109 ± 3◦ ) of PDMS [64,67]. Therefore, it is difficult to meet the requirements
for PDMS microfluidic devices (R3 and R4), as described in Section 1. Proper modification
or treatment of the PDMS surface may therefore be needed to make this approach work,
although this increases the complexity of the approach. Moreover, this approach is not
favorable to meeting R5 for PDMS microfluidic devices (i.e., mass production).

3.3. Indirect Printing: Printing within PDMS

Printing within PDMS is done while PDMS is in a liquid viscous form (Figure 1c). The
printed part along with PDMS is cured, and then the printed part is selectively dissolved
and melted away to achieve the required feature, as shown in Figure 1c. The entire process
involves both subtractive manufacturing and additive manufacturing processes [68,69], and
therefore, the entire process is called suspended liquid subtractive lithography (SLSL). It is
noted that in the literature, SLSL may be confused with the embedded three-dimensional
(EMB3D) printing, where the printed material is ink, dropped into a soft viscoelastic
matrix [70]. However, EMB3D differs from SLSL in that in EMB3D, the printed part
in PDMS may not be removed, whereas in SLSL, it is. Indeed, EMB3D is in essence a
kind of DIW and is used for printing hydrogels inside a polymer [71] and self-assembled
micro-organogels [72].

The benefit of SLSL is that it can produce circular, irregular, and complex three-
dimensional channels in PDMS without the need for supports, e.g., long channels (up to
80 cm), round channels (200µm and 500µm in diameter), etc. [68,69,73]. There are some
problems with reference to the requirements of PDMS microfluidic devices, especially R3
and R5, as discussed in Section 1 of this paper. Specifically, the shape of the channel may be
of poor integrity after selectively removing the printed part. Another problem is that the
optical transparency of the PDMS channel may be compromised due to the residues of the
printed part in the channel. Further, the swelling and shrinkage of PDMS can be serious
during the curing process. Finally, SLSL is poor in mass production.

3.4. Indirect PDMS Printing: Printed Mold PDMS

The printed mold approach is a kind of replica mold approach, which refers to the ap-
proach of first making a mold, and then casting a PDMS product with the mold (Figure 1d).
Traditionally, the mold can be made by lithography, micro milling, and electroplating.
These methods are time-consuming, labor-intensive, and usually involve expensive equip-
ment and facilities [74]. The present paper focuses on the approach to print the mold, i.e.,
the printed mold approach, which may also be called the ‘master–slave approach’ in the
literature [75–79].

The printed mold approach to PDMS microfluidic devices has four stages. Stage 1:
making a mold with material X. Stage 2: casting PDMS melt into mold X. Stage 3: separating
or peeling off PDMS from mold X. Stage 4: bonding the PDMS part with another part,
which could be a cast PDMS part as well [80]. This paper focuses on Stages 1–3. There are
several challenges with the printed mold approach to PDMS microfluidic devices to meet
the requirements of microfluidic devices (see the discussion in Section 1).

The first challenge is residual stress created in the process of printing the mold. In
Stage 1, the mold is subject to repeated heating and cooling, which can build up residual
stress [81–85]. This stress can induce direct consequences such as distortion and separation
of the printed part from the base plate, crack formation in a printed part, and strong
anisotropic behavior in a product [86]. The residual stress can also create creep distortions,
cracks, and delamination indirectly. In short, this residual stress creates a challenge to
meet R3 and R4 for PDMS microfluidic devices, described in Section 1. There are several
studies to reduce residual stress, e.g., heat treatment of the mold [87]. However, the heat
treatment may not work for some materials [88,89], and more discussion on this point will
be provided later.
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The second challenge is the shrinkage of the mold during curing [90], which is related
to Stage 1. The shrinkage will cause distortion of the part. In fact, shrinkage happens in any
curing process (or solidification process in manufacturing in general), and therefore, it also
occurs in Stage 2 (i.e., polymer casting). The shrinkage problem can be overcome by careful
planning and control of the curing process [90]. It is worth mentioning that in metal casting,
an effective approach to overcome shrinkage is by means of the so-called riser; however,
this idea has never been tried for casting PDMS or polymers in general with a mold.

