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Abstract 

This paper uses Gauss’ Principle of Least Con- 
straint to derive the “natural” dynamic equations for  
redundant manipulators. This approach is the fastest 
way to the result that the operational space inertia 
matrix of the manipulator is the natural weighting 
matrix .for the projection used in solving the redun- 
dancy problem. Force-controlled robots form a spe- 
cial case of redundant robots, such that the results 
can be applied straightforwardly to solve the long- 
standing problem of the “non-invariance” of the Se- 
lection Matrices in the hybrid force/position control 
paradigm. 

1 Introduction 

Redundant robots have been studied extensively 
over the last three decades, starting with seminal pa- 
pers such as [18] and [29]. From the start, most au- 
thors approached the problem on a kinematic level, 
i.e., using the velocities of the joints and the end- 
effector as variables, with the Jacobian matrix and 
its “generalized inverses” as basic mathematical con- 
cepts. A minority of papers considered the accel- 
eration as more fundamental (e.g., [13, 14]), using 
the inertia properties of the manipulator in the gen- 
eralized inverse. However, the problem of drift (or 
non-holonomicity) had soon been recognized, [ 161. 
“Drift” shows up in general redundancy resolution 
algorithms when the robot repetitively performs the 
same path in Cartesian space, and the corresponding 
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joint space trajectories turn out to be non-repetitive. 
Since that time, most research concentrated fully on 
the velocity level, one of the reasons being that there, 
integrable, drift-free solutions are quite straightfor- 
ward to implement, e.g., [2, 17,231. 

As mentioned above, the generalized inverse of the 
Jacobian matrix is the basic tool for all velocity-based 
techniques. Implicitly or explicitly, these generalized 
inverses rely on “weighting matrices,” that are arbi- 
trarily chosen by the user in order to achieve some 
optimality criterions; for example, minimization of 
joint torques or joint velocities, integrability, mini- 
mization of kinetic energy, minimization of distances 
to obstacles, etc. One important observation is hardly 
ever made: nature doesn’t make an arbitrary choice. 
That means that, if one leaves a redundant system 
free, it will move in one specific, uniquely defined 
way, determined by how gravity interacts with its dy- 
namic properties, [ 151. (“Free” means: the joints are 
not actuated.) Similarly, for an actuated redundant 
robot, the trajectories generated by velocity-based re- 
dundancy resolution techniques are, in general, not 
those that the robot can execute “naturally,” i.e., with 
a minimal dynamic effort. This reasoning leads au- 
tomatically to the redundancy resolution approaches 
that consider the minimization of kinetic energy as the 
optimization criterion, e.g., [13, 141. 

However, the kinematics community has never 
considered this criterion as a natural choice. The dy- 
namics community has used, in different contexts, the 
inertia matrix of the manipulator as a “weighting ma- 
trix” because (i) it enters naturally in the mathemat- 
ical modeling of vibrations of flexible manipulators, 
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e.g., [6]; (i i)  it is the natural choice to decouple the in- 
ternal motion dynamics from the end-effector dynam- 
ics for redundant manipulators, [ 151; (iii) it enters nat- 
urally in the solution of the set of DAE (“differential 
algebraic equations”) produced by, on the one hand, 
the dynamic equations of the robot, and, on the other 
hand, the algebraic constraint equations, e.g. [22,27]. 
And the same weighting has already been used in the 
context of hybrid control before, [IO], without exten- 
sive motivation. 

The goal of this paper is to show the reader what 
is (probably) the shortest way to derive, from phys- 
ical “first principles,” the result that the generalized 
inverse weighted by the inertia matrix of the manipu- 
lator is the natural way to solve the redundancy prob- 
lem. The “first principles” used in this derivation are: 
(i) Newton’s law (and its 6D extension, the Newton- 
Euler equations), and (ii) Gauss’ Principle of Least 
Constraint, [ 1 1 1. This solution has been called the dy- 
namically consistent inverse, e.g. [ 151. 

