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ResumoResumo

AZIMBAGIRAD, M. Segmentação por entropia de Tsallis através de MRF

para o Parcelamento de Ressonância Magnética Cerebral. 2019. 49 f.

Tese (Doutorado - Programa de Pós-Graduação em Física Aplicada à Medicina e

Biologia) - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade

de São Paulo, Ribeirão Preto - SP, 2019.

A quantificação das alterações do volume do tecido intracraniano na ressonância

magnética (RM) auxilia os especialistas a analisar os efeitos das alterações naturais

ou patológicas. Como essas alterações podem ser sutis, a precisão do método

de compartimentação influencia os estudos para analisar e quantificar os tecidos

cerebrais. Nesta tese, revisamos os métodos recentes de segmentação do cérebro

usados em ferramentas de imagens médicas. Em seguida, investigando a origem

dos erros que podem ocorrer nos algoritmos de segmentação revisados, um pipeline

híbrido é proposto para mitigar a influência desses erros. No primeiro capítulo,

alguns pré-requisitos sobre estatística e modelos estatísticos e, em seguida, dois

estimadores mais utilizados para os parâmetros do modelo são ilustrados. O segundo

capítulo explica o uso de um modelo estatístico para segmentar imagens cerebrais.

Além disso, as desvantagens desses métodos são discutidas. No terceiro capítulo,

propomos um método de segmentação baseado na q-entropia modificada através de

um campo aleatório modificado de Markov (Mqe-MMRF) para melhorar a precisão

da parcela dos tecidos cerebrais. No último capítulo, os métodos propostos foram

submetidos a duas estratégias para avaliar Mqe-MMRF, ou seja, uma simulação

de diferentes níveis de ruído em dados de ressonância magnética e um conjunto

de vinte dados de ressonância magnética disponíveis a partir de MRBrainS13 como

desafio de segmentação de tecido cerebral. Nós acessamos nove métricas de qualidade

xi
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de segmentação em comparação com delineamentos de tecidos de referência para

avaliar o Mqe-MMRF. As simulações de ruído de ressonância magnética mostraram

apenas 4,8 % de decréscimo nas métricas de pontuação de segmentação após a

adição de artefatos de ruído de 40 % e 9 % de não uniformidade e de ruído

Gaussiano, respectivamente. Para cinco sujeitos de treinamento, encontramos

melhoras significantes médias nas métricas de similaridade, para cérebro inteiro

0,78, Matéria Branca 2,91, Matéria Cinzenta 3,85 e Líquido Cefalorraquidiano 3,83

% (p-valores <0,02) nas métricas quando o Mqe-MMRF é comparado a métodos

estado da arte. O Mqe-MMRF foi realizado em 15 outros sujeitos reais no desafio

on-line MRBrainS13, e os resultados mantiveram uma classificação mais alta do

que as ferramentas de referência, ou seja, FreeSurfer, SPM e FSL. Como o método

proposto melhorou a precisão da segmentação do cérebro e classificou o melhor

desempenho para GM, ele pode ser usado em estudos morfológicos quantitativos do

cérebro.

Palavras-chave: 1.Segmentação de Imagem 2.Expectativa-Maximização 3.Algoritmo

K-mean 4.q-entropia 5.Markov Random Field 6.Ressonância magnética
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AZIMBAGIRAD, M. Tsallis-Entropy Segmentation through MRF for Brain

Magnetic Resonance Parcellation. 2019. 49 f. Thesis (Ph.D. - Postgraduate

Program in Physics Applied to Medicin and Biology) - Faculty of Philosophy,

Sciences and Literature, University of São Paulo, Ribeirão Preto - SP, 2019.

Quantifying the intracranial tissue volume changes in magnetic resonance imaging

(MRI) assists specialists to analyze the effects of natural or pathological changes.

Since these changes can be subtle, the accuracy of the compartmentalization

method influences studies to analyze and quantify brain tissues. In this thesis,

we review the recent brain segmentation methods used in medical imaging tools.

Then by investigating the source of mistakes which may happen in the reviewed

segmentation algorithms, a hybrid pipeline is proposed in order to mitigate the

influence of such mistakes. In the first chapter, some prerequisites about statistics

and statistical models and then two most used estimators for the model parameters

are illustrated. Second chapter, explained using statistical model to segment brain

images. In addition, drawbacks of these methods are discussed. In the third

chapter, we propose a segmentation method based on modified q-entropy through

a modified Markov random field (Mqe-MMRF) to improve the accuracy of brain

tissues parcellation. In the last chapter, we underwent two strategies to evaluate

Mqe-MMRF, i.e., a simulation of different levels of noise on MRI data and a

set of twenty MRI data available from MRBrainS13 as brain tissue segmentation

challenge. We accessed nine segmentation quality metrics compared to reference

tissues delineations to evaluate Mqe-MMRF. MRI noise simulations showed only

4.8 % decreasing for segmentation scores metrics after adding 40 % and 9 %

non-uniformity and Gaussian noise artifacts, respectively. For five training subjects,
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we, found significant mean improvements in the similarity metrics, for whole brain

0.78, White Matter 2.91, Gray Matter 3.85 and Cerebrospinal Fluid 3.83 % (p-values

< 0.02) in the metrics when Mqe-MMRF is compared to the other state of the art

methods. The Mqe-MMRF was performed on 15 other real subjects in MRBrainS13

online challenge, and the results held a higher rank than the reference tools, i.e.,

FreeSurfer, SPM, and FSL. Since the proposed method improved the precision of

brain segmentation and ranked the best performance for GM, it can be used in

morphological brain quantitative studies.

Keywords: 1.Image Segmentation 2.Expectation-Maximization 3.K-mean Algorithm

4.q-entropy 5.Markov Random Field 6.MRI
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Chapter 1
Statistical Prerequisites
Statistical Prerequisites

In this chapter we review some prerequisites about statistics and statistical

models, specifically, Gaussian models. Then two most used estimators for the

parameters of the exemplified models is presented. We analyze the performance of

estimators on the models and compare them. In the end, three mechanical statistics

models are reviewed which used to describe segmentation systems in next chapters.

1.1 Introduction

I
n almost all science, researchers try to reveal undiscovered relations or at

least conditional relations1 that govern the behavior of the object under

investigation. Since these relations are not directly accessible, researchers

try to formulate them in terms of hypotheses or models. In this way, mathematical

modeling helps us to formulate interested phenomena.

A mathematical model is usually defined as a combination of relations and

variables. The relations can be described by operators, such as algebraic operators,

functions, differential operators and so on. The variables are abstractions of the

components of a system, that can be quantified. The way that the variables and the

relations are combined is according to their structure like; Linear, Nonlinear, Static,

Dynamic, Statistic (Stochastic), etc. Essence and symptoms of a system lead us to

use one of these models or a combination of them in order to predict the behavior

of the system.

1Mostly finding a global rule works for all conditions may be hard or even impossible

1



2 1 - Statistical Prerequisites

Among these classes, statistical models cover a wide variety of those

phenomena which have an inherently stochastic nature. For instance in physics,

biology, chemistry, neurology and even social science, several phenomena can be

modeled in this class. Although we are not restricted to use one class of the models

in this thesis, the statistical model are explained as follows.

A statistical model is a class of mathematical model, which depicts a set of

variables and relations concerning the generation of some sample data, and similar

data from a larger population. There are three purposes for a statistical model,

according to Konishi and Kitagawa [1]:

• Predictions

• Extraction of information

• Description of stochastic structures

Generally, these aims are interested in all studies that need to be modeled.

We leave the elementary concepts and definitions about statistics and

probability provided in almost all fundamental textbooks, e.g., [2–4] and focus on

statistical models.

1.2 Statistical Model

In mathematical terms, a statistical model is usually thought of as a pair

(S, P ), where S is the set of possible observations, i.e., the sample space, and P

is a set of probability distributions (relations) on S [5]. Probability distributions

function (PDF or shortly f) as a part of the statistical model includes a function

and one (or more) parameter(s) known by θ. Usually pair (f , θ) are used as PDF

of a S or population to describe the relations between its members. Parameters

are descriptive measures of an entire population. However, their values are usually

unknown because it is infeasible to measure an entire population. Therefore, due to

describe a model, usually, a sample is acquired from the population. Then a model

is guessed for the sample. In order to estimate the parameters of the model, usually,

two methods are used:
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• Maximum Likelihood Estimation (MLE )

• Method of Moments Estimation (MME )

MME method is discussed in [6] which is beyond of this study. MLE will shortly be

explained in next section along with two examples describing the implementation of

MLE.

1.2.1 Parameter Estimation by MLE

MLE as an estimator method for the parameters of a statistical model has

widely been used. For an instance (in Wikipedia), one may be interested to know

the mean heights of adult penguins in a region. But this is not possible to measure

the height of each penguin in a population due to cost, time and other limitations.

Assume that the heights has an PDF , e.g., Gaussian (Normal) model (N (µ, σ)) with

unknown parameters mean (µ) and variance (σ). The µ and σ can be estimated with

MLE while only knowing the heights of some sample of the overall population. MLE

would accomplish this by taking the mean and variance as parameters and finding

particular parametric values that make the observed results the most probable given

the model.

Suppose we have a random variables X1, X2, ..., Xn by a known (or guessed)

PDF (f) depends on some unknown parameter θ, written f(X = Xi; θ). Primary

goal here is the estimation of the θ, such that f(X = xi; θ) is a good estimate of the

model. This goodness can be defined as a specific error calculated by any method for

the guessed PDF with estimated parameters. If the random variables are assumed

to be normally distributed with mean µ and variance σ2 and x1, x2, ..., xn are the

observed values of the random sample, then our goal is to find a good estimate of µ

and σ2. It seems reasonable that a good estimate of θ = (µ, σ) would be the value

such that maximize the joint density function2 for all observations

p(X1 = x1, X2 = x2, ..., Xn = xn; θ) = f(X = x1, x2, ..., xn; θ). (1.1)

Now we look at this function from a different perspective by considering the observed

values x1, x2, ..., xn to be fixed parameters, whereas θ be the function’s variable and

2is a PDF which gives the probability that each of Xi falls in any particular range or discrete
set of values specified for that variable
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allowed to vary freely

L(θ) = f(X = x1, x2, ..., xn; θ) = f(x1; θ)× f(x2; θ)...f(xn; θ) (1.2)

⇒ L(θ) =
n∏
i=1

f(xi; θ) (1.3)

this function is called the likelihood. Now, in light of the basic idea of MLE, one

reasonable way to proceed is to treat the likelihood function L(θ) as a function

of θ, and find the value of θ̃ which maximizes it. In practice, it is often more

convenient when working with the natural logarithm of the likelihood function,

called the log-likelihood defined as follow:

lnL(θ) = ln
n∏
i=1

f(xi; θ) =
n∑
i=1

ln f(xi; θ) (1.4)

Several properties of this function illustrated in [7]. There are also studies have been

working on different types of MLE and its application (refer to the last few [8–13]).