The third challenge, also related to Stage 2 (casting with PDMS), is that the PDMS resin
has poor fluidity in the mold in general. This challenge is usually tackled by adding other
chemicals into PDMS. However, such an approach suffers from the problem of photo-based
polymerization when the curing is under some photo energy, e.g., UV light [91] and the
problem of degrading the good properties of PDMS (due to the mixture of PDMS with
other chemicals) for biomedical applications [22]. Another approach to improve the fluidity
of PDMS is to dilute PDMS with toluene or hexane, so as to reduce the viscosity of PDMS
to enable the fabrication of microfluidic devices with nanoscale holes or channels [92–94].

The fourth challenge, also related to Stage 3 (separation of PDMS from the mold or
peeling off PDMS), is the difficulty of peeling PDMS out of the mold. Essentially, this
difficulty is due to the affinity and bonding between the PDMS and the mold material. Post
treatment of the mold can overcome this difficulty because it can reduce the surface rough-
ness of the printed mold and hence ease the process of peeling off. Several post-treatment
processes for the printed mold have been reported, including using solvents [9,95,96],
coatings [9], sonication [9], heat treatment [90,91,97,98], UV [9,94,96,98–103], and their com-
bination (see Table 2). There is also an approach that involves destroying the mold to get the
PDMS part, e.g., dissolving the mold using water [28], chemically [34,104–107], etc. Casting
of nonplanar [35] or complex shape structures of PDMS may need the destructive approach.

Table 2. The post-treatment process for the printed mold along with the conditions for PDMS curing.

Type of
Printing

Material of
Printing

Treatment PDMS
Curing Ref.

1 2 3 4

SLA PIC100 Flashlight polymerization Ethanol (100%) rinse
at 37 ◦C for 7 h Overnight at 60 ◦C [95]

Micro-SLA Proprietary Sonicated in ethanol for
2 min

Ink (Pentel NN60)
airbrushing 65 ◦C for 2 h [9]

SLA Ethanol rinse for 1 min, air
dry, UV cured for 600 s 130 ◦C for 4 h in oven Oxygen plasma

at high for 3 min
Silanization for
30 min 80 ◦C for 4 h [108]

SLA Ethanol wash, air dry UV cure 80 ◦C for 24 h 80 ◦C for 4 h [99]

DLP-SLA BV-003 5 min UV Isopropanol for 6 h

Corona
treatment high
power and atm
pressure for
1 min

Silanization for
3 h 70 ◦C for 2 h [100]

FDM PLA 12 h at 60 ◦C 48 h at room
temperature (~25 ◦C) [97]

PolyJet Baked overnight at 90 ◦C [109]

It can be concluded that regarding the requirements, as described in Section 1, the
printed mold approach is promising to meet R1 and R4 (with the non-destructive mold
approach to peel off the PDMS part). However, regarding R2 (size) and R3 (accuracy),
the approach can usually only make the size of the channel ~50 µm with an accuracy
of ~5 µm. The inherent problem with the printed mold approach to PDMS microfluidic
devices includes (i) the shrinkage of both the mold and the PDMS casting and (ii) the affinity
between the mold and the casting, which unfortunately limits the utility of this approach.

