
Therapeutics, Targets, and Chemical Biology

Dual IGF-I/II–Neutralizing Antibody MEDI-573 Potently
Inhibits IGF Signaling and Tumor Growth

Jin Gao1, Jon W. Chesebrough1, Susan A. Cartlidge2, Sally-Ann Ricketts2, Leonard Incognito1,
Margaret Veldman-Jones2, David C. Blakey2, Mohammad Tabrizi3,4, Bahija Jallal1, Pamela A. Trail1,
Steven Coats1, Klaus Bosslet1, and Yong S. Chang1

Abstract
Insulin-like growth factors (IGF), IGF-I and IGF-II, are small polypeptides involved in regulating cell

proliferation, survival, differentiation, and transformation. IGF activities are mediated through binding and
activation of IGF-1R or insulin receptor isoform A (IR-A). The role of the IGF-1R pathway in promoting tumor
growth and survival is well documented. Overexpression of IGF-II and IR-A is reported in multiple types of
cancer and is proposed as a potential mechanism for cancer cells to develop resistance to IGF-1R–targeting
therapy. MEDI-573 is a fully human antibody that neutralizes both IGF-I and IGF-II and inhibits IGF signaling
through both the IGF-1R and IR-A pathways. Here, we show thatMEDI-573 blocks the binding of IGF-I and IGF-II
to IGF-1R or IR-A, leading to the inhibition of IGF-induced signaling pathways and cell proliferation. MEDI-573
significantly inhibited the in vivo growth of IGF-I– or IGF-II–driven tumors. Pharmacodynamic analysis
demonstrated inhibition of IGF-1R phosphorylation in tumors in mice dosed with MEDI-573, indicating that
the antitumor activity is mediated via inhibition of IGF-1R signaling pathways. Finally, MEDI-573 significantly
decreased 18F-fluorodeoxyglucose (18F-FDG) uptake in IGF-driven tumor models, highlighting the potential
utility of 18F-FDG-PET as a noninvasive pharmacodynamic readout for evaluating the use of MEDI-573 in the
clinic. Taken together, these results demonstrate that the inhibition of IGF-I and IGF-II ligands by MEDI-573
results in potent antitumor activity and offers an effective approach to selectively target both the IGF-1R and IR-
A signaling pathways. Cancer Res; 71(3); 1–11. �2011 AACR.

Introduction

Insulin-like growth factors (IGF), IGF-I and IGF-II, are small
polypeptides involved in regulating cell proliferation, survival,
differentiation, and transformation (1–4). They bind to the
IGF-I receptor tyrosine kinase (IGF-1R) and insulin receptor
isoform A (IR-A; refs. 5, 6) to activate multiple intracellular
signaling cascades, including the insulin receptor substrate
(IRS) proteins (7), the Akt and MAPK (mitogen-activated
protein kinase) pathways (8). IGF-II binds IR-A, a truncated
version of the insulin receptor that lacks exon 11, with greater
affinity than IGF-I (9). Activation of IR-A by IGF-II results in
mitogenic effects and increased survival and motility of tumor
cells (10). In contrast, activation of insulin receptors by insulin

results primarily in metabolic effects (6, 9, 10). Increased
expression of IGF-II or IR-A occurs during fetal development
and in certain types of cancers including breast, colorectal,
thyroid, bladder, hepatocellular carcinoma, and osteosarcoma
(5, 11–18). The overexpression of IR-A and IGF-II may be a
potential mechanism leading to resistance to IGF-1R–directed
therapies (19, 20). Studies show that downregulation of IGF-1R
expression or inhibition of signaling leads to the inhibition of
tumor growth (4, 21, 22) and increases the susceptibility of
tumor cells to chemotherapeutic agents in vivo (3, 4, 8, 23).
Both IR-A and IGF-1R are involved in IGF signaling and play
significant roles in cancer development and progression (24);
therefore, inhibition of both the IR-A and IGF-1R receptors
may be required to achieve optimal therapeutic efficacy
against IGF-driven cancers (21).

A variety of therapeutic strategies have been evaluated to
inhibit the IGF-1R signaling pathway. Monoclonal antibodies
that target IGF-1R have shown benefit in early-stage clinical
trials (25–27). These antibodies bind to IGF-1R and inhibit IGF
binding and signaling. Many of these antibodies induce IGF-1R
degradation. A few IGF-1R–specific antibodies can also par-
tially affect the IR-A signaling pathway by targeting IGF-1R/IR-
A hybrid receptors (28, 29). However, they do not inhibit IGF-II
activation of IR-A homodimers.