In the following, we provide two examples to explain how MLE works and may not

be applicable easily for parameter estimation of all models.

1.2.2 MLE for Gaussian distribution

Assume that the sample x1, x2, ..., xn are chosen from a population with

Gaussian distribution and unknown parameters mean µ and variance σ2, i.e.,

N (xi;µ, σ). Let N (xi;µ, σ) rewrite as a bivariate function of θ1 = µ and θ2 = σ2,

then

f(xi; θ1, θ2) =
1

√
θ2

√
2π
e

[
−(xi−θ1)

2

2θ2
] (1.5)

for −∞ < θ1 <∞ and 0 < θ2 <∞. Therefore, likelihood function will be:

L(θ) = L(θ1, θ2) =
n∏
i=1

f(xi; θ1, θ2) = θ
−n
2

2 (2π)
−n
2 e

[ −1
2θ2

Σni=1(xi−θ1)2] (1.6)

As a bivariate function in calculus, to find the maximizer point of L(θ1, θ2), we need

to take partial derivative and setting it to zero to find (θ̃1, θ̃2). Since this function

has nonlinear form and a lots of terms, logarithm form of the function will be much

easier to take partial derivative. Therefore, the log-likelihood function is:

lnL(θ1, θ2) = −n
2

ln θ2 −
n

2
ln(2π)−

∑n
i=1(xi − θ1)2

2θ2

(1.7)
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Now, upon taking the partial derivative of the log-likelihood with respect to θ1, and

setting to 0, we have:

d lnL(θ1, θ2))

dθ1

= −−2×
∑n

i=0(xi − θ1)

2θ2

= 0 (1.8)

Now, multiplying through by θ2, and distributing the summation, we get:

(
n∑
i=1

xi)− nθ1 = 0 (1.9)

by solving for θ1 and putting on its tilde, we have shown that the maximum likelihood

estimate of θ1 is:

θ̃1 = µ̃ =

∑n
i=1 xi
n

= x̄ (1.10)

Now partial derivitive respect to θ2 and set to 0 is:

d lnL(θ1, θ2))

dθ2

= − n

2θ2

+
2×

∑n
i=1(xi − θ1)2

4θ2
2

= 0 (1.11)

multiplying through by 2θ2
2 we have:

− nθ2 +
n∑
i=1

(xi − θ1)2 = 0 (1.12)

therefore, the maximum likelihood estimate of θ2 is:

θ̃2 = σ̃2 =

∑n
i=1(xi − x̄)2

n
(1.13)

Clearly the second partial derivative of the log-likelihood is negative. Therefore,

(θ̃1, θ̃2) maximizes L(θ1, θ2). In summary, we showed that MLE estimated the two

parameters of Gaussian model as follow:

µ̃ =

∑n
i=1 xi
n

= x̄ , σ̃2 =

∑n
i=1(xi − x̄)2

n
. (1.14)

what we expect as an inductive reasoning3 for the population.

3Inductive reasoning is a method of reasoning in which the premises are viewed as supplying
some evidence for the truth of the conclusion
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1.2.3 MLE for Gaussian Mixture Model

Let we have a random variables X1, X2, ..., Xn with a PDFdepends on some

unknown parameter θ, f(X = Xi; θ), i.e., a Gaussian Mixture Model (GMM)

with three components4 C = {C1, C2, C3}. Therefore, each component has own

normal distribution N (xi;µk, σ
2
k) for k = 1, 2, 3. The mixture component weights

(proportions) are defined as:

Prok = p(X ∈ Ck), s.t
3∑

k=1

Prok = 1 (1.15)

then

p(X ∈ C) =
3∏
i=1

Prodkk (1.16)

which dj = 1 if C = Cj and for k 6= j, dk = 0. Then the PDF of GMM by three

components is:

f(X = xi; θ = {θ1, θ2}) =
3∑

k=1

Prok ×N (xi;µk, σk) (1.17)

where θ1 = {µ1, µ2, µ3} and θ2 = {σ1, σ2, σ3}. We can define a conditional

probability

p(X = xi | xi ∈ Ck) = N (xi;µk, σk) (1.18)

then,

p(X = xi | xi ∈ C) =
3∏

k=1

N (xi;µk, σk)
dk . (1.19)

Now the likelihood for the GMM is

L(θ) = P (X1 = x1, X2 = x2, ..., Xn = xn; θ) =
n∏
i=1

3∑
k=1

Prok ×N (xi;µk, σk) (1.20)

and log-likelihood for GMM is

lnL(θ) = ln
n∏
i=1

3∑
k=1

Prok ×N (xi;µk, σk) =
n∑
i=1

ln[
3∑

k=1

Prok ×N (xi;µk, σk)]. (1.21)

Now taking the partial derivative of the log-likelihood with respect to µ1

d lnL(θ)

dµ1

=
n∑
i=1

Pro1 × xi−µ1
σ2
1
×N (xi;µ1, σ1)∑3

k=1 Prok ×N (xi;µk, σk)
(1.22)

4It can be any number, but we only use three component in this thesis
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now we need to set Eq.(1.22) to zero to find µ̃1 maximizing L(θ). It will not be easy

to solve recent equation. Beside numerical methods, Expectation-Maximization

(EM) algorithm is an iterative method to find the maximizer of likelihood, i.e., the

parameters of GMM. Using EM for finding the parameters of GMM are illustrated

as follows.

1.3 EM Algorithm

The EM algorithm is a very general iterative algorithm for parameter

estimation by maximum likelihood when some of the random variables involved are

not observed or calculating
d lnL(θ)

dθ
= 0 has not analytical answer. This idea has

been used for many years before [14] in a problem in missing information principle

provided the theoretical foundation of the underlying idea. Later, the term EM was

introduced in [15] where proof of general results about the behavior of the algorithm

was first given as well as a large number of applications. EM algorithm, uses an

initial guess, i.e., θ(0) for θ, then on the first iteration compute

Q(θ; θ(0)) = Eθ(0) [lnL(θ)] (1.23)

where Q(θ; θ(0)) is now maximized with respect to θ, that is, θ(1) is found such that

Q(θ(1); θ(0)) ≥ Q(θ; θ(0)) (1.24)

for all possible θ. Thus the EM algorithm consists of an E-step (Expectation step)

followed by an M-step (Maximization step) defined as follows:

I. E-Step: Compute Q(θ; θ(t)) where

Q(θ; θ(t)) = Eθ(t) [lnL(θ)] (1.25)

II. M-Step: Find θ(t+1) such that

Q(θ(t+1); θ(t)) ≥ Q(θ; θ(t)) (1.26)

for all possible θ. The E-step and the M-step are repeated alternately until the

difference L(θ(t+1)) − L(θ(t)) is less than epsilon, where epsilon is a prescribed
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small quantity. The computation of these two steps simplify a great deal with

finding the maximizer of the log-likelihood in analytical way for θ. There are

several examples discussed to illustrate these steps in different cases [16]. As a

general algorithm available for complex maximum likelihood computations, the EM

algorithm has several appealing properties relative to other iterative algorithms such

as Newton-Raphson. First, it is typically easily implemented because the E-step

of each iteration only involves taking expectations over complete-data conditional

distributions and the M-step only requires complete-data maximum likelihood

estimation. Secondly, it is numerically stable and converges, to a local maximum or

saddle point of MLE . A disadvantage of EM is the rate of convergence which can be

extremely slow if many data are missing. Dempster, Laird, and Rubin [15] showed

that convergence is linear with the rate proportional to the fraction of information.

In the next section, EM algorithm is used to estimate the parameters for GMM

which was not easy to estimate by MLE.

1.3.1 EM algorithm for GMM

Let X1, X2, ..., Xn come from three sets C = {C1, C2, C3} and each set has

own normal distribution N (xi;µk, σk) consequently we have a GMM distribution as

defined in Section 1.2.3. Consider the following conditional probability5 and using

Eqs. (1.15) and (1.17) and Bayes rule 6 we have

p(xi ∈ Cj | X = xi) =
p(xi ∈ Cj)× p(X = xi | xi ∈ Cj)

p(X = xi)
(1.27)

=
Pro1 ×N (xi;µ1, σ1)∑3
k=1 Prok ×N (xi;µk, σk)

= wji, for j = 1, 2, 3 and i = 1, 2, ..., n (1.28)

Assume that the wji are given which are a part of
d lnL(θ)

dµj
= 0 (in Eq. (1.22)). By

substitution of these wji in Eq. (1.22) we have

d lnL(θ)

dµj
=

n∑
i=1

wji ×
xi − µj
σ2
j

= 0 (1.29)

5or posterior probability which is the probability of the parameters θ given the observed data
X; p(θ | X)

6P (B | A) = P (A | B)× P (B)

P (A)
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⇒ 1

σ2
j

(
n∑
i=0

w1ixi −
n∑
i=0

wjiµj) = 0⇒ µj =

∑n
i=0wjixi∑n
i=0wji

(1.30)

then we will have

µ̃j =

∑n
i=0 wjixi∑n
i=0wji

, j = 1, 2, 3 (1.31)

By taking derivative on another parameter, i.e., σ we have

σ̃j =

∑n
i=0 wji(xi − µj)2∑n
i=0wji −

∑n
i=0 w

2
ji∑n

i=0 wji

, j = 1, 2, 3 (1.32)

and
˜Proj =

∑n
i=0wji
n

, j = 1, 2, 3 (1.33)

Therefore, we found θ̃ = (θ̃1, θ̃2) = (µ̃j, σ̃j) to maximize L(θ). This estimate can be

performed if we have that posterior probability introduced in Eq. (1.27). Indeed, we

do not have that weights, but by giving them we can estimate the parameters and

by having parameters we can calculate the weights. EM algorithm helps to solve

this problem by these two steps:

I. E-Step: Calculate weights (by having initial guess for the parameters θ̃)

II. M-Step: Calculate parameters which maximize L(θ).

We can perform and repeat these two steps until the estimations for parameters do

not significantly change in respect to previous performance. There are two questions

about implementation of EM algorithm to estimate parameters of GMM. First,

how expectation step lead us to calculate the weights? To answer this question,

assume that c = c1, c2, ..., cn are hidden data which show the classification of X =

x1, x2, ..., xn belong to one of {C1, C2, C3}. We said that (in Eq. (1.25)) E-step is

calculating Ec|X,θ[log(L(θ;X,C))]. Then by using Eqs. (1.16) and (1.19)

Ec|X,θ[log(L(θ;X,C))] = Ec|X,θ[log(p(X,C))] = Ec|X,θ[log(p(X | C)× p(X ∈ C))]

= Ec|X,θ[log(
n∏
i=1

3∏
k=1

N (xi;µk, σk)
dk × Prodkk )]

= Ec|X,θ[
n∑
i=1

3∑
k=1

log(N (xi;µk, σk)× Prok)dk ]
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= Ec|X,θ[
n∑
i=1

3∑
k=1

dklog(N (xi;µk, σk)× Prok)]

= Ec|X,θ[
n∑
i=1

3∑
k=1

dk(logN (xi;µk, σk) + logProk)] (1.34)

now Expectation operator moves7 inside the summations and Eq. (1.3.1) is equal

to

=
n∑
i=1

3∑
k=1

Eci|X,θ[dk](logN (xi;µk, σk) + logProk) (1.35)

which Ec|X,θ is the probability of xi ∈ Ck if X = xi. It means

Eci|X,θ[dk] = p(xi ∈ C1 | X = xi) =
Pro1 ×N (xi;µ1, σ1)∑3
k=1 Prok ×N (xi;µk, σk)

= w1i. (1.36)

Therefore, E-step leads to Eq. (1.36) which is the weights. Second step in EM

algorithm was finding the maximization point. Then, let

dEc|X,θ[log(L(θ;X,C))]

dµ1

= 0 (1.37)

equally, by taking the partial derivative of Eq. (1.35) and set it to 0 we have
n∑
i=1

w1i(
xi − µ1

σ2
1

) = 0 (1.38)

which is exactly Eq. (1.29). Second question is why finding the maximum

of Ec|X,θ[log(L(θ;X,C))] is equal to find the maximum of log(L(θ)). Shortly

Ec|X,θ[log(L(θ;X,C))] is a lower bound of log(L(θ)). Therefore, if we increase Ec|X,θ
means we increase log(L(θ)). In Jensen inequality it has been proved

E[log(X)] ≤ log(E[X]). (1.39)

but we have

L(θ) = p(X,C) =
3∑

k=1

p(X,Ci). (1.40)

By taking logarithm of Eq. (1.40) and multiply
p(X ∈ Ci)
p(X ∈ Ci)

to each terms

logL(θ) = log
3∑

k=1

p(X,Ci) = log(
3∑

k=1

p(X,Ci)×
p(X ∈ Ci)
p(X ∈ Ci)

)

7Linear property of Expectation operator
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= log(EC [
p(X,C)

p(X ∈ C)
]) ≥ EC [log(

p(X,C)

p(X ∈ C)
)], (using (1.39)) (1.41)

which is equal to

= EC [log p(X,C)]− EC [log p(X ∈ C)] (1.42)

The second term above does not depend on θ. Therefore, we only need to maximize

the first term on θ and done. Then M-Step is

θ̃ ← argmax
θ

EC [log p(X,C)]

To find θ̃ which maximize (1.41)

EC [log(
p(X,C)

p(X ∈ C)
)] = EC [log(

p(X)p(C | X)

p(X ∈ C)
)] = log p(X) + EC [log

p(X | C)

p(X ∈ C)
]

= log p(X)− EC [log
p(X ∈ C)

p(X | C)
] (1.43)

Eq. (1.43) will be maximized if

p(X ∈ C)← p(C | X)

which is E-step.

1.3.2 EM algorithm for GMM by q-log

In the MLE method for parameters estimation of a model, the likelihood

function is employed to be maximized. Maximizing the likelihood gives the optimum

parameters, but the maximum likelihood is not always easy obtained. Hence,

logarithm of likelihood can be used instead. Though we showed even log-likelihood

may not help here we use q-log-likelihood to see a possible difference between these

two function. Before using q-logarithm inside EM algorithm, let to review some

definitions about q-logarithm. The q-exponential is a deformation of the exponential

function using the real parameter q

eq(x) = [1 + (1− q)x]1/(1−q) if q 6= 1 and 1 + (1− q)x > 0, (1.44)

and the q-logarithm is the inverse of q-exponential and a deformation of the

logarithm using the real parameter q

lnq(x) =
x1−q − 1

1− q
if q 6= 1 and x ≥ 0, (1.45)
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Now instead of log-likelihood, we calculate q-log of likelihood for GMM. We know

likelihood for GMM is

L(θ) = P (X1 = x1, X2 = x2, ..., Xn = xn; θ) =
n∏
i=1

3∑
k=1

Prok ×N (xi;µk, σk) (1.46)

then

lnq L(θ) =
[
∏n

i=1

∑3
k=1 Prok ×N (xi;µk, σk)]

1−q − 1

1− q

=

∏n
i=1[

∑3
k=1 Prok ×N (xi;µk, σk)]

1−q − 1

1− q

=

∏n
i=1[Pro1 ×N (xi;µ1, σ1) + Pro2 ×N (xi;µ2, σ2) + Pro3 ×N (xi;µ3, σ3)]1−q − 1

1− q
(1.47)

for taking derivative of multiplication of functions we have

un1 × un2 × ...× unm
d
dx=⇒ [n× d

dx
u1 × un−1

1 ]× un2 × ...× unm

+ un1 × [n× d

dx
u2 × un−1

2 ]× un3 × ...× unm + ... (1.48)

therefore, taking derivative of lnq L(θ) over one of parameters for example, µ1 is

d lnq L(θ)

dµ1

=
(1− q)[Pro1.

x1−µ1
σ2
1
.N (x1;µ1, σ1)× (

∑3
k=1 Prok ×N (x1;µk, σk))

−q]×
1− q∏n

i=1,i 6=1[
∑3

k=1 Prok ×N (xi;µk, σk)]
1−q + (1− q)[Pro1.

x2−µ1
σ2
1
.N (x2;µ1, σ1)×

(
∑3

k=1 Prok ×N (x2;µk, σk))
−q]×

∏n
i=1,i 6=2[

∑3
k=1 Prok ×N (xi;µk, σk)]

1−q + ...

(1.49)

by simplify and separate terms we have

d lnq L(θ)

dµ1

=

[Pro1.
x1 − µ1

σ2
1

.N (x1;µ1, σ1)× (
3∑

k=1

Prok ×N (x1;µk, σk))
−q]×

n∏
i=1,i 6=1

[
3∑

k=1

Prok ×N (xi;µk, σk)]
1−q + [Pro1.

x2 − µ1

σ2
1

.N (x2;µ1, σ1)×
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(
3∑

k=1

Prok ×N (x2;µk, σk))
−q]×

n∏
i=1,i 6=2

[
3∑

k=1

Prok ×N (xi;µk, σk)]
1−q + ... (1.50)

now multiplying each term by

[
∑3

k=1 Prok ×N (xi;µk, σk)]
1−q

[
∑3

k=1 Prok ×N (xi;µk, σk)]1−q
(1.51)

which for the first term i = 1 for the second one i = 2 and so on. Then we have

d lnq L(θ)

dµ1

=

[
Pro1.

x1−µ1
σ2
1
.N (x1;µ1, σ1)∑3

k=1 Prok ×N (x1;µk, σk)
]×

n∏
i=1

[
3∑

k=1

Prok ×N (xi;µk, σk)]
1−q

+[
Pro1.

x2−µ1
σ2
1
.N (x2;µ1, σ1)∑3

k=1 Prok ×N (x2;µk, σk)
]×

n∏
i=1

[
3∑

k=1

Prok ×N (xi;µk, σk)]
1−q

+ ... (1.52)

but we know
Pro1 ×N (xi;µ1, σ1)∑3
k=1 Prok ×N (xi;µk, σk)

= w1i (1.53)

then by substitution and remove the same factor in all terms

d lnq L(θ)

dµ1

= 0

d lnq L(θ)

dµ1

= [
x1 − µ1

σ2
1

.w11] + [
x2 − µ1

σ2
1

.w12] + ...+ [
xn − µ1

σ2
1

.w1n] = 0

=
n∑
i=1

w1i ×
xi − µ1

σ2
1

= 0 (1.54)

but recent equation is exactly equal to Eq. (1.29). We proved the substitution of lnq

by ln, in MLE for GMM parameter estimation for any q result in the same answer.

It is an example to show that using q-log may not change the results. Also, it can

be proved without details that

d lnq L(θ)

dµ1

=
(1− q)Ĺ(θ)L(θ)−q

(1− q)
=

Ĺ(θ)

L(θ)q
= 0 ⇒ Ĺ(θ) = 0 (1.55)

indeed, q is not important to find the maximization of lnq L(θ).
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1.4 K-mean Algorithm

The K-means algorithm is another iterative method to simply estimate the

parameters, specifically, the means of a population. This algorithm has been

discovered by several researchers across different disciplines, introduced by Lloyd

[17], and then Forgey [18] and others [19, 20]. A detailed history of K-means along

with descriptions of several variations are given in [20], but here we review this

algorithm very shortly. Let we have a population including three components as

the same example used in MLE estimator for GMM. We use K-means algorithm to

estimate the means of the components. The algorithm is initialized by three (K)

giving points as the initial means representatives or centroids for the components.

Then the algorithm iterates between two steps till converges to the best estimations:

I. Data Assignment: By using the given centroids, each member of the

population is assigned to its closest centroid. Then this step clusters the

population to three groups.

II. Relocation of means: For each cluster (group), its mean is recalculated.

The algorithm converges when the assignments (and hence the centroids) no longer

change. The number of iterations required for convergence varies and may depend on

population, but as a first cut, this algorithm can be considered linear in the dataset

size. In respect to the other estimators like MLE, K-mean is faster. Nevertheless, the

precision of the estimated parameters may not be acceptable in those studies looking

for a high precision approximation. This issue is explained in the next chapter in a

specific usage.

1.5 Additive and Nonadditive entropy

A statistical model, estimating how much information is required, on average,

to identify random samples from a distribution is defined by Shannon entropy.