A six degree of freedom robot in contact with the 
environment can be considered as a special case of 
a redundant robot. For example, in order to move 
the robot over a smooth surface with which it has 
a vertex-face contact, only three of the six degrees 
of freedom are needed. (Unless the desired orien- 
tation of the robot is specified.) Hence, it should 
come as no surprise that the same “dynamically natu- 
ral” solution as in the redundancy problem case shows 
up in the problem of hybrid control. Hybrid con- 
trol, [26], treats the contact between robot and envi- 
ronment as an infinitely stiff, “geometric” constraint, 
which forces the robot to move on a lower-than-six- 
dimensional manifold. This manifold can (in princi- 
ple) be found by eliminating a number of variables 
equal to the number of constraint equations. The dy- 
namically consistent generalized inverse is the natu- 
ral way to “project” opertional space velocities onto 
this submanifold. The corresponding “projection ma- 
trices” (often called “selection matrices”) have had a 
long and controversial history in the area of force con- 
trol, e.g., [ l ,  8, 201. Nevertheless, some early papers 
(e.g., [22]) explained already basically the same ma- 
terial as what this paper presents, but the results were 
much more “hidden” in long mathematical calcula- 
tions, and were not derived from “first principles.” As 

in the case of redundant manipulators, research in hy- 
brid control theory was almost completely focused on 
kinematic approaches. Its current state of affairs is 
such that most researchers are not aware of the con- 
cepts and conclusions that this paper presents; hence, 
we think it is worthwhile to try to bring the message 
in its “purest” form. 

Overview of the paper. Section 2 explains Gauss’ 
Principle, which complements Newton’s law of mo- 
tion for constrained systems. (The paper doesn’t 
discuss Newton’s Law, or the Newton-Euler dynam- 
ics of unconstrained manipulators.) Sections 3. and 
4 then apply it to the cases of redundant manipula- 
tors and force-controlled robots in the hybrid control 
paradigm. 

2 Gauss’ Principle 

Gauss’ Principle [l 11 is discussed in only a few 
(and mostly not so recent) dynamics articles or text- 
books, [12, 25, 301; two notable exceptions are [3] 
and [28]. Section 2.1 explains Gauss’ Principle for the 
motion of a constrained point mass; Section 2.2 ex- 
tends the discussion to a constrained rigid body. The 
constraints can be physical (imposed by nature, such 
as contacts or mechanical joint constraints) or art@- 
cial (i.e., abstract criterions specified by the user). 

2.1 Gauss’ Principle for a point mass 

Together with its “cousins” d’ Alembert’s and Jour- 
dain’s Principles, Gauss’ Principle is a basic axiom of 
physics, at the same level as Newton’s laws of motion: 
the latter describe how masses move under the influ- 
ence of forces, the Principles describe how to take ge- 
ometric motion constraints into account. The Prin- 
ciples themselves cannot be derived from Newton’s 
law, however. The following paragraphs state Gauss’ 
Principle in both its “orthogonality” and minimization 
forms, [3, p. 3141: 

Orthogonality form The ideal constraint forces do 
no “work” against the allowed accelerations Vq: 

(1 )  
N 

X(f2 - miiJ2) . v; = 0. 
i=l 
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V i  is the acceleration that the point mass mi will 
execute under the constraints when driven by a 
force f i. 

Minimization form The acceleration Vi minimizes 
the following “energy”: 

1 
2mi 

N 

E = ---(fi - mivi) . (ti - mi i~ i ) .  (2) 
l=l 

Figure 1 depicts the situation for one kingle point 
mass. The concepts “work” and “energy” do not have 
their classical meaning, since there is an extra time 
derivative involved. 

- - _  _ -  . 
f ,f/’ 

Figure 1 : Constrained point mass. v is its current ve- 
locity, f is the applied force; T is the radius of curva- 
ture of the constraining surface at the current position 
of the point. 

Figure 2: Constrained rigid body. f and m are the 
force and moments acting on the body. v and w are 
its current linear and angular velocities; they are such 
that the instantaneous velocity of each contact point, 
v c  is tangential to the constraint. 

2.2 Gauss’ Principle for a rigid body 

Gauss’ Principle for a constrained rigid body 
(Fig. 2) follows straightforwardly from Gauss’ Prin- 

ciple for a set of point masses, [19] and [3, p. 4741. 