Small-molecule IGF-1R kinase inhibitors inhibit IGF-1R, IR-
A, and IR-B, due to the highly homologous kinase domains of
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these receptors (19, 30, 31). The inhibition of IR-B canmodulate
glucose metabolism in vivo resulting in hyperglycemia (26).

We describe the development of a fully human monoclonal
antibody, MEDI-573, that neutralizes both the IGF-I and IGF-II
ligands and inhibits both IGF-1R and IR-A signaling without
affecting the insulin activation of IR. Results from in vitro
binding, receptor inhibition, and cell growth inhibition stu-
dies, as well as tumor xenograft studies, demonstrate the
potential therapeutic advantage of targeting both the IGF-
1R and the IR-A signaling pathways.

Material and Methods

Antibody generation
MEDI-573 is a fully human IgG2l monoclonal antibody

generated by XenoMouse (Abgenix) technology. MEDI-573
was isolated from mice immunized alternately with soluble
recombinant human IGF-I and IGF-II coupled to keyhole
limpet hemocyanin. Hybridoma supernatants were screened
for binding to IGF-I and IGF-II and the lack of cross-reactivity
to human insulin.

Cell lines
The following are mouse embryonic fibroblast (MEF) cell

lines that ectopically overexpress specific human proteins: P12
(IGF-1R, IGF-I), C32 (IGF-1R, IGF-II); NIH/IGF-1R (IGF-1R; ref.
32). R-/IRA C9 was a MEF derived from an IGF-1R knockout
mouse (33) that ectopically overexpresseshuman IR-A (9). These
cell lines were developed by Dr. Renato Baserga (Thomas
Jefferson University) and maintained in Dulbecco's modified
Eagle medium (DMEM) supplemented with 10% FBS and
different antibiotic supplements: 150 mg/mL hygromycin and
250mg/mLG418 for P12, 250mg/mLhygromycin and 750mg/mL
G418 for C32, and 2.5 mg/mL puromycin for R-/IRA C9. Human
cancer cell lines (Table 2 and Supplementary Tables 1 and 2)
used in the studies were cultured in DMEM with 10% FBS.

BIAcore analysis
Binding affinity of human IGF-I and IGF-II for MEDI-573

was determined by high-resolution surface plasmon reso-
nance using a BIAcore 2000 system. MEDI-573 was immobi-
lized onto a CM5 sensor chip using standard amine coupling
to interact with recombinant human IGF-I and IGF-II (R&D
Systems). Binding kinetics was analyzed to derive binding
affinities. Raw binding data was corrected in the manner
described by Myszka (34).

Meso-scale discovery assays
Cells were seeded into tissue culture–treated, 96-well plates

in serum-free medium. The next day, cells were treated with
IGF-I or IGF-II (Cell Sciences; at 75 ng/mL ¼ 10 nmol/L) or
insulin (Sigma; at 58 ng/mL ¼ 10 nmol/L) pre-mixed with
serially diluted MEDI-573 or an IGF-1R–specific antibody
(produced in-house according to the published sequence of
CP-751,871). An IgG2 isotype control antibody was used at 5
and 150 mg/mL. Cells were treated for 15 minutes at 37�C,
before being lysed with 50 mL per well lysis buffer (meso-scale

discovery, MSD) containing phosphatase inhibitors (Sigma)
and protease inhibitors (Roche). The levels of total and
phosphorylated IR, IGF-1R, and IRS-1 protein in the lysate
were determined using the Insulin Signaling Panel (total
protein) and Insulin Signaling Panel (phosphoproteins) Whole
Cell Lysate kits according to manufacturer's (MSD) protocol.
The levels of total and phosphorylated Akt were determined
using the Phospho (Ser473)/Total Akt Whole Cell Lysate kit
according to manufacturer's (MSD) protocol.

Immunoblotting
Cells were seeded in 6-well plates and treated as described in

the previous paragraph. Whole cell extract was prepared in
lysis buffer (Cell Signaling Technology) containing phospha-
tase inhibitors and protease inhibitors. SDS-PAGE of the
lysates was performed using pre-cast 4–12% Bis-Tris Gel
(Invitrogen). Separated proteins were transferred to nitrocel-
lulose membranes and probed with antibodies specific for
pIGF-1R (Cell Signaling Technology), IGF-1R (Santa Cruz),
pAkt (Cell Signaling Technology), Akt (Cell Signaling Technol-
ogy), pErk1/2 (Cell Signaling Technology), Erk1/2 (Cell Signal-
ing Technology), and b-actin (Sigma), followed by HRP
(horseradish peroxidase)-conjugated species specific second-
ary antibodies.

