
36 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

K n o w l e d g e M a n a g e m e n t

Better Knowledge
Management through
Knowledge Engineering
Alun Preece, Alan Flett, and Derek Sleeman, University of Aberdeen
David Curry, Nigel Meany, and Phil Perry, Baker Hughes OASIS

In recent years, knowledge management has referred to efforts to capture, store, and

deploy knowledge using a combination of information technology and business

processes.1–3 More specifically, organizations aim to acquire knowledge from valued

individuals and to analyze business activities to learn from successes and failures. Such

captured knowledge must then be made available
throughout the organization in a timely manner.

In terms of technology, most current knowledge
management activities rely on database and Internet
systems. If knowledge is stored explicitly at all, it is
typically in databases either as simple tables (for
example, relational databases) or semistructured text
(as in Lotus Notes). The use of sophisticated knowl-
edge representation systems such as Classic, Loom,
or G2 is rare. Also, few organizations have a sys-
tematic process for capturing knowledge, as distinct
from capturing information. (See the “Current Prac-
tice” sidebar for a description of techniques.)

We believe that current knowledge management
practice significantly under-utilizes knowledge-engi-
neering technology, despite recent efforts to promote
its use.4 In this article, we focus on two knowledge-
engineering processes:

• using knowledge acquisition processes to capture
structured knowledge systematically and

• using knowledge representation technology to
store the knowledge, preserving important rela-
tionships that are far richer than those possible in
conventional databases.

To demonstrate the usefulness of these processes,
we present a case study in which the drilling opti-

mization group of a large oil and gas service company
uses knowledge-engineering practices to support the
three facets of the knowledge management task:

• Knowledge capture—In the group’s systematic
knowledge acquisition process, a conceptual busi-
ness model of the company guides case and rule
capture.

• Knowledge storage—The group uses a knowledge
representation language to codify the structured
knowledge in several knowledge bases, which
together make up a knowledge repository.

• Knowledge deployment—Through standard Web
browsers on the company intranet, group mem-
bers can run the knowledge bases within a knowl-
edge server. The server answers queries far more
complex than those possible with conventional
database systems.

Applying knowledge engineering to
knowledge management

In the 1990s, knowledge engineering emerged as
a mature field, distinct from but closely related to
software engineering.3,5 Among its distinct aspects
are a range of techniques for knowledge elicitation
and modeling, a collection of formalisms for repre-
senting knowledge, and a toolkit of mechanisms for
implementing automated reasoning.

Currently, few

organizations have a

systematic process for

capturing knowledge,

as distinct from data.

The authors illustrate

how a large oil and gas

service company uses

knowledge-engineering

processes to capture,

store, and deploy

drilling-optimization

knowledge.

Here is an outline of the knowledge-engi-
neering process:3,6

1. Requirements analysis. Identify the
scope of the knowledge-based system,
typically in terms of its expected com-
petency (for example, the kinds of
queries it will be able to answer).

2. Conceptual modeling. Based on the
scope defined in step 1, create a glossary
of terminology (concepts) for the appli-
cation domain and define interrelation-
ships between the terms of and con-
straints on their usage. An explicit
conceptual model of this kind is com-
monly called an ontology.

3. Knowledge base construction. Using the
conceptual model or ontology from step
2 as a collection of knowledge contain-
ers (or schemata), populate the knowl-
edge base with instances of domain
knowledge (often in the form of rules,
facts, cases, or constraints).

4. Operationalization and validation. Oper-
ationalize the knowledge base from step
3 using automated reasoning mechanisms
and validate its competence against the
requirements from step 1. If satisfactory,
release the system; otherwise, repeat steps
1 through 4 until satisfactory.

5. Refinement and maintenance. After
delivery, the system continues to evolve
as knowledge changes. Thus, steps 1
through 4 must be repeated throughout
the life of the system.

Any knowledge management system that
involves explicit knowledge representation
is amenable to development using at least
part of this process. In fact, it is always worth
applying at least part of this process to any
knowledge management activity that in-
volves explicit knowledge representation.
Here are several examples, using the com-
mon knowledge management activities
described in the “Current Practice” sidebar:

• Document management systems. As a min-
imum, apply step 1 at the outset to ensure
competency criteria are defined. This ensures
at least the selection of the right tool; it may
reveal a need for a more structured approach.