Orthogonality form 

( F  - mi;) . r + (r - H )  . cj = 0. (3) 

w is the angular velocity of the rigid body, and 
H = dH/d t+w x H is the total time derivative 
of the angular momentum. (i; ,  L j )  is any acceler- 
ation of the rigid body that is compatible with the 
constraints, i.e., the acceleration of each point of 
the moving rigid body that is in contact with the 
environment maintains the contact. 

Minimization form It is well known (e.g., [9]) that 
a 6 x 6 so-called generalized mass matrix (or 
operational space inertia matrix) M represents 
the linear and angular components of the rigid 
body’s inertia. At the center of mass, its coor- 
dinate representation is simply a block-diagonal 
matrix with m13x3 and I (the angular inertia) 
on the diagonal; but a general coordinate trans- 
formation of M is known to involve a congru- 
ence transformation, which results in non-zero 
off-diagonal blocks. This generalized mass ma- 
trix allows to write the “acceleration energy” to 
be minimised in Gauss’ Principle as 

1 
2 

E = -(3 - M a ) T M - y F  - M a ) .  (4) 

3 is the six-dimensional vector containing the 
concatenation of the three-dimensional force F 
and moment r used in Eq. (3). a is any 
constraint-compatible, six-dimensional acceleration 
vector ( i ; ,  cj) of the rigid body. The minimization of 
the “energy” in Eq. (4) takes place over all possible 
accelerations a, while the current positions and ve- 
locities are given. The motion constraints give rise 
to a linear constraint on the accelerations, and the fol- 
lowing minimization procedure results: 

min (F  - M ~ ) ~ M - ’ ( F  - MU), 
a ( 5 )  

subject to Aa = b. 

The matrix A and the vector b are determined by the 
geometry of the constraint. The solution to such a 
constrained minimization problem is well known, [4], 
and uses the so-called weighted generalized inverse: 

a = At A4 b = A4-l AT(AM-’AT)-lb.  ( 6 )  
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A is a n x 6 matrix, with n < 6; a is a 6 x 1 vector; 
M is a 6 x 6 matrix. 

3 Dynamically consistent redundancy reso- 
lution 

This Section explains the consequences of Gauss’ 
Principle to the case of a redundant manipulator. This 
case is an extension to the previous paragraphs, in 
the sense that a manipulator consists of mufripfe rigid 
bodies, whose motion is constrained by the joints be- 
tween them. Typically, each joint constrains five de- 
grees of freedom. Extending the reasoning to multi- 
ple rigid bodies requires no new concepts, and leads 
(after some tedious algebra) to the following simple 
result, [19]: the operational space matrix M is re- 
placed by the n x n,joint space inertia matrix M ,  
with n > 6 the number of joints in the manipulator; 
the operational space acceleration a is replaced by the 
joint acceleration vector q; the constraint matrices A 
and b follow from the time derivative of the’ Jacobian 
equation: 

J q = V , i  -+ A = J , b = - J q + V d ,  (7) 

with J the 6 x n Jacobian matrix, q the n x 1 vector of 
joint angles, and Vd the 6 x 1 user-specified spatial 
velocity. Equation (6) gives the generalized inverse 
for an n, x 6 matrix A, but now J is 6 x n, with 
n > 6. The analytic form of the generalized inverse 
changes into 

J L  = ( J M - ~ J ~ I - ~ J M - ~ .  (8) 

. This result is formally equal to the well-known choice 
of minimizing the instantaneous kinetic energy as the 
criterion for the redundancy resolution. However, 
Eq. (8) has been derived from minimizing the accef- 
erution energy. It is clear from loobng at the physical 
dimensions of the components that J L  is an opera- 
tor that can act on spatial accelerations as well as on 
spatial velocities. 