Cell proliferation assays
NIH/IGF-1R cells, R-/IRA C9 cells, or the mixture of these 2

cell lineswere seeded into tissue culture–treated, 96-well plates
in medium containing 0.1% charcoal-stripped FBS (CS-FBS;
Gibco). The next day, cells were treated with MEDI-573, or an
IGF-1R–specific antibody, or an IgG2 isotype control antibody,
each serially diluted to required concentrations. Thirty min-
utes later, either IGF-I (20 ng/mL) or IGF-II (40 ng/mL) was
added. The concentration of IGF-I and IGF-II used were
determined in similar assays to be optimal to stimulate cell
proliferation (Supplementary Fig. 3). The numbers of viable
cells in each well were determined using Cell Titer Glo (Pro-
mega) 3 days later according to manufacturer's protocol.

Relative abundance of IR-A and IR-B expressed in
cancer cells

IR-A versus IR-B relative abundance could not be deter-
mined at the protein level due to strong sequence similarity
(only 12-amino acid difference) and the lack of commercial
antibodies specific for the isoforms. The relative abundance of
these 2 isoforms was measured at mRNA levels by reverse
transcriptase (RT)-PCR as published previously by Sciacca and
colleagues (5).

In vivo tumor growth inhibition studies
Tumor xenografts were established by subcutaneous (s.c.)

implantation of 5 � 106 P12 or C32 cells into 5- to 6-week-old
female athymic (nu/nu) mice (Harlan Sprague Dawley). Mice
were randomized into groups of 10 when tumors were 100 to
200 mm3. MEDI-573 was administered by intraperitoneal (i.p.)
injection at indicated dose levels twice per week, for 2 weeks.
Tumor volume (mm3) wasmeasured 2 to 3 times per week and
was calculated by: [length (mm) � width (mm)2]/2. Body
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weights were measured twice per week. Tumor growth inhibi-
tion (TGI) was calculated as (1 � T/C) � 100, where T ¼ final
tumor volumes from a treated group, and C ¼ final tumor
volumes from the control group. At the end of the studies,
mice were administered one last dose of MEDI-573, tumors
were harvested 24 or 72 hours later and snap frozen. Med-
Immune is an AAALAC International-accredited facility.

Evaluation of phosphorylated IGF-1R (pIGF-1R) levels
in tumor extracts
Tumor extracts were prepared in Tris-lysis buffer (MSD)

supplemented with phosphatase inhibitors and protease inhi-
bitors using a FastPrep-24 homogenizer (MP Biomedical). The
total protein concentration of the tumor extract was deter-
mined using the BCA (bicinchoninic acid) assay. The levels of
total or phosphorylated IGF-1R in the extract were deter-
mined using MSD assays as described earlier. The pIGF-1R
signals were normalized to the total IGF-1R signals and
plotted on Y axis as percent of untreated control against
treatment groups on X axis.

18F-FDG-PET imaging
Mice with P12 tumors were randomized into 4 groups of 8

each, 2 vehicle and 2 MEDI-573 groups for readout to be taken
1 day (day 2) or 3 days (day 4) after one dose of treatment.
Baseline imaging was carried out on day 0 for all mice. On day
1, mice received either vehicle or MEDI-573 (40 mg/kg i.p.). On
day 2 or 4, 18F-FDG-PET imaging was performed for 1 group of
the vehicle- or MEDI-573–treated mice. Food was withdrawn
at least 4 hours prior to injection of 18F-FDG. Mice were
anesthetized and 18F-FDG administered by intravenous (i.v.)
injection (mean dose injected was 12.3 MBq per mouse). Mice
remained anesthetized during a 45-minute uptake period
followed by a 20-minute PET scan using Siemens Inveon
PET scanner, followed by 3D (3-dimensional) histogramming
and MAP reconstruction. Six animals per group were used for
final result analyses.
Image analysis was carried out using Inveon Research

Workplace (IRW) software. Standard uptake value (SUV)
was calculated using the standard formula as described by
Gambhir (35), with maximum SUV (MaxSUV) calculated for
each tumor.

Statistics
All samples were analyzed as duplicates, and values are

presented as mean � SEM, unless otherwise specified.

Results

Characterization of MEDI-573, a fully human antibody
to human IGF-I and IGF-II
The properties of MEDI-573 are summarized in Table 1.