Equally, the Shannon entropy equation provides a way to estimate the average

minimum number of bits needed to encode a string of symbols, based on the

frequency of the symbols. Since we desire to model such systems (any system where
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has a PDF with GMM to estimate the probability of its states), it could be defined

as a statistical model. We review the Shannon entropy and its generalized version

aiming to estimate the parameters of a GMM as follows.

1.5.1 Additive entropy

The entropy of a system is often obtained from a probability distribution,

where p = {pi} is the probability of finding the system in each possible state i.

Therefore, 0 ≤ pi ≤ 1 and
n∑
i=1

pi = 1 where n is the total number of states. For

example, Shannon entropy described as

S = −
n∑
i=1

pi ln(pi) (1.56)

This formalism is restricted to the domain of validity of the Boltzmann-Gibbs-Shannon

(BGS) statistics [21]. Assume that a BGS system can be decomposed into two

independent statistical subsystems A and B. Then, the probability of the composite

system is PA+B = PA.PB. It has been verified that the Shannon entropy has the

additive property (or extensivity in some sense)

S(A+B) = S(A) + S(B) (1.57)

hence for three subsystems C1, C2 and C3 it is defined

S(C1 + C2 + C3) = S(C1) + S(C2) + S(C3) (1.58)

In order to calculate the Shannon entropy of each subsystem, it is needed to

divide those probabilities to three parts. For example, C1 = {p1, p2, ...pt}, C2 =

{pt+1, pt+2, ...pk} and C3 = {pk+1, pk+2, ...pn} then

S(C1) = −
t∑
i=1

pi
pC1

ln(
pi
pC1

)

S(C2) = −
k∑

i=t+1

pi
pC2

ln(
pi
pC2

) (1.59)

S(C3) = −
n∑

i=k+1

pi
pC3

ln(
pi
pC3

)
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where pCi is sum of all probabilities in Ci. Finding the optimum t and k

which maximize the Shannon entropy is desired to estimate the best statistical

model describing the system. This entropy concept is used to describe an image

segmentation process [21] in section (2.2.3).

1.5.2 Nonadditive entropy

For a certain class of physical systems, which entail long-range interactions,

long time memory and fractal-type structures, some kind of extension appears to

become necessary [22]. Inspired by multifractals concepts, Tsallis has proposed a

generalization of the BGS statistics [23]. Tsallis statistics is currently considered

useful in describing the thermostatical properties of nonadditive systems, and it is

based on a generalized entropic form,

Sq =
1−

∑n
i=1 p

q
i

q − 1
(1.60)

where n is the total number of possibilities of the system and the real number q is

an entropic index that characterizes the degree of nonextensivity. This expression

meets the BGS entropy in the limit q → 1 [23]. Tsallis entropy is nonextensive

in such a way that for a statistical independent system (including two subsystems

A and B), the entropy of the system is defined by the following pseudo additivity

entropic rule

Sq(A+B) = Sq(A) + Sq(B) + (1− q)× Sq(A).Sq(B) (1.61)

then

Sq(A+B) =
1−

∑t
i=1 p

q
i

q − 1
+

1−
∑n

i=t+1 p
q
i

q − 1
+ (1− q)× 1−

∑t
i=1 p

q
i

q − 1
×

1−
∑n

i=t+1 p
q
i

q − 1
(1.62)

Equally, Tsallis entropy can be defined for a system composed of three subsystem

using Eq. (1.61). Here also, finding the optimum t and k which maximize the Tsallis

entropy is desired which can be extended to image processing areas, specifically for

the image segmentation. This implementation is illustrated in section (2.2.4).
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1.6 Markov Random Field

The last statistical model described in this thesis is Markov Random Field

(MRF). This model is a stochastic process that specifies the local characteristics

of a system [24]. A random field can be considered as a MRF if its probability

distribution at any site depends only upon its neighborhood [25]. The Cliff-Hammersley

theorem [26], says any MRF can be described by a probability distribution of the

Gibbs form

P (f) =
1

Z
e−U(f)/T (1.63)

where Z is a normalization constant, T is a quantity analogous to temperature

in statistical mechanics and U(f) =
∑
i

Ui(f) is an energy function that can be

computed as the sum of local contribution of each neighborhood i. In all statistical

approaches, when we look for a PDF to model the data, Maximum A Posteriori

(MAP) is desired. Therefore, finding the best PDF will maximize U(f) as well.

Hence U(f) can be rewritten as summation of two separated functions

U(f) = Ut(f) + α.Ul(f) (1.64)

where Ut(f) is the total and Ul(f) is local energy of a system. Parameter α is used

here to control the effect of local characteristics. There are many different ways to

define total energy function Ut(f) and local energy function Ul(f). The total energy

function can be defined by Gaussian, GMM, entropy, q-entropy or any other models.

Local energy can be defined based on the neighborhood specifications depends on

the system. Using an MRF to describe an image segmentation method is illustrated

in section (2.3).

1.7 Conclusion

In the first chapter, we described two estimators, i.e., EM and K-mean for

the parameters of a model. besides, three statistical models, i.e., entropy, q-entropy,

and MRF were explained for a system. In the next chapter, these estimators and

models will be used to segment a brain image. Cons and Pros of these model and

estimators will be discussed as well.
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Chapter 2
Brain Segmentation MethodsBrain Segmentation Methods

In this chapter, a pipeline for brain segmentation is illustrated. Several

preprocessing, labeling and post processing are explained using the models introduced

in the first chapter. By a deep analysis of these techniques, their advantages and

drawbacks are discussed.

2.1 Introduction

2.1.1 Image Segmentation

I
mage segmentation is the process of partitioning an image into multiple

regions such that each region includes a set of pixels (in 3D image namely

voxels). The goal of segmentation is to simplify and/or change the

representation of an image into something more meaningful and easier to analyze

[27]. Image segmentation is typically used to locate objects and boundaries (lines,

curves, etc.) in images [28]. More precisely, image segmentation is the process of

assigning label to pixels such that the pixels with the same label represent certain

characteristics such as color, intensity, or texture. When a segmentation applied to

a stack of images, typical in medical imaging, the resulting contours can be used to

create 3D reconstructions with the help of interpolation algorithms [28].

Several general-purpose algorithms and techniques have been developed for

image segmentation [29] like:

• Thresholding
• Clustering methods
• Compression-based methods

19
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• Histogram-based methods
• Edge detection
• Region-growing methods
• Partial differential equation-based methods
• Parametric methods
• Level set methods
• Fast marching methods
• Graph partitioning methods
• Watershed transform
• Model-based segmentation
• Multi-scale segmentation
• One-dimensional hierarchical signal segmentation

and many new methods which are monthly even daily have been provided by

researchers in a specific purpose. In this thesis, we focused on medical image

segmentation and the more specific area, i.e., Magnetic Resonance Image (MRI)

brain segmentation. Therefore, an illustration of all segmentation methods, which

may only be for a defined purpose, is beyond of this scope.

2.1.2 Brain Image Segmentation

MRI occupies a prominent role in medical sciences due to the capabilities of

obtained images in diagnostic and treatment follow-up procedures. Measurement of

brain tissue volumes, like White Matter (WM), Gray Matter (GM), Cerebrospinal

Fluid (CSF) and lesions can help physicians to analyze the progress of diseases

and treatments. For instance, brain (cerebral) atrophy is a common feature of

many of the diseases that affect the brain [30]. In order to measure these volumes,

a segmentation process is needed. Segmentation methods for brain are divided

into three main groups; manual, semi-automatic and automatic. Although manual

segmentation is the most trusted one, it is hugely time-consuming, especially,

if segmentation of the whole brain volume is needed. Furthermore, inter- and

intra-operator variability negatively impacts the reliability of such studies [31].

Therefore, automatic and semi-automatic methods are important and capable of

assisting many clinical procedures involving image analysis. Since around 1989

[32](see also Figure 2.1), many automatic and semi-automatic brain segmentation

methods have been provided by researchers. Simultaneously with the increasing

number of such methods, precision, computation time or both have also been
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Figure 2.1: By searching keywords "MRI brain" "Segmentation"
"method" in google scholar year by year, it can be seen that the
number of papers significantly increased during the years, similar
to many subjects in researches. With the increase in numbers of
studies, it is also expected the increase in quality and precision of
developed methods.

improved. Many of these algorithms are implemented inside packages, software

and applications in order to be used in clinical institutions and research centers

[33–37].

Commonly, used automatic segmenters for brain MR images identify GM,

WM, and CSF with acceptable performance [38]. Nevertheless, neuroscientists are

in great need of reliable segmentations of substructures of major tissue compartments

for analyzing group differences in anatomy. Unfortunately, identifying these

structures poses a serious challenge as their boundaries do not always coincide with

tissue boundaries and may, therefore, not be visible in MR images. Automatic

segmenters typically rely on prior information in order to delineate these invisible

boundaries [39]. However, the use of prior information is not without risk as it can

bias the automatic segmentation results [40]. Some successful attempts have been

made to solve this problem, although current techniques are tailored and tuned to

specific segmentation problems [41]. Moreover, the tuning results in assumptions

making the implementations often challenging to adjust to other segmentation

problems that deviate from the specific scenario. For example, the segmentation

of compartments with large spatial variations within a population, such as lesions
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in elderly patients, is difficult to segment with methods based on label propagation

via image registration of a template [42]. Furthermore, many of these methods are

restricted to MR images from specific acquisition protocols.

In order to decrease the effects of the issues above, the techniques sequence

or pipeline for an acceptable MRI brain segmentation often includes three steps, i.e.,

preprocessing, labeling and post processing. The preprocessing prepares MRI image

for labeling by decreasing the artifacts and selecting the region of interest. Then, a

labeling technique is applied to label the tissues voxels in the brain image. Finally,

the label map is adjusted by the post processing technique.

Three preprocessing techniques are applied for most brain MRI segmentation

pipelines, i.e., brain extraction [43], noise reduction [44] and inhomogeneous field

correction [45]. More details about preprocessing techniques can be found in medical

image processing books, but for the labeling and the post processing sufficient details

are provided in the next sections.