• Discussion forums. As a minimum, apply
steps 1 and 2 to ensure that the system’s
scope is well understood, and that each
forum’s organization effectively supports
existing (or desired) communities of
practice.

• Capability management systems. As
above, apply steps 1 and 2 to define the
metaknowledge that will serve as knowl-
edge containers or schemata to capture
workers’ capabilities. Use step 3 to popu-
late the CV database.

• Lessons-learned knowledge base systems.
Because these are knowledge-based sys-
tems, they should follow the entire five-
stage process.

It is particularly important to employ
knowledge-engineering techniques when an
organization employs a range of knowledge
management approaches. This is becoming
common in larger organizations, which already
use a multiplicity of information systems tied
into an intranet and see a multifaceted knowl-
edge management system as normal. For
example, such a knowledge management sys-
tem might include a capability management
system, discussion forums, a document man-
agement system, and several lessons-learned
knowledge bases. In such cases, the key chal-

lenge becomes knowledge integration—link-
ing the various sources at the knowledge-con-
tent level.

In this context, the organization can use the
knowledge-engineering process to define an
organizational knowledge model—a know-
ledge map7—which delineates the relation-
ships that bind the multifaceted knowledge
management system at the knowledge-con-
tent level. (The actual software-level bindings
can use hyperlinking, remote procedure call-
ing, or any one of a host of distributed com-
puting techniques.) Therefore, even when an
organization embarks on its first, single-facet
knowledge management project, it may well
be worthwhile to follow steps 1 and 2 of the
knowledge-engineering process to define an
initial knowledge map.

Case study: drilling optimization
Baker Hughes OASIS, an engineering ser-

vices subsidiary company of Baker Hughes,
provides drilling-process expertise in the oil
and gas industry worldwide. In particular,

JANUARY/FEBRUARY 2001 computer.org/intelligent 37

Most knowledge management activities combine business processes and infor-
mation technology.1 As currently practiced, knowledge management includes sev-
eral activities and technologies:

• Document management systems allow workers to find existing documents rel-
evant to the task at hand. Essentially, these are multisource search and infor-
mation-retrieval systems that tie into an organization’s intranet (and may
extend to the public Internet). These systems include several commercially
available products, such as those made by Autonomy and Verity.

• Discussion forum systems promote knowledge dissemination within communi-
ties of practice. Workers subscribe to forums relevant to their interests, exchang-
ing questions and answers, lessons learned, announcements, and industry gos-
sip. Such systems are easily implementable with both freely available Web
software and commercial products.

• Capability management systems allow an organization to “know who knows
what.”2 Essentially, these are databases of suitably structured CVs or resumes; as
such, they are implementable with off-the-shelf database software. The goal is
to put people together by matching one person’s need for expertise with
another person’s listed skills.

• Lessons-learned knowledge base systems let workers tap into past experience, by
storing that experience as structured cases. These systems allow sophisticated
queries, typically supporting “fuzzy” retrieval of “similar” cases. Although simple
systems can use just conventional database software, full functionality requires
special-purpose, case-based reasoning or knowledge-based system software.

References

1. W. Bukowitz and R. Williams, Knowledge Management Fieldbook, Prentice-Hall, Old Tap-
pan, N.J., 1999.

2. J. Stader and A. Macintosh, “Capability Modeling and Knowledge Management,” Appli-
cations and Innovations in Intelligent Systems VII, Springer-Verlag, Berlin, 1999, pp. 33–50.

Current Practice

Baker Hughes OASIS specializes in drilling
performance optimization, which involves
identifying, understanding, and overcoming
barriers to improved drilling performance.
Drilling performance optimization engineers
need a specialized set of skills, which they
draw from mechanical engineering, geology,
physics, and other disciplines. Because the
field is relatively new, the community of
skilled optimization engineers is small, and
those within Baker Hughes OASIS are dis-
persed worldwide.