The binding affinity for human IGF-I, IGF-II, or human
insulin was determined by BIAcore analysis. No binding
was detected against human insulin. Epitope mapping stu-
dies indicated that MEDI-573 binds to the epitope that
overlaps with F23 and F25 (Supplementary Fig. 1), which
are conserved amino acids in both IGF-I and IGF-II essential

for binding to IGF-1R (36). F23 (F26 in IGF-II) is also
reported to be essential for high-affinity binding to IGF-
binding proteins (IGFBP; ref. 37).

MEDI-573 inhibits the IGF-induced activation of IGF-1R
MEDI-573 inhibited the binding of human IGF-I or IGF-II

to human IGF-1R and the binding of IGF-II to IR-A protein in
ELISA (Supplementary Fig. 2). MSD assays (Fig. 1A and B)
show that MEDI-573 inhibited IGF-I–induced (75 ng/mL; A)
or IGF-II–induced (75 ng/mL; B) phosphorylation of IGF-1R
(IC50 ¼ 0.97 and 0.2 mg/mL, respectively), and the down-
stream signaling proteins IRS-1 (IC50 ¼ 1.3 and 0.2 mg/mL,
respectively) and Akt (IC50 ¼ 4.5 and 0.2 mg/mL, respec-
tively), in NIH/IGF-1R cells (MEF overexpressing human
IGF-1R). Immunoblottings (Fig. 1C) show that from 1.5 to
150 mg/mL, MEDI-573 inhibited the IGF-I–induced phos-
phorylation of IGF-1R, Akt, and Erk1/2, in a dose-dependent
manner, without changing the levels of total proteins. Simi-
lar results were observed with a number of different IGF-1R–
expressing cell lines (Supplementary Table 1). In addition,
MEDI-573 inhibited the phosphorylation of IR-A induced by
10 nmol/L of IGF-II, but not 10 nmol/L of human insulin
(Fig. 1D), in R-/IRA C9 cells, a mouse IGF-1R knockout MEF
cell line overexpressing recombinant human IR-A. This is
consistent with the results from BIAcore binding studies
(Table 1; raw data not shown) that MEDI-573 does not bind
to human insulin.

IGF-I at 20 ng/mL or IGF-II at 40 ng/mL maximally stimu-
lated the in vitro proliferation of NIH/IGF-1R cells (Supple-
mentary Fig. 3), which was in turn inhibited by MEDI-573
(IC50 ¼ 2.9 and 0.35 mg/mL, respectively; Supplementary
Fig. 4). Similar results were observed with multiple cancer
cell lines (Supplementary Table 2). These results demonstrate
that MEDI-573 effectively inhibits the binding of IGF-I or IGF-
II to IGF-1R, and subsequently inhibits the IGF-activated
downstream signaling pathways and cell proliferation without
inhibiting insulin-IR interaction.

Expression of IR-A versus IR-B in cancer cell lines
Increased expression of IR-A and IGF-II is reported in

certain types of cancer and is proposed as a compensatory
survival mechanism in cancer cells wherein IGF-1R signaling
is inhibited (5, 11–17, 19, 20), which supports the rationale for
IGF ligand neutralization. The relative abundance of IR-A
versus IR-B mRNA was determined in multiple cancer cell
lines using quantitative RT-PCR (5). The results show that at
mRNA level, IR-A is the dominant isoform in these cancer
cells, whereas IR-B is the dominant isoform in the normal liver
of cynomolgus monkeys (Table 2).

MEDI-573 inhibits IGF-II activation of IR-A
MEDI-573 blocked IGF-II–stimulated (at 75 ng/mL) phos-

phorylation of IR-A and the downstream signal protein IRS-1 in
two IR-A overexpressing cell lines: R-/IRA C9 cells (Fig. 2A and
B) and MDA-MB-157 breast cancer cells (Fig. 2C and D). MDA-
MB-157 cells primarily express the IR-A isoform (Table 2). In
contrast, an IGF-1R–specific antibody did not block IGF-II–
induced IR-A signaling pathway in either cell line.
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MEDI-573 inhibits IGF-II–stimulated cell proliferation
in homogeneous and heterogeneous populations
expressing either or both IGF-1R and IR-A

In in vitro cell proliferation assays, MEDI-573 inhibited IGF-
II–stimulated proliferation of R-/IRA C9 cells (IC50 ¼ 1.9
nmol/L; Fig. 3D), similar to its activity in NIH/IGF-1R cells
(Fig. 3A). MEDI-573 displayed potent inhibition of prolifera-
tion in mixed cell populations of NIH/IGF-1R and R-/IRA C9 at

different ratios, with similar IC50 values irrespective of the
percentage of the IGF-1R–expressing versus the IR-A–expres-
sing cells (Fig. 3A–D). In contrast, an IGF-1R–specific antibody
showed the greatest inhibition of proliferation against pure
populations of NIH/IGF-1R cells, but had only marginal
activity when the heterogeneous cell population contained
25% R-/IRA C9 cells, and lost activity entirely when 50% or
more of the heterogeneous cell population was R-/IRA C9
cells. Therefore, in cancers with both IR-A–expressing and
IGF-1R–expressing cells, MEDI-573 may have greater and
more consistent inhibition of cell proliferation than IGF-
1R–targeting antibodies.

