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Abstract
Indoor air pollution from biomass fuels is considered as a potential environmental risk factor in developing countries
of the world. Exposure to these fuels have been associated to many respiratory and other ailments such as acute lower
respiratory infection, chronic obstructive pulmonary disease, asthma, lung cancer, cataract, adverse pregnancy
outcomes, etc. The use of biomass fuels is found to be nearly zero in the developed countries but widespread in the
developing countries including Nepal. Women and children are the most vulnerable group since they spend a lot of
time inside smoky kitchens with biomass fuel burning, inefficient stove and poor ventilation particularly in rural
households of Nepal. Measurements of indoor air pollution through monitoring equipment such as high volume
sampler, laser dust monitor, etc are expensive, thus not affordable and practicable to use them frequently. In this
context, it becomes imperative to use statistical models instead for predicting air pollution concentrations in household
kitchens. The present paper has attempted to contribute in this regard by developing some statistical models specifically
categorical regression models with optimal scaling for predicting indoor particulate air pollution and carbon monoxide
concentrations based upon a cross-sectional survey data of Nepalese households. The common factors found
significant for prediction are fuel type, ventilation situation and house types. The highest estimated levels are found
to be for those using solid biomass fuels with poor ventilation and Kachhi houses. The estimated PM10 and CO levels
are found to be 3024 µg/m3 and 24115 µg/m3 inside kitchen at cooking time which are 5.2 and 40.40 times higher than
the lowest predicted values for those using  LPG / biogas and living in Pakki houses with improved ventilation,
respectively .
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Introduction
Indoor air pollution in the developing world is found to
be largely attributed to the use of biomass fuels such as
animal dung, crop residues, and wood or coal. Worldwide,
approximately 50% of the households and 90% of the
rural households use solid fuels for cooking and heating
homes (WHO 2002). These fuels are commonly burned
in inefficient traditional stoves such as Ageno Chulo in
Nepal and inside poorly ventilated kitchens.
Consequently, solid fuel use generates substantial
emissions of health damaging pollutants such as
particulate matter, carbon monoxide, nitrogen oxides,
sulfur dioxide, formaldehyde (HCHO), benzene, etc. The
disease burden from solid fuel use is most significant in

populations with inadequate access to clean fuels such
as kerosene, LPG and biogas particularly poor
households in rural areas of the developing world. The
use of unprocessed fuel is estimated to be nearly zero
in developed countries and more than 80% in the
countries like China, India, and sub-Saharan Africa
(Smith 2002). Conservative estimates of global
mortality due to indoor air pollution from solid fuels
show that in the year 2000, between 1.5 million and 2
million deaths were attributed to exposure to indoor
air pollution This accounts for approximately 4% to
5% of total mortality worldwide (Smith & Mehta 2003).
In Nepal, according to population census 2001, nearly
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80% households use solid fuels for cooking and heating
homes (CBS 2001). Women and children are the most
exposed group of individuals because women usually
tend to put their babies with them during cooking time.

In households using solid fuels, over a 24h
period, the typical mean PM10 concentrations can exceed
1000 g/m3 and carbon monoxide concentrations can
exceed 20 ppm (Bruce et al. 2000). A cross-sectional
study conducted by Nepal Health Research Council
(NHRC) in 2003/2004 on health effects from indoor
pollution in Nepalese households has found that PM10
concentration in kitchens using unprocessed solid fuels
(2418 mg/m3) was about 3 times higher than those using
cleaner fuels (792.5 mg/m3). Similarly, carbon monoxide
concentration was 6.67 times higher for solid fuels
though mean values were within WHO guidelines of
100,000 mg/m3 for 15 min averaging time (NHRC 2004).
The health effects that have been associated with indoor
air pollution are acute lower respiratory infections
(ALRI), chronic bronchitis, COPD, asthma, lung cancer,
adverse pregnancy outcomes, pulmonary tuberculosis,
etc. The analysis of the study data found significant
associations between respiratory health outcomes and
exposure to biomass smoke. It showed significant odds
ratios for COPD / Asthma (3.85) and respiratory
symptoms as defined in the British Medical Research
Council (BMRC) questionnaire, namely cough (3.71),
phlegm (3.08), breathlessness (3.71) and wheezing
(5.39). Moreover, the adjusted odds ratios were also
found to be significant for cough (3.37), breathlessness
(3.47), and wheezing (4.75) when adjusted for smoking.
Similarly, the adjusted odds ratios for cough (3.75),
phlegm (3.31), breathlessness (3.66), wheezing (5.95),
and COPD/asthma (4.18) were also statistically
significant when adjusted for age (Shrestha &
 Shrestha 2005).