2.2 Image Labeling

WM, GM and CSF could be almost entirely distinguished by a different

signal intensity range, i.e., grey level of pixels in MRI submodalities, namely T1

and T2 weighted images. We assume that all voxels in a 3D MRI (e.g., T1) are

the members of a population. Then each voxel has a specific level of intensity in a

defined range (e.g., 0 to 255). We can use a GMM to model the range intensity and

the frequency of each level (figure 2.2, on the right the green curve is a GMM) of

an image. Therefore, the labeling can be used to separate the tissues and creates a

label map such that each tissue has a different label. Labeling for such image uses

two thresholds (t1,t2) to separate the three tissues. WM, GM, and CSF intensity

range from brightest to darkest grey levels respectively can be seen in Fig. 2.2, on

the left. When labeling a T1 image, the voxels having intensity values smaller than

t1 are labeled as CSF, between t1 and t2 labeled as GM and greater than t2 labeled

as WM as seen in Fig. 2.2, on the right.

The parameters of the GMM must be estimated good enough to model

the intensity-frequency graph (histogram) of an image. In the next section, EM
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Figure 2.2: Left: Red regions show a brain slice of a 3D MRI, three samples
of WM, GM and CSF. Right: Gray level intensity histogram of the image, 0 is
the darkest and 255 is the brightest level. The green curve is a GMM fitted to
the histogram. t1 and t2 are two thresholds.

estimator is used to estimate the parameters and then label the image.

2.2.1 EM Brain Segmentation

EM segmentation algorithms have become a popular tool to perform MR

image segmentation [46, 47]. They not only segment the image into a label map,

which is the unknown data in the EM formulation, but also incorporate estimation

of parameters related to either the image acquisition (e.g., intensity inhomogeneity

[47]), or the segmentation process (e.g., atlas registration parameters [48]). To

achieve this, the EM algorithm alternates between computing the unknown data (its

expectation) given the parameters and observed data and refining the estimation of

the parameters based on the observed data (see section 1.3). For instance, let a

given brain image includes three parts (components) WM, GM, and CSF. If we use

a Gaussian mixture model to fit a cure to histogram of this image, nine parameters

include three means (µ1, µ2, µ3), three standard deviation (σ2
1, σ

2
2, σ

3
3) and three

proportions (π1, π2, π3) are needed to be estimated by EM algorithm. Here, µ1 is the

mean of those intensity voxels which belongs to CSF, σ2
1 is the standard deviation

of them and π1 is the proportion of CSF in the histogram and so on. When EM

algorithm is converged, for each voxel, three weights are calculated (Eq. (1.28)).

The decision for labeling the voxels is based on the maximum weight. The pseudo

code for EM algorithm for brain segmentation can be seen in Appendix (A.1).
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In EM algorithm, it is assumed the input image includes only three main

tissues (brain) and background intensity zero produced by a brain extraction. Any

brain extraction method can do this task [43, 49, 50]. In addition, the conditions to

stop EM algorithm, i.e., a epsilon for two successive iterations and/or a limitation

for a number of iterations, can be chosen by users.

2.2.1.1 Pros and Cons

Although the convergence of EM algorithm was proven, it may take a lot

of iteration to achieve this when choosing not precise enough initial parameters.

In addition, parameters estimation is computationally expensive to calculate.

Furthermore, this method needs nine inputs which are strictly depend how to

choose initial parameters. It may converge to local optimum instead of global [15].

Nevertheless, EM approach still is one of the most trustable parameter estimators.

2.2.2 K-mean brain Segmentation

The K-mean clustering algorithm is described in detail by Hartigan [51]. This

algorithm aims to divide n points to k cluster so that the distance between each point

and the center of its cluster is minimized. The center of each cluster is defined as

the mean of that cluster what we explained in Section 1.4. Yet, assume an image

with three clusters as WM, GM, and CSF. First, the mean intensity of each cluster

are given. Then K-mean algorithm calculates the distance between each intensity

voxel and the means. The minimum distance shows each voxel belongs to which

cluster. The pseudocode of this algorithm is presented in Appendix (A.2).

In the K-mean algorithm, Euclidean distance, here, assumed the absolute

difference value of means and the intensity voxels. error and epsilon can be chosen

the same as described in EM algorithm.

2.2.2.1 Pros and Cons

K-mean algorithm needs less initial inputs than EM, only three values. In

addition, the expense of calculations is less than EM, because in EM algorithm we

need to calculate standard deviation and proportion as well. However, it should not

be neglected a considerable mistake in K-mean may happen in some situations. In
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Figure 2.3: Representation of two situations that may occur when analyzing the voxel
values of two different tissues.

figure 2.3 (a) and (b), two Gaussian curves (black and red dash) were fitted to set 1

and set 2 (each set contains the gray level intensities of each tissue). In (a), knowing

that σ1 = σ2, a decision based on K-mean or MAP will be the same for level T,

i.e., both methods label T as set 1. But for different standard deviations, i.e., (b),

K-mean labels T as belonging to set 1, while MAP labels T as belonging to set

2. This difference shows that, in some cases, K-Mean might not be enough precise

to label a voxel. Therefore, in such situations, K-mean make mistake in labeling a

voxel.

2.2.3 Entropy brain Segmentation

Using entropy to label an image was introduced by Kapur et.al [21] in 1985.

Many years later, entropy was used to segment a brain image into three main tissues

[52]. Assume that the brain image is a system and each level of its intensity as a

state has a value (probability) defined by

pi =
fi
N

(2.1)

where i is an intensity level, fi is its associated frequency counted in the image and N

is the total number of voxels. In an MRI by 8 bits levels, i can be from 1, ..., n = 28 =

256 or i ∈ [0, 255]. Again let this image includes three subsystems (tissues). Then,

Shannon entropy (see section 1.5.1) of this image using the probability definition

Eq. (2.1) can be defined

S(CSF +GM +WM) = S(CSF ) + S(GM) + S(WM) (2.2)
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or equivalently

SCSF+GM+WM = −
t∑
i=1

pi
pCSF

ln(
pi

pCSF
)−

k∑
i=t+1

pi
pGM

ln(
pi
pGM

)−
n∑

i=k+1

pi
pWM

ln(
pi

pWM

)

(2.3)

where pCSF is sum of all probabilities of levels in CSF and so on. In order to

calculate Eq. (2.3), it is needed to determine t and k, where 1 < t < k < n.

Finding the optimum t and k which maximize the Shannon entropy of the image

is a subproblem. These t and k indeed are two thresholds to divide levels to three

parts. That is all levels less than t are belong to CSF , the levels between t and k

are belong to GM and the rest (more than k) are belong toWM . Therefore, solving

the subproblem

arg max
t,k

S(CSF +GM +WM) (2.4)

gives us t̃ and k̃ in order to segment the brain image into CSF,GM and WM .

Subproblem (2.4) can be solved by any method. The first way to find t̃ and k̃ is to

check all levels one by one. Another way is assuming the image has two tissue. Then

we need just one threshold to segment the image. Next, we segment the segmented

part which includes two parts by another entropy brain segmenter. In addition

to these methods, the bisection search method can be used to find the optimum

thresholds. The pseudo code of entropy labeling method can be seen in Appendix

(A.3).

2.2.3.1 Pros and Cons

Although the first approach in order to solve Eq. (2.4) is computationally

expensive, convergence is absolutely accessible (the number of all combinations of t

and k is finite). In addition, by using recent CPUs with high speed of computing,

this method will not be very slow in the low range of levels. In respect to K-mean

and EM, entropy does not need any initial parameter.

2.2.4 q-entropy brain Segmentation

Albuquerque et al. [22], introduced entropy-based thresholding using Tsallis

entropy (also known as q-entropy). Later, Deniz et al. [52], proposed the q-entropy



2.3 - Post Processing 27

maximization as a criterion to segment the brain tissues in a patient with Multiple

Sclerosis (MS) disease. Since then, q-entropy was reportedly used for segmenting

lesion [17] and tumor [18] as well as the main brain tissues [16].

In section 1.5.2, it was explained how to calculate q-entropy of a system

including two subsystems. Using the same definitions in section 2.2.3, q-entropy for

the brain image [22] is

Sq(CSF +GM +WM) = Sq(CSF ) + Sq(GM) + (1− q)× [Sq(CSF ).Sq(GM)+

Sq(CSF ).Sq(WM) + Sq(GM).Sq(WM)]

+ (1− q)2 × Sq(CSF ).Sq(GM).Sq(WM) (2.5)

where Sq(C) is defined by Eq. (1.60). In addition to t and k and pis required in

entropy brain segmentation, a q entropic index is needed to calculate Eq. (2.5).

Then subproblem in q-entropy brain segmentation is

arg max
q,t,k

Sq(CSF +GM +WM) (2.6)

The pseudo code of q-entropy brain segmentation is presented in Appendix A.4.

2.2.4.1 Pros and Cons

In q-entropy labeling (like entropy algorithm), the optimum t̃ and k̃ can

be chosen by the ways mentioned earlier. Choosing the optimum entropic index

q and solving the maximization step may be time-consuming. Nevertheless,

dependence on only one parameter q is an important advantage of q-entropy labeling.

Furthermore, nonadditive statistics has proved to be appropriate to multifractal

geometry condition which is a property of brain image structures.

2.3 Post Processing

MRF segmentation [53] is capable of classifying an image on its own, but is

often used for modifying an initial segmentation as well [33, 34, 54–57]. In section

1.6, it was presented a MRF can be described by a probability distribution of the

Gibbs form

P (f) =
1

Z
e−U(f)/T (2.7)
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Figure 2.4: A common site for the voxel in 3D images. If we enumerate
the voxels from 1 to 25 in a 3x3x3 cubic, the number of center voxel will
be 14. Three different colors are chosen for three kinds of voxels based
on the distance from the center.

where

U(f) = Ut(f) + α.Ul(f). (2.8)

In 3D MRI the neighborhood of a voxel is defined by a cubic surrounded the

voxel. This cubic can be defined by different size or distance. For example, a common

neighborhood for the voxels is all voxels around the center by Euclidean distance

less than or equal
√

3 unit of voxel size. This neighborhood is presented in figure

2.4. Assume that a brain image is already labeled by any method. Therefore, for

(a) d = 1 (b) d =
√
2 (c) d =

√
3

Figure 2.5: Three different sets of voxels in neighbors of a voxel.
Distance is calculated by using Euclidean distance between centers of
voxels.

each labeled tissue, the parameters of a Gaussian PDF can be calculated. Let this

Gaussian PDF as Ut(f) and K-mean algorithm as Ul(f) which are two common



2.4 - Conclusion 29

selections for Eq. (2.7) [33, 34, 37, 56]). Since the best Ut(f) is desired, Iterated

Conditional Modes (ICM) is an optimization method [58] to minimize U(f), because

this maximize P (f). For the voxel vi in a brain image, ICM calculates three weights

(using Gaussian PDF s) and three distances (using K-mean on only neighbors of vi)

corresponding to the possible cases in which vi belongs to each tissue (CSF, GM or

WM). Then by using Eq. (2.8) and finding the minimum value, vi is relabeled. It

should be mentioned when using MRF that K-mean mistakes (explanted in section

2.2.2.1) may propagate in MRF. In addition, we assume that in a site of a voxel, the

labels (or at least majority of them) are labeled correctly else this wrong labeling

may relabel a true label. The algorithm of ICM is presented in Appendix (A.5).