MEDI-573 inhibits the in vivo growth of xenograft
models overexpressing IGF-1R and IGF

The antitumor activity of MEDI-573 was investigated in C32
cells (overexpress human IGF-II and human IGF-1R) and P12
cells (overexpress human IGF-I and human IGF-1R) when
grown as xenografts in nude mice. MEDI-573 was highly active
against the C32 model when administered as a single agent,
producing dose-dependent in vivo TGI. Treatment with 30 or
60 mg/kg of MEDI-573 resulted in 86% and 91% TGI, respec-
tively (Fig. 4A). A dose response was observed between the
dose levels of 3 to 30 mg/kg ranging from 18% to 86% TGI.
Similarly, MEDI-573 significantly inhibited the growth of P12

Table 1. Summary of MEDI-573 characteristics

Antibody type IgG2l
Target Human IGF-I and IGF-II
Binding affinity for hIGF-I KD ¼ 294 pmol/L
Binding affinity for hIGF-II KD ¼ 2 pmol/L
Binding affinity for mIGF-I KD ¼ 2,000 pmol/L
Binding affinity for mIGF-II KD ¼ 4 pmol/L
Binding to IGF-IGFBP3

complex
No significant binding
detected (KD > 1 mmol/L)

Binding to insulin No significant binding
detected (up to 0.2 mmol/L
in BIAcore and 1 mmol/L in
IR phosphorylation assay)

Table 2. Relative abundance of IR-A versus IR-B mRNA in normal and cancer cell lines

Cell lines Cancer type IR-A, % IR-B, %

Normal cyno liver Normal liver <5 >95
Hep3B Hepatocellular carcinoma 73 27
PLC Hepatocellular carcinoma 52 48
HepG2 Hepatocellular carcinoma 77 23
MCF-7 Breast 60 40
MDA-MB157 Breast >95 <5
BT-474 Breast 59 41
KPL-4 Breast 39 61
BT-20 Breast 60 40
BT-483 Breast 87 13
BT549 Breast >95 <5
MDA-MB231-NIH Breast 48 52
MDA-MB-231-KC Breast 90 10
MDA-MB-468 Breast 50 50
5637 Bladder 53 47
HT-1197 Bladder 49 51
J82 Bladder 65 35
T24 Bladder 70 30
TCC-SUP Bladder 53 47
UM-UC-3 Bladder 69 31
Lovo Colorectal 67 33
A549 Lung 50 50
PC3 Prostate 48 51
R-/IRA C9a Mouse fibroblast 100 0

aR-/IRA C9 is a mouse fibroblast cell line that does not express the mouse IGF-1R protein but was engineered to overexpress human
IR-A. It is used as a control for IRA mRNA quantitative PCR.

Q2
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tumors. A clear dose response was observed between the dose
levels of 3 to 30mg/kg in which, 3, 10, and 30mg/kg resulted in
TGI of 20%, 66%, and 86%, respectively. When MEDI-573 was
administered at 60 mg/kg, the resulting TGI was similar to
that of 30 mg/kg (Fig. 4B).

Modulation of pIGF-1R in P12 and C32 tumors was also
examined 24 or 72 hours after the last dose. As seen in Figure
4C and D, there is a direct correlation between MEDI-573 dose
and the decrease of tumor pIGF-1R levels, which in turn
correlates with in vivo TGI (Fig. 4A and B). The serum
concentrations of MEDI-573 from the animals were also
determined in C32 tumors (data not shown) showing a strong

correlation between increased serum concentrations of
MEDI-573 and decreased levels of pIGF-1R.