Monitoring of air pollutants in every study may
not be practicable frequently since the cost required
will be naturally much higher. Studies with limited
financial resources will have to rely on factors that
influence the pollutant concentrations such as fuel type,
stove type, ventilation situation, house type, etc. most
of which are essentially categorical in nature. As a result,
it could be beneficial if we can identify some statistically
significant factors and build statistical models for
associating these factors with pollutant concentrations.
In the paper, attempt has been made in this direction by
constructing a couple of statistical models based upon

categorical regression with optimal scaling technique
(CATREG).

Materials and Methods
A typical statistical model is proposed for predicting
indoor air pollutant concentration inside kitchen at the
time when fuel is burning. The model is the categorical
regression model with optimal scaling technique
(CATREG). The model is preferred instead of general
linear models (GLM) for the reasons discussed ahead.
Even though general linear models are simple models
and relatively easy to understand, interpret and apply
when the predictor variables are categorical and the
response variable is numeric, they rely heavily on several
assumptions such as normality, homogeneity in variance
across factor level combinations, absence of
autocorrelation, etc.  Moreover, large sample sizes are
required for such models across each of the factor level
combinations which may not be fulfilled in practice
owing to various constraints mainly financial.
Comparatively, even though categorical regression
models are relatively complicated and sophisticated
involving advanced statistical techniques such as
optimal scaling techniques for multivariate categorical
data analysis, there are several advantages in using
this model as well. One advantage is categorical
regression can be run with least assumptions. For
instance, normality assumption of the predictor variables
is relaxed. In categorical regression since factor levels
are coded simultaneously into values, sample sizes need
not necessarily be large as in GLM for each factor level
combination. In GLM many regression coefficients will
be estimated depending upon the number of levels in
the categorical factors, p-1 coefficient will be estimated
if there are p levels in a predictor variable. In categorical
regression, only one coefficient is needed for a predictor
variable. Moreover, nonlinear associations can be
detected with these models whereas GLMs are basically
used for detecting linear associations.

Model specification
In many researches on social, behavioral sciences,
marketing, environment and health, etc, variables are
often in nominal and ordinal scales. The zero point of
the scales used to measure the values is uncertain, the
relationships among the different categories is often
unknown, and although frequently it can be assumed
that the categories are ordered, their mutual distances
might still be unknown. The uncertainty in the unit of
measurement is not just a matter of measurement error,
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because its variability may have a systematic
component. An important development in
multidimensional data analysis is the optimal assignment
of quantitative values to such qualitative scales. This
form of optimal quantification (scaling, scoring) is a
general approach to treat multivariate categorical data
such as in the case of categorical regression and
categorical principal component analysis.

Categorical regression quantifies categorical data
by assigning numerical values to the categories using
optimal scaling method and resulting in an optimal linear
regression equation for the transformed variables.
Standard linear regression analysis involves minimizing
of the sum of squared differences between a response
(dependent) variable and a weighted combination of
predictor (independent) variables. Variables are typically
quantitative, with nominal data recoded to binary or
contrast variables. As a result, categorical variables serve
to separate groups of cases, and the technique estimates
separate sets of parameters for each group. An
alternative approach involves regressing the response
on the categorical predictor values themselves.
Consequently, one coefficient is estimated for each
variable. However, for categorical variables, the
category values are arbitrary.

Categorical regression extends the standard
approach by simultaneously scaling nominal, ordinal,
and numerical variables. The procedure quantifies
categorical variables so that the quantifications reflect
characteristics of the original categories. The procedure
treats quantified categorical variables in the same way
as numerical variables. Using nonlinear transformations
allow variables to be analyzed at a variety of levels to
find the best-fitting model.