To attempt to address the foregoing shortcomings with the printed mold approach, our
group conducted a preliminary study on addressing the inherent problem (ii). Specifically,
we tried to find an optimal post-treatment process for the printed mold as well as the PDMS
casting such that the affinity between the mold and the PDMS part is low, thereby easing
the peeling off process of the PDMS part from the mold. In our study, the mold material
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is ‘Full cure835 Vero white plus’ and the printing method is Polyjet 3D printer (product
name: EDEN500V); see Table 1 for more information on this printer. The PDMS material is
SYLGARD™ 184 Silicone Elastomer Kit (Dow Corning). The ratio of the PDMS base (Dow
Corning) to the curing agent (Dow Corning) was 10:1. This mixture was degassed in a
desiccator for 60 min to remove air bubbles, prior to the subsequent process, as described
in Figure 3. Specifically, the process in Figure 3 has four steps: (1) heat treatment of the
mold, (2) oxygen plasma treatment of the mold, (3) silanization of the mold, and (4) casting
of the PDMS into the mold.
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The results of our experiment are as follows: (1) the best temperature for heat treatment
of the mold was found to be 65◦ C for 4 h, followed by overnight or slow cooling; (2) the
best oxygen plasma treatment to clean the mold was found to be 50 watts, 45 millitorrs
of O2, and a duration of 30 s; (3) silanization (wherein the sample was placed along with
one drop of trichloro(1,1,2,2-perfluoocytl)silane under a vacuum chamber for 1 h) was
conducted for the process of peeling off PDMS from the mold; and (4) the PDMS was cast
into the mold, followed by curing the PDMS with the best parameters (curing temperature,
duration, open atmosphere environment, or controlled environment) as: room temperature
for curing (24 ◦C), duration of 24 h, a vacuum oven environment. Consequently, the PDMS
casting was easily peeled off from the mold made of Full cure835 Vero white plus. However,
our effort thus far is quite preliminary, and data have yet to be seriously collected, which
warrants future work (see later discussions in the final section of this paper).

3.5. Direct Printing of PDMS

We revisit Figure 2 in the following discussion. Table 3 gives an overview of the direct
printing approach to PDMS microfluidic devices, including the 3D printing method, details
of which can be found in Table 1, the PDMS composite, achievements, and applications of
the devices along with the references. Several remarks are further made below.
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Table 3. Direct printing methods for PDMS microfluidic devices.

Method of Printing Printing Material Achievement Limitation Application and Reference

Custom made
microextrusion-based 3D
printer (µE-3DP)

PDMS-TA (sil-thix silicone
thickener–Barnes)

Demonstrated possibility of
printing ear and compression
stain evaluated.
Needs further investigation

Optical transparency is
questionable; printing
accuracy not evaluated;
biocompatibility
not evaluated

Facial prosthesis [51]

Liquid dispenser (Pandasky
OL-D331) PDMS diluted in acetone PDMS barriers printed using

a liquid dispenser
Flow barrier in the form of
filter paper is required Microfluidics [52]

Drop-on-demand
(DOD) piezoelectric
inkjet printing

PDMS- decane–toluene ink Improved satellite
effect problem

Toluene is hazardous.
Biocompatibility issues

Flexible wearable
electronics [50]

Extrusion through nozzle
(custom 3D printer modified
from CNC setup)

PDMS ink (precured PDMS
microbeads, uncured PDMS
liquid precursor, and
water medium)

Can be 3D printed and cured
both in air and under water;
bio scaffolds on live tissue

Optical transparency
is questionable [54]

Electric-field-driven (EFD)
microscale 3D printing
(EM3DP-2A)

PDMS
Insufficient data

PDMS and curing agent
passive mixing at the source
using microfluidic chip; no
need for vacuum defoaming

High voltage: air flow and
curing temperature and
printing speed are
key parameters

Microlens array, [56]

Selective laser sintering (SLS)
Dynamic covalent
cross-linked PDMS
(PDMS CANs)

Properties not evaluated.
Printing accuracy
not evaluated

Properties and printing
accuracy need to be evaluated Sportswear insole [48]

UV LED DLP
stereolithography (Asiga
Freeform PRO2 printer)

PDMS–thiourea based resins

Noncytotoxic; tunable
mechanical properties; plastic
deformation, highly
recoverable

Optical transparency
is questionable

Soft robotics, medical
devices [44]

DLP–SLA system (Asiga
MAX X27 UV printer)