2.4 Conclusion

In this chapter four labeling and one refining labeling were introduced. Also,

their advantages and disadvantages were discussed. The analysis of the methods

leads us to find the source of failures and to improve their performance. We provide

two modifications for q-entropy and MRF to decrease such that drawbacks and

combine them as a new brain image segmentation method in the next chapter.
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Chapter 3
Improving Segmentation MethodsImproving Segmentation Methods

In chapter 2. four well-accepted labeling methods were introduced. In this

chapter, we propose and then evaluate a brain segmentation method based on

modified q-entropy (Mqe) through a modified Markov random field (MMRF) to

improve the accuracy of brain tissues parcellation (Mqe-MMRF). This method has

been submitted to MRBrains13 [59] global challenge and the results held higher rank

than the reference methods, specially, in Gray matter.

3.1 Introduction

Q
uantifying the intracranial tissue volume changes in magnetic resonance

imaging (MRI) assists specialists to analyze the effects of natural or

pathological changes. Since these changes can be subtle, the accuracy of

the compartmentalization method influences studies to analyze and quantify brain

tissues. Although there are already several methods to segment brain structures,

these methods still present critical errors when dealing with sensitive applications.

Such methods must be as precise as possible in segmenting and quantifying brain

tissues to detect diseases and evaluate treatments accurately.

There have been several attempts to improve the performance of labeling and

MRF by enhancing their accuracy and speed for specific applications [51,56,60–64].

By considering the drawbacks of such methods we also provide two modifications of

q-entropy, and MRF for brain image segmentation as follows.

31
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3.2 Modified q-entropy Segmentation

The q-entropy segmentation algorithm (see section 2.2.4) uses the normalized

histogram (Eq.(2.1)) as the PDF which is highly sensitive to noise and inhomogeneity

because these factors skew the distributions towards one gray level value. To ensure

a good estimation of two thresholds, we used a GMM to fit to the histogram and

then use it as the PDF to calculate q-entropy. By using this GMM, it is possible to

decrease both inhomogeneity and noise effects simultaneously. This modification of

q-entropy segmentation is presented in Appendix A.6 as a new algorithm.

Estimation of the GMM parameters by EM is a time-consuming process.

Therefore, we provided a fast solution instead. For a chosen pair of thresholds

(t1, t2), we classify the intensities belonging to each of the three tissues (explained

in section 2.2). By using all levels in each class, the mean (µi) and STD (σi) values

can be calculated as well as the proportion of each tissue (πi) which is the sum of

the frequencies in each class divided by total frequency of the intensities. As in

algorithm (A.4), no parameter other than q is required here, but the calculation

time will be increased though it is negligible.

3.3 Modified MRF segmentation

To reduce the influence of wrong decisions that may happen in ICM (section

2.3) using K-mean, we fitted a local Gaussian PDF to the histogram intensity of

each tissue in the neighborhood of each voxel vi. Then, instead of calculating the

distances between vi and the means for each tissue (explained in K-mean algorithm

section 2.2.2), the MAP of vi, using the new local PDF s, as local weights are

calculated. Because ICM tries to minimize the energy function, but the maximum

weight is desired, we inverted the local weight values in order to be considered as the

minimum. Since this approach uses both mean and standard deviation of each tissue

distribution, it yields a more robust result than K-mean which uses only the mean

values. This modification is implemented in the algorithm (A.7) in rhe Appendix.

In practice, when calculating the local weights, the STD for one or more

local PDF s might be very small or equal to zero. This situation happens when

the number of the voxels belonging to that tissue in the neighborhood (Si) is small
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(in the borders), or the intensities of the voxels are very similar. In these cases, a

default value of 1 for STD helps to overcome this mathematical problem. Although

calculation will be twofold for each neighborhood, it is not considered yet.

3.4 Modified q-entropy through Modified MRF

Investigating the source of mistakes which may happen in well-accepted

segmentation algorithms, a hybrid pipeline with modified q-entropy and modified

MRF (Mqe-MMRF) was proposed in order to mitigate the influence of such mistakes.

Now a methodology is needed to evaluate Mqe-MMRF to present its robustness or

even its weakness.

3.5 Methodology

We evaluate Mqe-MMRF in two stage; first by artifact challenge and the

second in real MR brain image. To see the effects of noise and bias field on

Mqe-MMRF performance, we used a simulated MR brain T1-weighted image

(dimension=181 × 217 × 181 voxel, Voxel size=1 × 1 × 1 mm, TE=10 s, TR=18

s, FA=30◦) from BrainWeb dataset [65] with seven percentages of artifacts (noise

from 0 to 9 percent and bias effect from 0 to 40 percent). By performing Mqe-MMRF

on the simulations, the produced label maps were evaluated by nine similarity

metrics, i.e., Dice Coefficient (DICE), Jaccard Coefficient (JACCARD), Area under

ROC Curve (AUC), Cohen Kappa (KAPPA), Rand Index (RNDIND), Adjusted

Rand Index (ADJRIND), Interclass Correlation (ICCORR), Volumetric Similarity

Coefficient (VOLSMTY) and Mutual Information (MUTINF) [66].

In order to compare all considered methods in this study, i.e., EM, K-means,

q-entropy (qe) and modified q-entropy algorithms were considered as four labeling

techniques (P1 to P4) performed on five training images from MRBrainS13 [59].

Then, we used MRF to refine the borders of the label map produced by P1 to

P4, providing 4 new hybrid pipelines namely EM-MRF, K-MRF, qe-MRF, and

Mqe-MRF respectively P5 to P8. Moreover, MMRF was also applied on P1 to

P4 to provide other four pipelines namely EM-MMRF, K-MMRF, qe-MMRF and

Mqe-MMRF (P9 to P12). We defined Improvement, which is the subtraction of
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the similarity metric values for Mqe-MMRF from the mean of others to compare

the pipelines. For example, for WM we calculated DICE value for 11 label maps

produced by P1 to P11, and then used their mean value to be subtracted from the

DICE value calculated for Mqe-MMRF, i.e.,

ImprovmentWM = DICEWM
Mq−MMRF −DICEWM

meanofP1−P11 (3.1)

In the same way, Eq. (3.1) is applied to other subjects and tissues. By this definition

for Improvment, a positive value shows a higher accuracy for Mqe-MMRF than

the average of other eleven pipelines and a negative value vice versa. In order

to show this Improvement is significant, the paired sample t-test was performed

(p-value 0.02) for each pipeline (Pi), individually, against Mqe-MMRF (P12) by Null

hypothesis

H0 = meanPi −meanP12 ≥ 0 (3.2)

against alternate hypothesis

H1 = meanPi −meanP12 < 0, for i = 1, 2, ..., 11 (3.3)

In the classical and modified MRF, a weighted neighborhood (defined by a 3 ×
3 × 3 kernel or all voxels with d ≤ 2), was used. For those pipelines where qe

or Mqe were used in, we adopted a value of q = −3.4. This value was chosen

empirically by comparing the label map of a segmented image using q-entropy with

manual segmentation (see also [66]). The second evaluation step using the five

training datasets [59] are provided with manual segmentation to use as training data

to tune the segmentation algorithm. Manual segmentations used as ground truth

were drawn on the thick-slice scans, i.e., 3 mm slice thickness, using a developed

manual segmentation tool based on the contour segmentation objects (CSO) tool.

A freehand spline drawing technique was used to segment all structures in the brain.

The outline of each structure was delineated, starting with the deep structures. By

iteratively subtracting delineations to create holes, binary images were created for

each structure. Segmentations were performed in a darkened room with optimal

viewing conditions. All segmentations were inspected for correctness by an expert

not involved in the segmentation procedure, and corrections were made if needed.

A third expert-approved all final segmentation. Evaluation using the remaining
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fifteen scans are provided as test data. Only the scans are provided, not the manual

segmentations. Authors can submit the segmentation results of their algorithms,

after which the evaluation results will be sent to them by e-mail. The results are

published on the website. One must submit the labels volumes following a standard

format. Submitted segmentation results, i.e., label set, compared to the manually

obtained reference standard. For each tissue label sets, i.e., GM, WM, and CSF,

an automatic tool calculates the Dice coefficient (DC), the 95th-percentile of the

Hausdorff distance (HD-95) and the absolute volume difference (AVD). The final

ranking provided by MRBrainS13 challenge considers evaluation results of all 15

test datasets and is determined as follows: For each evaluation measure, i.e., DC,

HD-95, and AVD, the mean value over all fifteen datasets is determined for WM,

GM, and CSF. Each evaluated method receives a rank ranging up to the unit for each

tissue type and each evaluation measure based on the mean value of the evaluation

measures over the fifteen datasets. MRBrainS13 challenge determined the final score

by adding the ranks of all tissue types and evaluation measures for each method.

3.6 Partial Volume Effect

In neurodegenerative clinical studies, patients are usually followed up for

several years frequently examined in different MRI scanners and base magnetic fields.

Technical specification differences in MRI scanners, e.g., acquisition protocols and

spatial resolution, are two crucial limitations for longitudinal long-term cerebral

atrophy investigations. Although widely known that MRI base magnetic field (B0)

boldly affects brain tissue volume measurements, no systematic study has been

proposed to maintain brain volume consistency through longitudinal exams. As

the last part of the segmentation pipeline, we proposed a method to convert the

measured volumes produced by brain segmentation methods with lower B0 and

resolutions to volumes consistent with a higher resolution if the dataset includes

different scanners.

The proposed partial volume transfer (PVT) method is consistent with

partial volume effect to correct the volume measures. The PVT demands at least one

pair of simultaneous acquisitions on both MRI scanners to estimate three unknown
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coefficients completing the PVT system. We selected ten healthy subjects from

a standard dataset on the web, ten other healthy subjects, and ten patients with

multiple sclerosis diseases scanned by two different scanners, i.e., 1.5 T and 3.0 T

from local hospital dataset, to evaluate the PVT. We obtained the mean relative

errors ranging from 0.28 to 1.14 % of total brain volume using the PVT conversion

for brain compartments, significantly less than interpolation methods which were

more than 6.54%. More details about this PVT can be found in [67].