In the simple linear regression model we wish to
predict a response variable z from m predictor variables
in X. This objective is achieved by finding a particular
linear combination Xb that correlates maximally with z.
This implies minimizing the sum of squared differences
between a response (dependent) variable and a
weighted combination of predictor (independent)
variables. The minimization of the error sum of squares
is

(1)

In effect, this maximizes the correlation between
the dependent variable z and the linear combination of

the predictor variables, 

Incorporating optimal scaling to response as well
as predictor variables amounts to the minimization of
the expression

over regression weights b, and nonlinear functions

and ,j = 1,..., m.
Thus, optimal scaling maximizes the correlation

between and over feasible

nonlinear functions. These functions are called
transformations for quantitative variables and scaling,
scorings or quantifications for categorical variables. An
alternative approach to linear regression model is
therefore, regressing the response on the categorical
predictor values themselves. Consequently, one
coefficient is estimated for each variable. Model for
categorical regression can be expressed as a linear
regression model for transformed variables, as given
below

(3)

where b is a vector of standardized coefficients, εεεεε is
the vector of errors, X* is the coefficient matrix
containing transformed independent variables, and
Z* is the vector of observations for the transformed
response variable. Different optimal scaling levels can
be set to the dependent as well as independent
variables namely, nominal,  spline nominal
(transformation is a smooth, possibly non-monotonic,
piecewise polynomial of the chosen degree.), ordinal,
spline ordinal (transformation is a smooth monotonic
piecewise polynomial of the chosen degree) and
numeric (Gifi 1990). The details of how categorical
variables are dealt with in a framework and how an
objective function is optimized in CATREG can be
viewed in SPSS white paper (Meulman 1997, 1998).
Also many advances on the principles of optimal
scaling took place during 1980s. Since the middle
1980s, optimal scaling methods have been extended
into more general framework and gradually appeared
in mainstream statistical literature (Brieman &
Friedman 1985, Ramsay 1989, Buja 1990).

(2)
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Data
Data for analysis were taken from a cross-sectional
household survey conducted under the Nepal Health
Research Council project entitled ‘Situation analysis of
indoor air pollution and development of guidelines for
indoor air quality assessment and house building for
health’ and supported by World Health Organization
(WHO), Nepal carried out at some rural and urban areas
of Nepal with special focus on rural women who cooked
inside unventilated or poorly ventilated kitchens with
solid bio-fuels. The survey included 11 Village
Development Committees (VDCs) and 4 Municipalities
selected randomly from 5 districts of which three were
from hills and two from Terai region. From the selected
rural and urban regions, 98 households were selected
at random with 168 respondents mainly women (94%)
who cooked for daily meals. The study was supported
by direct measurements of air pollutants mainly
particulate matter of size less than 10 micron (PM10) and
carbon monoxide (CO). Measurements on other
pollutants such as sulfur dioxide (SO2), nitrogen dioxide
(NO2) and formaldehyde (HCHO) were done on
campaign basis in only a fraction of households
surveyed. The health responses were judged by an
occupational health expert with general health check

up including chest examinations, peak flow meter
examination and responses obtained through British
Medical Research Council (BMRC) questionnaire for
respiratory disease identification. The field survey was
conducted between November 2003 and February 2004
during dry season in winter. Altitudes of hilly regions
included in the survey were about 1,400 meters, and
flatlands ranged in altitude from 90 to 240 m (NHRC
2004). Data were analyzed using Statistical Package for
the Social Sciences (SPSS) for windows version 13.0.

Model Adequacy Tests
Several measures of model adequacy tests are employed
such as goodness of fit by R2, residual analysis
including normality test, homogeneity of variance,
residual plots on autocorrelations and partial
autocorrelations.

Results and Discussion
The three categorical predictor variables found
significant in the model for predicting PM10 level and
CO level were fuel type, house type and ventilation
condition inside kitchen. The description of how these
variables were categorized is given in
Table 1.