Photoreactive
methacrylate–PDMS
copolymer of (98.6%)
photoinitiator TPO-L (0.8%);
photosensitizer ITX (0.4%);
photo absorber and Sudan I
(0.2%)

60 µm deep channels and 20
µm thick membranes
produced; gas-permeable;
transparency issues; lower
transmission

Difficult to remove
unpolymerized resin from the
micron-scale channels due to
high viscosity of the resin.
Young’s modulus is much
larger and elongation at break
is much smaller; not suitable
for pneumatic pump
application

Microfluidics [45]

Customized
ultraviolet-assisted direct ink
writing (UV-DIW) 3D printer

pPDMS+ M-PDMS +
TPO-L ink

Excellent mechanical
properties; optical
transparency close to Sylgard
184 PDMS

3D printing followed by
thermal cross linking.
Biocompatibility needs
further evaluation.

Microfluidics, flexible
electronics [47]

Electrohydrodynamic (EHD)
inkjet printing

PDMS–toluene (toluene has a
lower viscosity and better
volatility)

Printing accuracy
not evaluated

Toluene is hazardous;
biocompatibility issues Network structure [55]

FDM (3DPRN LAB 3D) PDMS–Na–CMC composite

Both Neat PDMS and PDMS
composite filaments are made
and printed; well-adherent
layers of composite material

Irregular samples; no control
of geometry; no satisfying
results have been obtained

[41]

UV LED DLP INKREDIBLE
3D bioprinter (Cellink,
Sweden)

Blends of two PDMS
elastomers, SE 1700 and
Sylgard 184

Improved three-fold
mechanical properties with
regard to casting mold due to
decreased porosity of bubble
entrapment.

Printing accuracy
not evaluated Cell adhesion studies [110]

Extrusion through nozzle
(home-made 3D printer)

Blends of two PDMS
elastomers, SE 1700 and
Sylgard 184

Super hydrophobicity;
porous structure

Extremally dependent on
printing speed; optical
transparency is questionable;
printing accuracy
not evaluated

Super hydrophobic porous
film [53]

FDM (replicator
2 3D printer (MakerBot))

PDMS ink and carbopol
support bath

Carbopol supports curing
times up to 72 h

Releasing printed PDMS from
the carbopol support is
tedious; cross-section
morphology needs to
be improved.

[111]

UV LED DLP
stereolithography 3DP-PDMS resin Transparent; cytocompatible;

gas-permeable; highly elastic

Low Young’s modulus;
~500 µm resolution
achievable with
unsupported structure

Microfluidics [43]

Inkjet
printer (Fujifilm
Dimatix DMP)

1. PDMS mixed with isobutyl
acetate (IBA) solvent
2. PDMS mixed with octyl
acetate (OA) solvent

Final printed and cured
PDMS–OA is free of
solvent residues and
resembles traditional casting;
5 µm thickness in each layer
and maximum of 8 layers
possible.

Ink cartridge shelf life 2 days;
needs to be stored inside
refrigerator.
Nozzles clog quickly, IBA-
non-reliable, and difficulty in
reproducible jetting.; IBA-
hazardous; OA slower
evaporating

Soft electrical
applications [49]
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Table 3. Cont.

Method of Printing Printing Material Achievement Limitation Application and Reference

UV curing (same parameters
as SLA)

PDMS-(trimethyl)
pentamethylcy
clopentadienylplatinum(IV)
(Cp*PtMe3) catalyst

Good tensile strength,
PDMS formulation exhibits
very good aging properties
over time.

UV-exposed samples
seem yellowed.
Under-cured material with
UV alone; requires further UV
or thermal curing. Finally
cured after few weeks

[46]

Remark 4. As mentioned before, the most salient properties with PDMS are transparency of the
material with respect to light and biocompatibility. However, the worst property of PDMS with
respect to 3D printing processes, especially FDM and extrusion-based methods (Table 1), is its poor
printability. Therefore, for the direct printing approach to work, PDMS is always mixed with other
materials to improve its printability. However, the composition can compromise the two salient
properties of PDMS.