For these reasons, drilling performance
optimization represents an ideal application
domain for knowledge management. Hav-
ing recognized this in the early 1990s, Baker
Hughes OASIS developed a multifaceted
knowledge management approach, which
currently includes the following system
components:

• Drilling Performance Guidelines, a semi-
structured document base implemented in
Lotus Notes/Domino;8

• OASIS University, an online training sys-
tem for optimization engineers, also
implemented in Lotus Notes/Domino;

• Drill Bit Advisor, a rule-based expert sys-
tem implemented in LISP/CLOS using a
custom graphical rule representation;9 and

• Drilling Knowledge Store, a technical
lessons-learned knowledge base.

All of these components are interlinked. For
example, a conclusion (recommendation)
made by the Drill Bit Advisor is commonly
linked with a URL to a Drilling Performance
Guideline in the Lotus Notes/Domino system.

The Drilling Knowledge Store, one of the
newest components of this knowledge man-
agement strategy, is an open repository of
case-based drilling knowledge, accessed
through a Lotus Domino server. A structured
search tool allows users to query the knowl-
edge store for lessons learned in environ-
ments similar to a specified environment of
interest. New knowledge forms promote easy
entry of new cases, which the system sub-
mits to reviewers for audit and approval
before making them available to other users.
Links to the Drilling Performance Guidelines
system avoid knowledge duplication and
ease updating and maintenance.

The Drilling Knowledge Store builds on a
knowledge map developed using the stan-
dard knowledge-engineering process des-
cribed earlier, and it incorporates a drilling
knowledge repository, a case-base of opti-

mization engineers’documented experience.
The drilling optimization group developed
this case-base in collaboration with the Uni-
versity of Aberdeen, managing the work as
a Teaching Company Scheme. The follow-
ing sections detail its development stages.

Requirements analysis
The development team first conducted a

series of interviews with optimization engi-
neers to explore the scope of the drilling
knowledge repository. The key finding was
that the system ought to be highly open.
Because drilling optimization is relatively
new, knowledge in the domain is evolving.
As a result, the system would most likely have
to cope with the following kinds of change:

• New concepts and relationships could be
discovered in the future, so knowledge
containers or schemata would have to be
highly extensible.

• New cases would grow in proportion to
the growth in the drilling optimization
business, so instances would frequently be
added.

• Instances might be reclassified, es-
pecially as outdated knowledge is
“decommissioned.”

Conceptual modeling
Following the first round of interviewing,

the development team drew up an initial glos-
sary of terms. In an attempt to derive a set of
concepts, the team analyzed the transcripts of
the interviews using the PC-PACK4 knowl-
edge acquisition software toolkit. However,
it was not sufficiently flexible in dealing with
concepts where the “defining” words were
not adjacent in a piece of text or where they

were interspersed with words from other con-
cepts. PC-PACK and similar textual mark-up
systems allow the user to indicate only that
single words correspond to concepts, attrib-
utes, and values. In practice, such entities are
often defined by several words, and these are
not necessarily adjacent. For example, the text
“a bus system that links all the suburbs to the
center and to each other” contains the con-
cept comprehensive-city-bus-network, but it
also contains parts of the concept city (sub-
urb and center).

In view of this tool’s limitations, the team
used a manual concept-mapping approach
instead,10 which focused on defining con-
cepts in two areas:

• concepts associated with the drilling envi-
ronment, including extensive definitions
of geological concepts (leading to the cre-
ation of an ontology for representing the
rock formations that constitute a drilling
task), and those associated with drilling
itself (chiefly drill bits, fluids, and related
apparatus); and

• knowledge management concepts that
would allow the capture of useful in-
stances of the optimization engineers’
experience (most obviously, the concept
of a case).

Early in the process, the team formalized these
concepts to manage them within a software
environment. They chose the Loom knowl-
edge representation system11 and its associ-
ated Ontosaurus browser/editor because it had
a number of advantages. First, Loom is one of
the most flexible and least constraining knowl-
edge representation systems available. In addi-
tion, Loom’s operational mechanisms (chiefly
the classification engine) allowed the knowl-
edge-engineering team to test the conceptual
model’s integrity during its development.
Finally, Ontosaurus provides a Web front end
for Loom knowledge bases, allowing multi-
ple users to inspect, query, and modify the
knowledge base on a network, using a stan-
dard Web browser.