Table 1.Predictor variable description

Variable 1 Variable 2 Variable 3
Fuel type Code House type Code Ventilation Code Open area(m2) Volume(m3)
Biomass 1 Kachhi 1 Poor 1 0.05 – 1.80 7.0 – 26.0
Kerosene 2 Pakki 2 Moderate 2 0.05 – 1.80 26.0 –  110.0

1.80– 6.50 7.0 – 26.0
LPG/Biogas 3 Improved 3 1.80– 6.50 26 –  110.0

Two models were developed for estimating PM10
levels and CO levels separately. The estimated models
are:
For predicting PM10 concentration

Model 1: *** X0.807-Xb̂ẑ ==
For predicting CO concentration

Model 2: *** X0.819-Xb̂ẑ ==
where functions ZZZ 329.10.2)(* +−==θ for

model 1 and ZZZ 615.0603.5)(* +−==θ for
model 2 are linear functions of the response variables

in the models, X* = j (X) is a nonlinear function of the
multiple of the categorical variables which is  j (Fuel
* Ventilation * House type).  Total cases used are 79
for model 1 and 77 for model 2. The variables in the
fitted models are standardized transformations so that
their means are zero and variances are one. The
observed values of the response variables in the
models are first of all transformed through Box-Cox
transformation before modeling. The transformations
are used for modeling rather than the original
variables in order to stabilize the error variances. The
transformations are presented below.
For Model 1:
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where y is the observed value of PM10 level.

For Model 2: 0.01 for  1
=

−
= λ

λ

λyZ

where y is the observed value of CO level.

The estimated standardized regression
coefficients imply that increase in one standard
deviation of the predictor variable (quantified product
of fuel, ventilation and house) results in decrease of
0.807 and 0.819 standard deviations of the quantified
response variables, respectively. The category
quantifications of the response variable (Z*) and the
predictor variable (X*) are provided in the tables below
(Tables 2-5). The estimated standardized regression
coefficients with standard errors 0.068 and 0.067 are
found to be statistically significant with p=0.000 for
model 1 and model 2, respectively. The predicted PM10
and CO values for different levels of predictor factor
levels are shown in tables 6 and 7.

The highest predicted value for biomass fuel, poor
ventilation and kachi house is found to be 5.2 times
higher than the lowest predicted value for LPG/biogas
fuel, improved ventilation and pakki house type in model
1 for predicting PM10 levels. The last column of table 6
shows how the predicted PM10 lowers as the levels of
the predictor factors changes from biomass fuel to LPG
/ biogas, poor ventilation to improved ventilation and
kachi house type to pakki house type. Similarly, the
highest predicted value for biomass fuel, poor
ventilation and kachi house is found to be 40.4 times
higher than the lowest predicted value for LPG/biogas
fuel, improved ventilation and pakki house type in model
2 for predicting CO levels. The last column of table 7
shows how the predicted PM10 lowers as the levels of
the predictor factors changes from biomass fuel to LPG
/ biogas, poor ventilation to improved ventilation and
kachi house type to pakki house type.

Since the response variables are scaled as numeric,
linear associations between the category quantifications
and the category arithmetic means are observed for the
both models. However, the same is not true for the
predictor variables since they are scaled as spline ordinal
with 2 degrees of freedom and two interior knots for the

models. Consequently, if we examine the graphs between
category codes and the corresponding quantifications,
we observe nonlinear curves.

Table 2. Category quantification of response variable
in model 1

Category Frequency Quantification (Z*)
.01 - .17 2 -1.883
.39 - .77 16 -1.261
.87 - 1.23 17 -.638
1.30 - 1.57 9 -.016
1.72 - 2.15 15 .607
2.20 - 2.68 18 1.229
2.73 - 3.15 2 1.851

Category Frequency Quantification (X*)
1.00 17 -1.059
2.00 27 -.632
3.00 5 -.161
4.00 5 .323
6.00 7 1.021
8.00 1 1.339
9.00 1 1.360
12.00 8 1.398
18.00 8 1.655

Table 4.Category quantification for response variable in
model 2

Category Frequency Quantification
5.80 9 -1.888
6.55 - 7.29 5 -1.282
7.73 - 8.48 11 -.676
8.73 - 9.55 16 -.071
9.79 - 10.31 15 .535
10.56 - 11.11 21 1.140

Table 5. Category quantification for predictor variable in
model 2

Category Frequency Quantification

1.00 17 -1.100
2.00 26 -.521
3.00 6 -.117
4.00 4 .147
6.00 6 .600
8.00 1 .977
9.00 1 1.137
12.00 8 1.515
18.00 8 1.817