Gauss’ Principle can be proven to be equiva- 
lent to d’ Alembert’s Principle for hofonomic (“drift- 
less”) constraints; for non-holonomic constraints, 
d’ Alembert’s Principle gives incorrect results, while 
Gauss’ Principle remains physically meaningful, 

The weighted generalized inverse in Eq. (8) is ex- 
actly the dynamically consistent inverse introduced 
by [ 141, as the unique operator that solves the redun- 
dancy without injecting energy in the so-called “null 
space” components of the motion. The null space of 
the Jacobian J are all joint velocities (or accelera- 
tions) that are mapped into a vanishing end-effector 
velocity (or acceleration). In other words, the motion 
of the end-effector is dynamically decoupfed from the 
null space motion. 

4 Hybrid force control 

Just as for the redundant manipulator problem, 
most of the research in hybrid control took place at 
the kinematic level, i.e., the motion specification and 
control uses the instantaneous velocities of the robot 
end-effector, and (quasi-static) forces measured by 
the wrist forcehorque sensor. The relationship with 
redundant manipulators should be clear from the ma- 
terial of the previous Sections. This Section explains 
the situation in hybrid force control in some more de- 
tail. 

Some theoretical force control papers used 
d’alembert’s Principle, [5] to take into account a mo- 
tion constraint. This Principle is formally the same 
as in Eq. (l),  but with the acceleration V replaced by 
an infinitesimal displacement. Other popular formu- 
lations of d’ Alembert’s Principle are: “the constraint 
forces do no work,” or “the instantaneous velocity is 
reciprocal, [24], to the space of the ideal constraint 
forces.” This interpretation in terms of the reciprocity 
concept is popular amongst screw theory kinemati- 
cians: even though Eq. ( 1 )  suggests a dynamic inter- 
pretation, it can be given a purely kinetostatic inter- 
pretation because one can replace the term F ,  - miai 
by the ith constraint force. 

d’ Alembert’s Principle was (intuitively, not explic- 
itly) rephrased in [21] and [26], as follows: for each 
motion constraint, there exists an orthogonal refer- 
ence frame, called the Compliance Frame, that can 
be attached to the robot end-effector by the user in 
such a way that n of its frame axes are velocity con- 
trolled (spanning the lower-than-six-dimensional sub- 
space mentioned in the Introduction), and the other 
6 - n are force controlled. These directions were 
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called “orthogonal,” and a “projection” on the force- 
and velocity-constrained directions was performed by 
selecting the components of the forc and velocity vec- 
tors along the force- and velocity-controlled direc- 
tions. This projection was represented by so-called 
Selection Mutrices, whose form i s  particularly sim- 
ple when expressed in the Compliance Frame: both 
are basically zero matrices, with only ones on their 
diagonals at places corresponding to the velocity or 
force-controlled directions. 

These Selection Matrices were successfully used 
in many practical implementations. However, 18, 201 
were the first to point out the theoretical inconsisten- 
cies of this approach: selecting a subset of n com- 
ponents from a six-dimensional vector of force or 
velocity is a non-invariant way to implement pro- 
jection. “Non-invariant’’ means that this procedure 
yields different physical results when applied to the 
same forces and velocities, expressed in different ref- 
erence frames. 

Some people then realized that the projection (“Se- 
lection”) needed in the hybrid control framework 
should be done by means of weighted generalized in- 
verses, e.g., [7].  The generalized inverse of Eq. (8) is 
used to construct a projection operator P as follows: 

P = J J L .  (9) 

It is easy to see that P is a real projection operator, 
in the sense that P P  = P .  P projects any Carte- 
sian spatial velocity onto the subspace spanned by the 
columns of J .  In the case of redundant manipulators, 
J was spanned by the spatial velocities generated by 
each of its joints; in the case of hybrid control, the 
columns of J are the degrees of freedom allowed by 
the contact. The projection P is not “orthogonal”: the 
matrix M is used as weighting matrix. 

5 Conclusions 

This paper proves that the inertia matrix of a redun- 
dant or constrained manipulator is the dynamically 
natural weighting matrix for the generalized inverses 
that are used in every redundancy resolution algo- 
rithm, as well as (implicitly) in hybrid force control. 
The intuitive understanding of the theoretical back- 
ground is remarkably simple, since the reader must 

understand only two first principles: (i) Newton’s law 
of motion for unconstrained systems, and (ii) Gauss’ 
Principle of Least Constraint for constrained systems. 
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