18F-FDG-PET imaging as a pharmacodynamic marker
for MEDI-573 in vivo activity

The use of 18F-FDG-PET imaging was investigated as a
noninvasive pharmacodynamic readout for evaluating MEDI-
573 in vivo activity using the P12 tumors, which respond to
MEDI-573 with maximum TGI of more than 85% at doses of 30
mg/kg or greater after 2 weeks (4 doses; Fig. 4B). The effect of a
single dose (40 mg/kg) of MEDI-573 on the uptake of 18F-FDG
in P12 tumors 1 day (day 2) or 3 days (day 4) after admin-
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Figure 2. MEDI-573 inhibits IGF-II–induced phosphorylation of IR-A and IRS-1. MSD analysis of lysates from serum-starved R-/IRA C9 cells (A and B)
or MDA-MB-157 cells (C and D) stimulated with 75 ng/mL IGF-II premixed with increasing concentrations of MEDI-573 (red, 0–5 mg/mL), or an IGF-1R–specific
antibody (blue, 0–150 mg/mL), or an isotype control antibody (green, at 5 and 150 mg/mL). The levels of pIR-A (A, C) and pIRS-1 (B, D) are expressed
on the Y axis as the percentage of the phosphorylation observed in positive control samples treated with IGF-II only.

Figure 1. MEDI-573 inhibits IGF-induced phosphorylation of IGF-1R, IR-A, IRS-1, Akt, and Erk. A and B, MSD analysis of pIGF-1R (top), pIRS-1
(middle), and pAkt (bottom) levels from lysates of serum-starved NIH/IGF-1R cells treated (15 minutes) with IGF-I (75 ng/mL ¼ 10 nmol/L; A) or IGF-II
(75 ng/mL ¼ 10 nmol/L; B) premixed with increasing concentration of MEDI-573 (0–150 mg/mL for IGF-I in A; 0–5 mg/mL for IGF-II in B) or an IgG2 isotype
control antibody (green, 150 mg/mL in A; 5 mg/mL in B). C, immunoblots of lysates from serum-starved NIH/IGF-1R cells treated (15 minutes) with 75 ng/mL of
IGF-I premixed with different concentrations of MEDI-573 (0 to 150 mg/mL) or 150 mg/mL of the IgG2 isotype control antibody. D, MSD analysis of pIR-A levels
from the lysates of serum-starved R-/IRA C9 cells treated with IGF-II (blue, 75 ng/mL) or insulin (red, 58 ng/mL ¼ 10 nmol/L) premixed with increasing
concentrations of MEDI-573 (0–150 mg/mL) or an IgG2 isotype control antibody (green, 150 mg/mL¼ 1 mmol/L). Values are expressed as the percentage of the
pIR-A levels of the respective positive controls, which are samples treated with IGF-II only for all IGF-II–stimulated samples (blue), or insulin only for all insulin-
stimulated samples (red).
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istration of MEDI-573 was determined. Tumor volumes were
also measured.
On day 2, there was no significant change in tumor uptake

of 18F-FDG, reflected in MaxSUV, compared with day 0 (1 day
before administration of MEDI-573) in the vehicle-treated
group (Fig. 5A and D). In contrast, in the group dosed with
40 mg/kg of MEDI-573, all mice showed significant (P ¼
0.0002) decrease of MaxSUV (mean ¼ 46%; Fig. 5A and D).
There was also a significant (P ¼ 0.0007) decrease (mean ¼
43%) in MaxSUV in the MEDI-573–treated group compared
with the vehicle-treated group at day 2. The TGI in the MEDI-
573 group compared with the vehicle group is not yet sig-
nificant at day 2. There was an increase in tumor size from
day 0 to 2 in both the vehicle-treated (average 507-mm3

increase in tumor size, P¼ 0.0024) and the MEDI-573–treated
group (296 mm3, P ¼ 0.019). The results demonstrated that
reduction in 18F-FDG uptake in P12 tumors can be detected as
early as 24 hours after the first dose of MEDI-573, before
significant TGI is observed.
When imaging was performed on day 4, there was an

increase (23%, P ¼ 0.0007) in MaxSUV compared with
day 0 in the vehicle-treated group (Fig. 5B and D). In contrast,
in the MEDI-573–treated group, 7 of 8 of the mice showed a
decrease in MaxSUV at day 4 (29%, P ¼ 0.0179; Fig. 5B and D).
There was also a decrease in MaxSUV in the MEDI-573–
treated group compared with vehicle-treated group at

day 4 (47%, P ¼ 0.0013). In addition, there was an increase
in tumor size in the vehicle-treated group (increase of 418
mm3, P ¼ 0.0066) and a slight reduction in tumor size in the
MEDI-573–treated group (68mm3, not significant) from days 0
to 4 (Fig. 5C). The MEDI-573–treated group showed a sig-
nificant 52% TGI (P ¼ 0.00376) compared with the vehicle-
treated group at day 4.