Table 3. Category quantification of the predictor
variable in model 1
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Table 6.Predicted PM10 levels

Solid Biomass Fuel Insufficient Kachi 3024 0.0
Kerosene Insufficient Kachi 2337 22.7
Solid Biomass Fuel Moderate Kachi 2337 22.7
Solid Biomass Fuel Insufficient Pakki 2337 22.7
Solid Biomass Fuel Improved Kachi 1758 41.9
Kerosene Moderate Kachi 1311 56.6
Kerosene Insufficient Pakki 1311 56.6
Solid Biomass Fuel Moderate Pakki 1311 56.6
LPG / Biogas Moderate Kachi 857 71.7
Kerosene Improved Kachi 857 71.7
Solid Biomass Fuel Improved Pakki 857 71.7
Kerosene Moderate Pakki 706 76.7
LPG / Biogas Improved Kachi 697 77.0
LPG / Biogas Moderate Pakki 681 77.5
Kerosene Improved Pakki 681 77.5
LPG / Biogas Improved Pakki 582 80.8

Table 7.Predicted CO levels

Biomass Fuel Insufficient Kachi 24115 0.0
Biomass Fuel Moderate Kachi 11698 51.5
Biomass Fuel Insufficient Pakki 11698 51.5
Biomass Fuel Improved Kachi 7040 70.8
Kerosene Moderate Kachi 5046 79.1
Kerosene Insufficient Pakki 5046 79.1
Biomass Fuel Moderate Pakki 5046 79.1
Kerosene Improved Kachi 2841 88.2
LPG/biogas Moderate Kachi 2841 88.2
Biomass Fuel Improved Pakki 2841 88.2
Kerosene Moderate Pakki 1757 92.7
LPG/biogas Improved Kachi 1431 94.1
Kerosene Improved Pakki 881 96.3
LPG/biogas Moderate Pakki 881 96.3
LPG/biogas Improved Pakki 597 97.5

Fuel Ventilation House
Predicted PM10

(µg/m3)
% Decrease

Fuel Ventilation House Type
Predicted CO (µg/
m3) % Decrease
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Results on model adequacy tests show that the
values of adjusted R2 are found to be 0.637 and 0.658 for
model 1 and model 2, respectively. The values may be
regarded as moderate. The residuals are found to be
normally distributed using Kolmorov-Smirnov
nonparametric test (p=0.208 for model 1and p=0.022 for
model 2). The normal probability plots also do not show
much deviation from normality for error variables.
Studentized residuals are examined with respect to
standardized predicted values and two potential outliers
were detected (outside ± 2.58) for both the models. The

models were rerun after deleting the outliers and the
resulting models did not show any outliers. The graphs
also show fairly homogenous variance of the residual.

Application of categorical regression models for
predicting kitchen PM10 concentration and CO
concentration during cooking time are found to be
suitable when applied to data collected from Nepalese
households. The risk factors found statistical significant
for predicting the response variables are fuel type,
ventilation and house type. The estimated models
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predict highest concentrations in kitchens using
biomass fuels such as dung, crop residue and wood
with poor ventilation and kachhi houses (without
concrete use in construction) for the both models.
Similarly, the fitted models predict lowest concentrations
for both PM10 and CO with cleaner fuels (LPG/Biogas)
with improved ventilation situation and for pakki those
houses. If we closely examine tables 6 and 7 it is
encouraging to know that even though biomass fuels
are used in kachhi houses which are characteristics of
low income people, PM10 level and CO level are
significantly reduced (41.9% for PM10 and 70.8% for
CO) if ventilation is improved from poor to improved
situation. This is an important research output since
switching fuels to LPG or biogas and constructing pakki
houses for low and underprivileged section of the
people in Nepalese society is difficult. But, if they try to
minimize indoor air pollution it can be significantly
reduced by improving ventilation condition in the
kitchens alone. This can be done by making windows /
doors / kitchen volume with larger dimensions with much
less economical burden than the economical burden
associated with the other two factors. People should be
well educated with such findings and also with health
consequences of indoor air pollution through awareness
programs.
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