Knowledge base construction
By the time the knowledge-engineering

team had defined a reasonably complete con-
ceptual model, they had already elicited sev-
eral sample cases from the optimization engi-
neers as a natural part of exploring the scope
of the domain. When formalizing the con-
ceptual model in Loom, the team took the
opportunity to represent these cases using

38 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

K n o w l e d g e M a n a g e m e n t

By the time the team had defined a

reasonably complete conceptual

model, they had already elicited

several sample cases from the

optimization engineers as a

natural part of exploring the scope

of the domain.

Loom’s knowledge containers. However,
they used a distinct approach for systematic
case acquisition.

First, they identified a small number of high-
performing, expert optimization engineers.
Then, team members conducted intensive,
one-on-one knowledge acquisition campaigns
with these individuals. Mindful of lessons
learned from negative knowledge acquisition
experiences during the heyday of expert sys-
tems in the 1980s, the team carefully designed
these campaigns to ensure that the experts
would contribute actively and positively.

The team formalized the knowledge
acquired from each campaign in Loom, but
also wrote it up in a natural-language elec-
tronic document called a knowledge book,12

which the expert could check for accuracy
and which was disseminated on CD-ROM
throughout the company as an easily acces-
sible, early result of the OASIS group’s work.

Operationalization and validation
The knowledge base was operationalized

naturally by the choice of Loom as the rep-
resentation language. The team performed
validation of the represented knowledge at
two levels—indirect validation using the
knowledge books and direct validation using
Loom’s inference mechanisms. Further indi-
rect validation came through the develop-
ment of drill bit selection rules using some
of the case-based knowledge acquired in the
knowledge acquisition campaigns. These
rules were then validated using existing soft-
ware in the Drill Bit Advisor expert system.

The drilling knowledge
repository in Loom

Philosophically, we consider OASIS a
knowledge storage and retrieval system
rather than a knowledge-based system. This
is because knowledge-based systems are
strongly associated with tasks, such as deci-
sion support, automated decision-making, or
training. But the task for which knowledge
is to be used places a strong bias on the form
of the knowledge.13 In this case, the imple-
mented system had to be task-neutral: it was
to serve purely as a repository for captured
knowledge, without any risk of biasing the
form and content of the knowledge toward a
particular future usage.

Nevertheless, the system does have at its
core a set of automatic deductive facilities
(provided by Loom), which operate on the
definitions given to the system by the knowl-
edge modeler. However, these inferences

operate at the conceptual-model level and not
at any action level. Thus, actions are left to
humans, and the system does not advise per
se on any action the user should take. For
example, the system can recognize instances
and classify them appropriately with reference
to the conceptual model, but this is purely for
the purpose of retrieving those instances and
bringing them to the user’s attention.

The Loom knowledge store has two main
parts—a conceptual model and a database.
(This is analogous to a database, with its
schema and data parts.) The conceptual part
of the knowledge base is defined using con-
cepts. It includes binary concepts (known as
roles) and unary concepts (known as con-
cepts). The database is populated with

instances of these concepts.
The following sections give examples of

the Loom constructs to illustrate the
approach in concrete terms. Our intention is
to explain the constructs so that a full under-
standing of the representation language is
not necessary. (For readers unfamiliar with
Loom or similar languages, Robert Mac-
Gregor and Ronald J. Brachman and his col-
leagues provide good introductions.11,14)

Modeling constructs for drilling
engineers’ experience

Because the knowledge store is chiefly
intended to capture experiential cases from
drilling engineers, the most important con-
cept is the case.

(defconcept CASE :is-primitive
(:and (:exactly 1 formation-sequence)

(:all decision DECISION)
(:all observation OBSERVATION)))

A case usually describes a drill bit run—a

continuous period of drilling with a single drill
bit. So, if an optimization engineer experiences
some bit run worthy of being recorded in the
knowledge store, the engineer should include
a representation of the rock formation
sequence and the decisions made on how to
drill that formation sequence, along with any
associated observations. A decision can refer to
a choice of drill bit, mud (drilling fluid), flow
rate, and so on. Alternatively, the case need not
refer to an actual drill bit run if the person
entering it simply has an experience to share.