18F-FDG-PET imaging showed a reduction of 18F-FDG
uptake as early as 24 hours, and up to 72 hours, after the
first dose of MEDI-573 in P12 tumors, consistent with the
in vivo TGI activity of MEDI-573 in this model that was
significant at 72 hours. Coupled with the greater than 85%
TGI by 2 weeks achieved at doses of 30 mg/kg or greater in
the P12 model, the reduction of 18F-FDG uptake in the
MEDI-573 groups, but not the vehicle groups, is consistent
with the predicted in vivo activity of MEDI-573 in the P12
tumors.

Discussion

IGF signaling pathways are important in the development
and progression of many solid tumors (1, 3, 4, 22, 24). As such,
multiple IGF-1R inhibitors are being evaluated in various
phases of clinical development in different tumor types (25,
26). There are some promising results in early clinical trials,
particularly in patients with Ewing's sarcoma where complete
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Figure 3. MEDI-573 inhibits IGF-II–stimulated proliferation of IGF-1R–overexpressing and IR-A–overexpressing cells in both heterogeneous and
homogeneous populations with consistent activity. NIH/IGF-1R and R-/IRA C9 cells were seeded as 100%NIH/IGF-1R (A), a mixture of 75%NIH/IGF-1R and
25% R-IRA C9 (B), 50% each of NIH/IGF-1R and R-/IRA C9 (C), or a pure population of R-/IRA C9 (D). Cells were stimulated with 40 ng/mL of IGF-II and
increasing concentrations (0–5 mg/mL) of MEDI-573 (red), or an IGF-1R–specific antibody (blue), or an IgG2 isotype control antibody (green). Numbers of viable
cells were determined 3 days later using Cell Titer Glo and expressed as the percentage of positive control (stimulated with IGF-II only, no antibody) on the Y
axis.
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responses have been reported (38). The majority of IGF-
targeting antibody therapies are IGF-1R–specific antibodies
that inhibit the IGF-1R signaling pathway and may partially
inhibit IR-A activity by disrupting the IR-A/IGF-1R hybrid
receptors, but do not inhibit IR-A homodimers (28, 29).
Because of the high degree of homology in the kinase domain,
small-molecule kinase inhibitors which target IGF-1R will also
inhibit IR-A and IR-B, which is crucial for glucose metabolism

(25, 39). In comparison, disruption of IGF signaling pathways
by neutralizing both IGF-I and IGF-II ligands (as does MEDI-
573) offers the potential to broadly suppress the IGF system
through the inhibition of both the IGF-1R and the IR-A
receptors without interfering with glucose metabolism
mediated by insulin/IR interaction.

To selectively target the IGF ligands, MEDI-573, a fully
human IgG2 monoclonal antibody that neutralizes both
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Figure 4.MEDI-573 inhibits in vivo growth of P12 and C32 xenograft tumors. A, C32 tumor volumes (mm3) in nude mice dosed with MEDI-573 at 3, 10, 30, and
60 mg/kg, twice per week for 2 weeks. B, P12 tumor volumes (mm3) in nude mice dosed with MEDI-573 at 3, 10, 30, and 60 mg/kg, twice per week for
2 weeks. C, MSD analysis of pIGF-1R levels in extracts of C32 tumor dosed with MEDI-573. D, MSD analysis of pIGF-1R levels in extracts of P12 tumor
dosed with MEDI-573. pIGF-1R levels are expressed as the percentage of the levels from untreated tumors.
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IGF-I and IGF-II, was developed. MEDI-573 inhibits the IGF-
induced activation of both the IGF-1R and the IR-A signaling
pathways. MEDI-573 binds to IGF-I and IGF-II without
cross-reactivity to human insulin and inhibits the IGF-
induced phosphorylation of IGF-1R, IR-A, IRS-1, Akt, and
Erk1/2 in IGF-1R–expressing or IR-A–expressing cell lines. In
turn, this antibody blocks IGF-stimulated proliferation of
cell lines expressing IGF-1R or IR-A. MEDI-573 inhibits the in
vivo growth of MEF tumors that are dependent on autocrine
IGF stimulation. Pharmacodynamic analysis of the pIGF-1R
levels in tumor extracts from these in vivo studies showed
dose-dependent inhibition of pIGF-1R by MEDI-573, and
therefore confirmed in vivo that MEDI-573 directly inhibits
the IGF signaling pathways. In comparison, human xeno-
graft tumors that are not strongly driven by autocrine
production of IGF showed only modest response to
MEDI-573 in mouse models, due to the low cross-reactivity
of MEDI-573 to mouse IGF-I. Mouse IGF-I has nearly equiva-
lent biological activity to human IGF-I with respect to the
activation of human IGF-1R (data not shown), which is not
inhibited by MEDI-573. Xenograft models expressing recep-
tors only (IGF-1R and/or IR-A) do not respond to MEDI-573
in mouse. Xenograft models expressing both IGF and the
receptors have minor responses to MEDI-573 (data not
shown). In contrast, in mouse models, IGF-1R–specific anti-
bodies block the activation of tumor IGF-1R from both
autocrine (human IGF) and paracrine (mouse IGF-I) IGF.
Subsequently, IGF-1R–specific antibodies show better TGI
activity compared with MEDI-573 in mouse. Therefore,
human xenografts in mouse models are not suitable for
testing the antitumor activity of MEDI-573.