Remark 5. The first attempted direct printing of PDMS (dissolved in hexanes) was done by
creating barriers to define microchannels in a paper substrate using a modified X,Y-plotter [112].
The minimum feature size of 1 mm was achieved. Even though the resulting structure demonstrated
good bending and folding properties, the overall quality of the structure was poor, i.e., structural
instability and uncontrollable penetration of PDMS in the paper substrate. Another method was to
use DLP techniques to create a free-standing PDMS membrane for three-dimensional gas–liquid-
contactor [113]. The resist was prepared using 97.95 wt% dimethyl siloxane copolymer, 2 wt%
ethyl phenyl phosphinate as a photo-initiator, and 0.05 wt% ORASOL orange dye. The dye tends to
increase the resolution and prevent UV-light leaking. Cross-linking was achieved using an added
photo-initiator with the help of a Hg vapor lamp at 440 nm and a brightness of 7 mW cm−2. The
uncured resist material can be removed using isopropanol alcohol bath and ultrasonication. The
concentration of the photo-initiator and the excitation dose are crucial in achieving the cross-linkage
of the methacrylate functionalized PDM. The problem with this process is that the biocompatibility
and transparency of the PDMS microfluidic device are significantly compromised.

Remark 6. An ink made by mixing PDMS with platinum catalyst was used for printing complex
3D structures using full reactive inkjet printing (FRIJP) without any support [114]. During
printing, the two materials were cross-linked. A controlled air environment was not required, as
the reaction was not inhibited by oxygen or moisture in this process. The geometry of the resulting
product depends on the mixing parameters and reaction time (the shorter the better). Mixing at
elevated liquid temperature tends to produce better curing. Another process is to mix PDMS with
liquid paraffin wax rapidly until it cools to room temperature [115]. Printing in this case needs
to be done instantly, as the mixture has a pot life of 18 min. Curing was done at a temperature
above 18 ◦C for 3 h. The main limitation with this process is the loss of the transparency of the final
product due to the presence of wax. The printed PDMS material tends to become translucent to
visible light after melting and removing the wax.

Remark 7. Adding support material was another approach to print PDMS microfluidic devices.
This process makes use of the property differences between support materials and PDMS. For
instance, PDMS, which is hydrophobic in nature, is printed into a carbopol gel bath, which is
hydrophilic, providing the support and dimensional stability during printing [111]. Once cured,
the carbopol gel was removed by a phosphate-buffered saline solution. Lateral fusion between the
extruded PDMS filaments is one of the major limitations of this process. Also, removing the support
can be laborious. In addition, custom modification of the printer, print head, and tip is needed.

Remark 8. 3D printing of PDMS using the capillarity principle [54] was also reported as an
alternative tool to produce soft structures. Particle suspension with capillary bridges has excellent
properties such as high elastic modulus and static yield stress. In this approach, a three-part
elastomeric ink was formulated, consisting of the procured PDMS microbead, uncured PDMS liquid
precursor, and a water medium. A highly stretchable and elastic 3D structure was produced after
cross-linking in the printed structure during heating at 85 ◦C. Furthermore, with such a capillary
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force, the method of printing PDMS into an oil-based granular gel [116] and the method of printing
PDMS into an elastomer alginate hydrogel [117] were also reported in the literature. However,
these processes are relatively complex along with the possible compromise of biocompatibility and
transparency, and the processes are also too slow.

Remark 9. Sylgard 184 PDMS mixed with SE 1700 PDMS elastomer seems to provide a better
printability using the DLP-SLA printing technique [53,118]. SE 1700 is a shear-thinning, high-
viscosity polymer, when mixed with Sylgard 184 PDMS, and demonstrates shape fidelity required
for printing. A similar protocol was also recently demonstrated, replacing SE 1700 with TA
(sil-thix silicone thickener–Barnes) [51]. This research demonstrated the possibility of scanning
a participant’s ear using a handheld scanner, following 3D printing, which shows potential in
biomedical applications. Both methods seem promising and require further investigation in relation
to original properties such as transparency, biocompatibility, elasticity, etc.