3.7 Conclusion

We investigated the source of mistakes where may occur in q-entropy and

MRF. Then two modifications in order to decrease the effects of the mistakes

were proposed. After, a methodology to evaluate the modifications was provided

including noise effects challenge and comparison with well-accepted method as

well as the methods before modifying. Finally, we suggest a conversion for those

longitudinal studies in which the dataset includes two different sources of image

acquisitions. This conversion can be used for any other segmentation methods.

In the final chapter, our suggestion for brain image segmentation is evaluated and

results are discussed.



Chapter 4
Results and DiscussionResults and Discussion

In this chapter, the proposed method, i.e., Mqe-MMRF in the third chapter

is evaluated. The results of the evaluation are presented here. Also, the results

of performing Mqe-MMRF can be seen online in MRBrains13 [59] global challenge

website in the results page.

4.1 Introduction

A
hybrid approach, i.e., Mqe-MMRF, to parcellate brain compartment in

Chapter 3. was introduced. We underwent two strategies to evaluate

Mqe-MMRF, i.e., a simulation of different levels of noise on MRI data, and a

set of twenty MRI data available from MRBrainS13 [59] as brain tissue segmentation

challenge. We accessed different segmentation quality metrics compared to reference

tissues delineations to evaluate Mqe-MMRF. Two evaluation steps, assessed the

proposed method, i.e., artifact effect and real subjects. In this chapter, the results

after performing Mqe-MMRF in two steps are discussed in detail.

4.2 Artifact effect evaluation

The simulation images (SRFN ), from the online dataset [65], by different

percentages of noise (N) and bias field (RF) with their histogram based on the

frequency of intensity levels (bins), are shown in Fig. 4.1.

As it can be seen the histogram of S0
0 has lower noise than the other

histograms. Fig. 4.2 shows the similarity metrics calculated for Mqe performed

37
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Figure 4.1: One slice of each simulation, with its image histogram, indicated below.
N=noise, RF= intensity non-uniformity. S0

0 represents the simulation image with 0%
noise and 0% intensity non-uniformity, and S0

3 by 3% noise and 0%RF and so on.
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Figure 4.2: Changes in similarity metrics when using Mqe by adding Noise and RF in
simulations. Trends of similarity metrics show a very slight decrease (here y-axis scaled
exponentially to show the difference between metrics, else all were impact together).

on the simulations.

Reasonably, by adding artifacts, we expected a decreasing trend for similarity

metrics. There are two exceptions (AUC and VOLSMTY), that presented an

oscillatory behavior (increasing and then decreasing) in S0
9 . This disagreement shows

that the bias field had more effect than noise on these similarities with respect to

the other metrics. Decreasing trend for similarity metrics when the artifacts were

added, averagely, was only 0.05% which shows the robustness of Mqe.

Next, we performed MMRF on the label maps produced by Mqe on the
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Improvement for the simulations (%)

Metrics S0
0 S0

3 S20
0 S20

3 S40
0 S0

9 S40
9 Mean

DICE 0.42 0.25 0.42 0.26 0.71 0.61 0.69 0.48

JACRD 0.83 0.48 0.80 0.50 1.32 1.14 1.25 0.90

AUC 0.63 0.02 0.43 0.20 0.71 0.30 0.24 0.36

KAPPA 0.52 0.31 0.53 0.33 0.89 0.76 0.84 0.60

RNDIND 0.33 0.19 0.34 0.21 0.58 0.46 0.49 0.37

ADJRIND 0.76 0.44 0.78 0.47 1.30 1.07 1.17 0.85

ICCORR 0.18 0.11 0.19 0.11 0.30 0.27 0.32 0.21

VOLSMTY 0.55 0.35 0.48 0.11 0.83 0.23 0.48 0.43

MUTINF 1.36 0.63 0.78 0.59 1.09 1.42 1.48 1.05

Table 4.1: Improvements of similarity metrics after using MMRF on the label
map produced by Mqe segmentation method.

simulations. The results in Tab. 4.1 show the improvements for the similarity

metrics, averagely, from 0.21 to 1.05%.

4.3 Training subjects evaluation

The five training MRIs, namely C1 to C5 were used to be segmented by all

the pipelines. In Fig. 4.3, the same parts of an axial slice of each produced label

map by all pipelines are represented. The initial segmentation, refined by MRF

and MMRF, are shown in the first, second and third row, respectively. The manual

segmentation, which is used as a gold standard reference, and the real image can be

seen on the right side of the figure. Visually, each segmentation method was capable

of achieving an acceptable result, but there are still some small differences in the

borders between CSF and GM and WM as well as the connectivity of CSF. These

differences may affect the interpretation of the final result, especially, if the final

result in question involves a low rate of volume change quantification.

For the five training subjects, by considering each brain compartment as well

as their combinations, we compared the similarity metrics calculated for Mqe-MMRF
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Figure 4.3: The same part of the label maps extracted by four labeling techniques in
the first row, post processed by MRF in the second row and by MMRF in the third row.
Manual segmentation is shown in the right. The green color is CSF, yellow is GM and
brown is WM. The borders of CSF in label maps and connectivity of CSF are two examples
of mislabeling which can be used to compare these methods visually.

with the other 11 methods by the Improvement definition (see Eq. 3.1). Fig. 4.4,

presents the box chart including the minimum, maximum and mean Improvements

of the similarity metrics, averagely, for these training subjects.

The mean Improvements of the nine similarities considering each compartment

and together on C1 to C5, for Mqe-MMRF, are presented in Tab. 4.2. As it can

be seen in this table, for 41 out of 45 of the means, Improvements are positive,

i.e., Mqe-MMRF had a higher rate than the average of other 11 pipelines. Only

for 3 situations in AUC and one in MUINF, Improvements were not positive, i.e.,

Mqe-MMRF could not increase these similarity metrics in those tissues.
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Figure 4.4: Improvement in similarity metrics in brain tissues for
Mqe-MMRF. (a) White Matter, (b) Gray Matter, (c) Cerebrospinal Fluid (d)
Brain and (e) all three tissues. Error bars show the minimum and the maximum
improvements of each similarity metric averagely for five training subjects.

Mean Improvements of Similarity Metrics for C1 to C5 (%)

Brain tissues DICE JACRD AUC KAPPA RNDIND ADJRIND ICCORR VOLSMTY MUTINF

GM 4.64 6.11 4.02 4.97 1.17 5.33 4.64 1.49 2.26

WM 3.28 5.68 -1.04 3.56 0.75 4.03 3.28 6.32 0.32

CSF 3.64 5.52 5.14 3.74 0.43 3.87 3.64 5.57 2.98

WM+GM 1.01 1.73 -1.85 1.15 0.50 1.43 0.47 3.16 -0.50

WM+GM+CSF 0.89 1.61 -0.71 1.02 0.44 1.27 0.33 1.90 0.22

Table 4.2: Average improvement of similarity metrics for Mqe-MMRF in
comparison to mean of other methods for each tissue and tissue combination
for five training subjects C1 to C5.
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Similarity Metrics

DC (%) HD (mm) AVD (%)

Structure Mean STD Mean STD Mean STD

GM 80.09 2.25 3.93 1.32 4.87 4.82

WM 86.76 2.43 3.33 1.08 6.92 5.46

CSF 68.03 3.24 4.24 0.86 15.97 8.97

WM+GM 93.66 0.85 4.26 1.47 3.35 2.69

WM+GM+CSF 94.03 1.18 6.09 1.17 6.47 3.12

Table 4.3: The means and standard deviations (STD) of three similarity
metrics DC=DICE, HD=Hausdorff Distance and AVD= Absolute Volume
Difference for Mqe-MMRF on 15 test images received from MRBrainS13
challenge.

4.4 Test subjects evaluation

After performing the pipelines on five training images, Mqe-MMRF was

chosen to segment 15 test images, and the produced label maps were submitted

to MRBrainS13 challenge. In Tab. 4.3, three similarity metrics (averagely for 15

test images), i.e., DICE, HD and AVD measured by the automatic tool used in

MRBrainS13 are presented. For AVD similarity, Mqe-MMRF ranked as the first

among 61 methods in the submission date.

The results on the first attempt for global challenge (Tab. 4.3), revealed the

ROBEX brain extraction method had a lower precision in CSF detection. Then, the

outputs of the brain extraction, i.e., the brains were refined manually on the borders

and the new label maps were submitted as the second attempt. The results showed

that the similarities for CSF increased, considerably, as can be seen in Tab. 4.4.

As the final evaluation of Mqe-MMRF, it was compared with three references

method, i.e., SPM, FSL and FreeSurfer by the scores and ranking provided by

MRBrainS13 where the results tabulated in Tab. 4.5 .

The results showed the mean similarity metrics of Mqe-MMRF was significantly

more than each pipeline using the t-test at the significance level (p-value < 0.02),

individually, as well as the mean similarity metrics of all pipelines together. Also,

we used the same t-test for the variances of similarity metrics results showed that
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Similarity Metrics

DC (%) HD (mm) AVD (%)

Structure Mean STD Mean STD Mean STD

GM 80.18 2.24 3.87 1.22 5.01 4.89

WM 86.80 2.38 3.20 0.71 6.82 5.33

CSF 75.11 3.27 3.00 0.11 9.05 6.17

WM+GM 93.73 0.76 4.10 1.06 3.22 2.77

WM+GM+CSF 95.87 0.32 5.24 1.16 3.21 1.81

Table 4.4: The means and standard deviations (STD) of three similarity
metrics DC=DICE, HD=Hausdorff Distance and AVD= Absolute Volume
Difference for Mqe-MMRF on 15 test images received from the MRBrainS13
challenge after CSF border correction.

Scores

Tools GM WM CSF GM+WM Total Rank

Mqe-MMRF 105 122 151 132 1

SPM12 T1 130 107 161 131 2

FSL Seg 159 154 131 131 3

FreeSurfer 148 134 172 153 4

Table 4.5: Score = Rank DC+Rank HD+Rank AVD, DC=DICE,
HD=Hausdorff Distance and AVD= Absolute Volume Difference calculated for
Mqe-MMRF and referenced methods on 15 test images.

they are not significantly different.