The insulin receptor exists in 2 isoforms, IR-A and IR-B. IGF-
II has significant affinity for IR-A, in addition to its affinity to
IGF-1R. Recently, the role of IGF-II in regulating the IR-A
pathway and cancer progression has been investigated. Over-
expression of IGF-II and IR-A in breast cancer is well docu-
mented (5, 9, 40–46). We have also shown in a number of
human cancer cell lines that IR-A is the dominant isoform
expressed at mRNA level. MEDI-573 effectively inhibits IGF-II–
induced phosphorylation of IR-A, IRS-1, and proliferation of
IR-A–overexpressing cells as effectively as it inhibits the IGF-
1R–overexpressing cells and mixed cell populations with
various ratios of IR-A–expressing and IGF-1R–expressing cells.
In contrast, an IGF-1R–specific antibody lost activity quickly
when the heterogeneous cell population contained increasing
percentages (25%–50%) of IR-A–expressing cells. MEDI-573
should have greater antitumor activity than IGF-1R antibodies
in tumors that express both IGF-1R and IR-A, or IR-A alone
(Fig. 3).

Epitope mapping studies indicated that MEDI-573 binds to
the epitope that overlaps with F23 and F25, which are essential
for binding to IGF-1R (36) and IGFBPs (37). BIAcore analysis
confirmed that MEDI-573 does not bind to IGF-I/IGFBP3 or
IGF-II/IGFBP3 complexes (data not shown) indicating that
MEDI-573 preferentially binds to free IGF. Therefore, the
majority of circulating IGF-I and IGF-II, which are bound
to IGFBPs, should not act as a sink to deplete active MEDI-573
in vivo.

The feasibility of 18F-FDG-PET imaging was demonstrated
as a potential noninvasive pharmacodynamic readout for the
in vivo activity of MEDI-573. Significant reduction of 18F-FDG
uptake in P12 tumors treated with a single dose of MEDI-573
at 1 and 3 days posttreatment was seen compared with either
no changes or an increase of 18F-FDG uptake in vehicle-
treated groups at the same time points, respectively. At 3 days
posttreatment, the reduction of 18F-FDG uptake correlated
with more than 50% TGI in the MEDI-573–treated group
compared with the vehicle-treated group. Although the inhi-
bition of tumor growth was not yet apparent at the 1-day time
point, the reduction of 18F-FDG uptake at this early time point
correlated with the predicted TGI observed at later time
points in this model. Thus, 18F-FDG-PET imaging could
provide a sensitive readout of MEDI-573 in vivo activity in
clinical trials at early time points before responses could be
detected in tumor sizes.

IGF ligand neutralization is a novel yet rational approach as
targeted cancer therapy. There are published reports of IGF-
neutralizing antibodies showing in vivo antitumor activity.
Goya and colleagues (47) described a rat IgG2b antibody with
neutralizing activity against both IGF-I and IGF-II that inhib-
ited prostate cancer cell growth in human bone implanted in
mice. Dransfield and colleagues (48) described an IGF-II-
neutralizing human monoclonal antibody (DX-2647) that
inhibited the growth of human hepatocarcinoma cells in vitro
and slowed tumor growth in vivo. Interestingly, the in vivo
activity of DX-2647 is moderate, slowing tumor growth instead
of producing tumor stasis or regression, which is consistent
with the hypothesis that the paracrine activation of the human
IGF-1R by mouse IGF-I interferes with the in vivo activity of
these IGF ligand antibodies in the mouse model.

Compared with reports of IGF-neutralizing antibodies,
MEDI-573 is the only human monoclonal antibody that neu-
tralizes both IGF-I and IGF-II without cross-reactivity to
insulin, thus blocking the IGF-1R and IR-A signaling pathways
and sparing the insulin/IR pathway. MEDI-573 should have
greater activity as compared with an IGF-1R–specific antibody
in tumors that express a mixture of IGF-1R and IR-A, or IR-A
only. MEDI-573 is currently in phase 1 clinical trials for cancer
patients with solid tumors.
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