It can be concluded from the above discussion as well as the requirements set up for
constructing PDMS microfluidic devices (discussed in Section 1) that (1) the state-of-the-art
PDMS composite is still problematic in losing transparency and biocompatibility of the
device, (2) due to the complex process in PDMS composite preparation, uncertainty in
final products made by the direct printing approach is still high, (3) the shape accuracy
of the microfluidic devices directly printed with PDMS composites is poor due to slow
polymerization and solidification of such composites, which, unfortunately, results from
the effort to improve their fluidity, and (4) the strength of the PDMS part in the printing
direction is weak.

4. Conclusions, Future Research Directions, and Contributions

The requirements for building the PDMS microfluidic device are revised herein:
(1) 3D structures with channels (R1), (2) micron scales of the channel size as well as
holes (R2), (3) accuracies in the shape and geometry of channels as well as pores (about
1–5 microns) (R3), (4) proper surface features of the channel (especially for easy assembly
or bonding of multiple PDMS parts) (R4), (5) mass production (R5), and (6) production
rate (R6).

There are several conclusions, including knowledge gaps, with respect to the fore-
going requirements, which can be drawn. First, 3D printing approaches (both direct and
indirect) for fabricating PDMS microfluidic devices have the advantage over the traditional
lithography approach in terms of R1 and R4, but in general, the 3D printing approach
is short of meeting R2 and R3 in comparison with the traditional lithography approach.
However, they have a simple set-up and relatively low costs, especially with the FDM
printing method (see Table 1). In terms of R5 and R6, 3D printing approaches have a com-
parable performance to the traditional lithography approach. It is noted that the traditional
lithography approach can only fabricate geometric features that have a limited high aspect
ratio (i.e., much less than 100) and limited overall size (i.e., much less than 1000 microns).
Second, among the four methods of the indirect printing approach (Figure 2), only the
printed mold approach can create a full-end PDMS part, and it is most promising for the
fabrication of PDMS microfluidic devices, including lab on a chip (LOC) [3,5,6] and organ
on a chip (OOC) [119,120]. Specifically, the printed mold approach reduces the knowl-
edge gap in terms of R5 and R6; further, it can produce the rounded, non-planar, sloped,
and tapered cross-sectional channel in the microfluidic device, whereas the traditional
lithography process can hardly do so. Third, the printed mold approach is still short of
meeting R3 and R4 due to the challenges in (1) controlling the curing process of the printed
mold and that of the PDMS cast with the mold, (2) bonding PDMS to PDMS in terms
of alignment and bonding strength, which has not been discussed in the present paper;
interested readers are directed to [80]. Fourth, the direct printing approach promises to
fabricate complex PDMS microfluidic devices such as LOC and OOC, and this approach
is free of the need to bond together two PDMS channels to form a hollow cross-section.
However, the printability of PDMS materials remains a challenge, and it is an important
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factor to set up a limit in the accuracy of PDMS microfluidic devices by the direct printing
approach. To tackle this challenge, the popular idea is to mix additives with PDMS, but this
can unfortunately compromise the biocompatibility and optical transparency of the PDMS
mixture. Another idea to tackle the challenge is to replace PDMS with other materials that
have similar properties to PDMS but good printability. Nevertheless, this idea is premature.