4.5 Discussion

Averagely, Mqe-MMRF significantly improved the similarity metrics calculated

for its label maps when compared to other pipelines. However, it should be noted

that, in a few cases, the difference between the precision of Mqe-MMRF is negligible

in comparison to the mean of others because the average of similarity metrics for

all 11 pipelines still contains either Mqe or MMRF, i.e., our modifications are used

in. Therefore, if one removes those modifications in the pipelines, the improvements

will increase even more.

In a few cases, either MRF or MMRF reduced the similarity metrics. These
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undesired consequences can be explained by how MRF works. For relabeling a

voxel, it is assumed that the neighbors of that voxel are already labeled correctly.

In practical applications, however, this condition is not necessarily met, and the

mistakes of the initial labeling can also be propagated to the results. Meanwhile,

in addition to K-mean mistakes in MRF, the local Gaussian PDFs used in MMRF

may not also fit the histograms perfectly, resulting in another source of decrease in

similarity metrics.

Although the results showed that Mqe-MMRF for five training subjects has

no better result than the average of other methods for WM, WM+GM and total

in AUC and MUTINF (Tab. 4.2, negative improvements), it should be kept in

mind that these metrics are commonly used for segmentation method in brain

tumor [68], diffusion tensor imaging [69] and also breast lesions [70] in dynamic

contrast-enhanced MR images. Generally, common validation metrics used in brain

segmentation methods [38, 71–74] are DICE, JACCARD and VOLSMTY where

Mqe-MMRF had satisfactory results in them. More details are in supplementary

data in Appendix B.2.

Performing q-entropy labeling on one of the training subjects (C3) was not

successful due to the wrong extracted threshold which could not separate tissues

correctly. The first threshold t1 was between two values where the picks of CSF

and GM were in the histogram, but t2 was after WM peak. Therefore, WM

and GM labeled as one tissue. While the suggested strategy to modify q-entropy

segmentation not only increased the accuracy of segmentation, but its performance

on C3 was successful.

In some specific clinical analysis of the brain, not all tissues may be under

investigation. For example, there are many studies which are only interested in

examining the changes in GM [75–77], because GM includes regions of the brain

involved in muscle control, and sensory perception such as seeing and hearing,

memory, emotions, speech, decision making, and self-control [78]. Considering

the improvement of similarity metrics in GM, it confirms the significant difference

between the proposed Mqe-MMRF pipeline with the other methods. In addition,

Mqe-MMRF was applied on MRBrainS13 challenge for 15 real subjects without

using any pre-processing technique except brain extraction. Since CSF is the outer
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layer, it may not be entirely detected by brain extraction techniques and some parts

are lost. As it can be seen in Tab. 3, the minimum score is associated with CSF.

There are three chances for resubmission the new label maps for MRBranS13 in

which we can change brain extraction to improve the ranking in the other tissues.

CPU times for the implemented pipelines in this study were roughly the

same. These CPU usage times were averagely 3 to 6 minutes by using a Core i7 (4

cores, 8 threads, 3.20 GHz) and 8 Gigabyte RAM. By using stronger specifications,

such as dedicated processing servers, computation time will decrease considerably.

Therefore, the CPU time comparison will not show a significant difference between

pipelines.

T1-weighted images are generally used for volumetric analysis, although, in

some special cases such as lesion detection, T2-weighted images might also be used.

The intensity distribution for GM, WM, and CSF in T2 weighted images is very

different from T1 weighted images. For instance, the mean intensity order for

each tissue, and the distribution of WM and GM intensity are different between

image modalities. Testing the performance of our proposed methods in other

modalities, such as T2 or other modalities is still necessary. Another application

of our suggestion could be in lesion detection. These two aims will be investigated

as the next step.

4.6 Conclusion

MRI noise simulations showed a slow decreasing for segmentation scores

metrics showing the robustness of Mqe-MMRF. For five training subjects, we

found significant improvements in similarity metrics, i.e., for the whole brain,

White Matter, Gray Matter and Cerebrospinal Fluid (p-values < 0.02) in quality

metrics when Mqe-MMRF is compared to the other state of the art methods.

The Mqe-MMRF was performed on 15 other real subjects in MRBrainS13 online

challenge, and the results held the first rank among more than 60 methods for volume

measurement precision similarity in Gray matter.
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4.7 Future steps

Our propose for brain image segmentation, i.e., Mqe-MMRF showed a high

precision in parceling the brain compartments, specifically, in GM. Since several

diseases, e.g., Multiple Sclerosis and Alzheimer, demyelinate nerve cells mostly in

GM regions, a longitudinal study to discover the correlation between changes in GM

and medical symptoms and treatment plans will be investigated.
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AlgorithmsAlgorithms

A.1 EM Brain Segmentation

Algorithm 1 :EM Brain Segmentation

Input: A Brain Image and Parameters:(µ1, µ2, µ3), (σ2
1, σ

2
2, σ

3
3) , (π1, π2, π3)

while error > epsilon do
E-Step: Calculate Wij according to eq.(1.28)
M-Step: Update Parameters:µi, σi, πi according to eq.(1.31) , eq.(1.32), eq.(1.33)

end while
for all voxels in Image do
Chose a label (1 or 2 or 3) for current voxel based on its weights

end for
Output: Label Map

A.2 K-mean Brain Segmentation

Algorithm 2 :K-mean Brain Segmentation
Input: A Brain Image and Parameters:(µ1, µ2, µ3)

while error > epsilon do
for all voxels in Image do
Chose a label (1 or 2 or 3) for current voxel based on minimum Euclidean
distance

end for
Update µi, i = 1, 2, 3 according to new label map

end while
Output: Label Map
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A.3 Entropy Brain Segmentation

Algorithm 3 :entropy Brain Segmentation
Input: A Brain Image

Calculate the Normalized Histogram of the image
Solve subproblem (2.4) and find t̃ and k̃
for all voxels in Image do
Chose a label (1 or 2 or 3) for current voxel based on t̃ and k̃

end for
Output: Label Map

A.4 q-Entropy Brain Segmentation

Algorithm 4 :q-entropy Brain Segmentation
Input: A Brain Image

Calculate the Normalized Histogram of the image
Solve subproblem (2.6) and find t̃, k̃ and q
for all voxels in Image do
Chose a label (1 or 2 or 3) for current voxel based on t̃ and k̃

end for
Output: Label Map

A.5 MRF label refining

Algorithm 5 :MRF using ICM
Input: Brain Image(I), labelmap, parameter α
Using labelmap Calculate the parameters of PDFs:(µi, σi), i=1,2,3
Solve subproblem (2.6) and find t̃, k̃ and q
for all voxels in Image do
Chose a label (1 or 2 or 3) for current voxel based on t̃ and k̃

end for
Output: Label Map

A.6 Modified q-entropy segmentation
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Algorithm 6 :Modified q-entropy Brain Segmentation
Input: Brain Image(I) , q
Calculate the Normalized Histogram of the image
Solve subproblem (2.6) and find t̃, k̃ and q
for all voxels in Image do
Chose a label (1 or 2 or 3) for current voxel based on t̃ and k̃

end for
Output: Label Map

A.7 Modified MRF label refining

Algorithm 7 :Modified MRF
Input: Brain Image(I), labelmap, parameter α
Using labelmap Calculate the parameters of PDFs:(µi, σi), i=1,2,3
Solve subproblem (2.6) and find t̃, k̃ and q
for all voxels in Image do
Chose a label (1 or 2 or 3) for current voxel based on t̃ and k̃

end for
Output: Label Map
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Appendix B
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B.1 Similarity Metrics calculated for simulation
dataset

Simulations with different percentage of Noise and RF (%)

Metrics N=0
RF=0

N=3
RF=0

N=0
RF=20

N=3
RF=20

N=0
RF=40

N=9
RF=0

N=9
RF=40

DICE 99.2 98.4 97.2 97.1 96.1 95.9 94.9

JACRD 98.4 96.8 94.5 94.4 92.6 92.2 90.3

AUC 99.2 99.6 97.7 97.8 96.5 97.7 97.9

KAPPA 99.0 98.0 96.5 96.4 95.2 95.0 93.7

RNDIND 99.4 98.7 97.8 97.7 96.9 96.9 96.2

ADJRIND 98.6 97.1 94.9 94.8 93.0 92.8 91.1

ICCORR 99.7 99.3 98.8 98.8 98.4 98.3 97.8

VOLSMTY 99.2 98.4 98.4 98.9 96.9 99.3 97.1

MUTINF 68.7 66.2 63.9 63.5 62.5 60.1 57.8

Table B.6: Calculated metrics for the label maps produced by Modified
q-entropy (Mqe) on the simulation dataset. N=noise, RF= intensity
non-uniformity
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Simulations with different percentage of Noise and RF (%)

Metrics N=0
RF=0

N=3
RF=0

N=0
RF=20

N=3
RF=20

N=0
RF=40

N=9
RF=0

N=9
RF=40

DICE 99.6 98.6 97.6 97.4 96.9 96.6 95.6

JACRD 99.3 97.3 95.3 94.9 93.9 93.3 91.6

AUC 99.9 99.6 98.1 98.0 97.2 98.0 98.2

KAPPA 99.5 98.3 97.0 96.7 96.1 95.7 94.6

RNDIND 99.7 98.9 98.1 97.9 97.5 97.3 96.7

ADJRIND 99.3 97.5 95.6 95.3 94.3 93.8 92.3

ICCORR 99.8 99.4 99.0 98.9 98.7 98.5 98.1

VOLSMTY 99.8 98.8 98.9 99.0 97.7 99.5 97.6

MUTINF 70.0 66.8 64.7 64.1 63.6 61.6 59.3

Table B.7: Calculated metrics for the label maps produced by Modified
q-entropy (Mqe) and refined by MMRF on the simulation dataset. N=noise,
RF= intensity non-uniformity

B.2 Similarity Metrics calculated for 5 training
dataset

In all the following tables, P1=EM, P2=K-mean, P3=q-entropy, P4=

Modified q-entropy, P5= EM-MRF, P6=K-mean-MRF, P7=q-entropy-MRF, P8=Modified

q-entropy-MRF, P9=EM-Modified MRF, P10=K-mean-Modified MRF, P11= q-entropy-Modified

MRF and P12=Modified q-entropy-Modified MRF. Calculated metrics shows the

precision of the pipelines for WM, GM, CSF, WM+GM, WM+GM+CSF detection

using the label maps produced by the pipelines on training subjects C1 to C5 as

follows
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