Therefore, future work toward closing the knowledge gaps is warranted. First, post
treatment of the printed mold needs attention, especially to continue the on-going effort in
our group, presented in Section 3.4, to understand the mechanism of the excellent result
achieved. It is worth mentioning that the post treatment of the mold is a crucial factor for
fabrication of PDMS microfluidic devices to meet R1–R4 with even better results than the
traditional lithography approach. Second, some surface features, such as roughness and
dimension control, grain size, crack length/width, and surface stress, need to be examined
for their possible effect on meeting R4. Indeed, these surface features can affect the bonding
strength for two layers of PDMS being bonded or a PDMS layer being bonded to a different
substrate, e.g., glass, silicon etc. [121]. In future work, the micro-CT technique may be
employed to examine details of the interface of the PDMS casting and the mold, and details
of the bonding interface between one PDMS and another PDMS or other different materials
should be explored, because this technique is non-destructive and in situ and therefore
allows us to gain accurate information. It is noted that this technique is not expected
to replace instruments such as atomic force microscopy (AFM) and scanning electron
microscopy (SEM). Third, properties such as opacity, refraction index, hydrophobicity,
and those related to biochemical behavior of PDMS (fabricated using the printed mold
approach) need to be analyzed in terms of how well and why R2–R4 are satisfied [122].
Fourth, the structure of an OOC made of PDMS needs to be studied for being printable
or improving printability with the direct printing approach against the requirements of
microfluidic devices (R1–R6). The development of OOCs requires creating complex 3D
deformable structures of the device such that the device can sense and respond to the change
in biological activities of cells [3]. Fifth, the direct printing of PDMS microfluidic devices
warrants further studies, especially with additives to PDMS to improve its printability and
thus to improve the quality of devices in terms of R1, R2, and R3. Sixth, the combination of
different AM processes, e.g., twin photon printing (TPP) [123,124] and stereo-lithography
processes, is worth studying, because the former can build nanometer features but with
a limited area, while the latter can build micron or millimeter features over a large area;
the best combination is also called hybridization [125]. This future work is expected to
fabricate PDMS microfluidic devices to meet R1–R3 better. As a general note, in the future,
additional properties or behaviors such as reliability, robustness, and resilience [126–128]
of a PDMS microfluidic device will be studied. Such a microfluidic device may look like
a robot [3], especially an adjustable and reconfigurable robot [129,130]. Finally, printing
of microfluidic devices, made of PDMS along with one or more other materials, is an
interesting topic, as a more sophisticated PDMS-based microfluidic device can be built. It is
worth mentioning that the literature [131–133] on multi-material printing is helpful to print
such microfluidic devices.

Several recently published review papers are relevant to the fabrication of PDMS
microfluidic devices. The focus of [134] is on the direct printing approach; specifically,
several direct printing methods are discussed. As the paper was published in 2016, the
most recent processes on the direct printing approach are missed. Further, in [134], the
printed mold method, a kind of the indirect printing approach (as we defined in this
paper), was discussed, missing the recent indirect printing methods, including the micro
contact printing, printing inside PDMS, and printing on top of PDMS (see Figure 1).
The focus of [135] is on the direct printing approach using AM processes and selection
of their process parameters. First, this focus is relatively narrow. Second, several AM
processes, as classified in our paper (Table 1), were missed in [126]. Therefore, the review
in [126] is neither comprehensive nor complete. The focus of [136] is on the printed mold
approach, as classified in our paper. The shortcoming of [136] is that the paper only
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vaguely and generally discusses knowledge gaps. Moreover, several AM processes against
the classification of AMs (see Table 1) were missed in [127]. Further, the paper does not
have any division of the whole process into four stages, as defined in our paper, nor a
comprehensive discussion of challenges at each of the stages.

Our paper makes several contributions. First, in the sub-field of the 3D printing
of PDMS microfluidic devices, this paper has provided a classification of the processes
involving 3D printing for PDMS microfluidic devices. Second, in the field of 3D printing,
this paper has provided a unique view, i.e., design thinking, to render a comprehensive
classification of 3D printing technology. Third, this paper has clarified some confusion in
terminology or concepts in the current literature, namely (1) the relationship of AM and 3D
printing, where 3D printing is a kind of AM, but is also a nickname for all AM processes;
and (2) the relationships among the concepts such as lithography, soft lithography, printed
mold, replica mold, and master–slave.
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