A decision has several different dimen-
sions, including issues, actions, goals, an
author, a spin, and reasoning. These dimen-
sions provide a balance between structured
knowledge and free text. The structured
knowledge enables formal representation and
therefore supports powerful searches; the
free text supports semistructured knowledge.

(defconcept DECISION :is-primitive
(:and (:exactly 1 action)

(:at-most 10 issue)
(:at-most 10 goal)
(:at-most 1 authors-reasoning)
(:at-most 1 companys-reasoning)
(:at-most 1 author)
(:at-most 1 spin)))

An issue is some informational context that
the engineer considered when making the
decision. The issues in the current knowledge
base reflect quite strongly the best-practice
drilling database (in Lotus Notes), as shown
by the link roles in the following code. These
can be filled with links to other media, includ-
ing the Notes database itself, using URLs.

(defconcept ISSUE :is-primitive
(:and KNOWLEDGE_MANAGEMENT_CONCEPT

(:at-most 1 symptoms-and-diagnosis-link)
(:at-most 1 description-link)
(:at-most 1 parameters-link)
(:at-most 1 diagnostic-information-link)
(:at-most 1 planning-actions-link)
(:at-most 1 operating-practices-link)
(:at-most 1 examples-link)))

An action is the real-world consequent the
engineer performed as part of the decision;
this includes both structured (categorical-out-
come) and free text (textual-outcome) outcomes.

(defconcept ACTION :is-primitive
(:and KNOWLEDGE_MANAGEMENT_CONCEPT

(:at-most 1 categorical-outcome)
(:at-most 1 textual-outcome)))

JANUARY/FEBRUARY 2001 computer.org/intelligent 39

The system does have at its

core a set of automatic

deductive facilities (provided by

Loom), which operate on the

definitions given to the system by

the knowledge modeler.

The system captures two kinds of reason-
ing for a decision. The author’s reasoning is
a free-text field for explanations—for exam-
ple, why an engineer chose a certain drill bit.
This allows the storage of incomplete, inac-
curate, and even incoherent explanations for
actions. After all, the main reasoning or
determinism for the action consists of the
other structured information describing the
circumstances for the action, such as the for-
mation sequence. The company’s reasoning
field expresses the company’s commonly
agreed on beliefs for the decision in question.

Modeling constructs for the
drilling environment

The system describes the drilling envi-
ronment chiefly in terms of conceptual rock
sequences. The team achieved representa-
tions of these by defining an ontology of geo-
logical concepts, including constraints. For
instance, if the user wishes to specify the
depth or length of a particular section of
lithology (a basic rock type—for example,
sand or shale), that section must be repre-
sented as a formation. The superstructure
larger than that is the formation sequence,
which can have one or more formations.
Each formation can have one or more lith-
ologies. A formation is the conceptual mod-
eling granularity at which the users should
represent any part of the wells they feel
should have represented interval lengths and
depths.

(defconcept FORMATION_SEQUENCE :is-primitive
(:and ROCK_CONCEPT

(:at-least 1 formation)))

(defconcept FORMATION :is-primitive
(:and ROCK_CONCEPT

(:at-least 1 lithology)))

To allow users to represent and query for-
mation sequences flexibly, the ontology
defines several relations. For example, the
relation comes-in-somewhere-after relates two for-
mations, the first of which comes in some-
where after the other.

(defrelation comes-in-somewhere-after
:domain FORMATION_SEQUENCE
:range FORMATION
:characteristics (:multiple-valued :closed-world)
:is (:satisfies (?formation-x ?formation-y)

(:and
(FORMATION ?formation-x)
(FORMATION ?formation-y)

(:or (comes-in-immediately-after
?formation-x ?formation-y)

(:exists (?formation-z)
(:and

(FORMATION ?formation-z)
(comes-in-somewhere-after

?formation-x ?formation-z)
(comes-in-somewhere-after ?formation-z

?formation-y)))))))

One important feature of lithologies is their
hardness. While a lithology has, by defini-
tion, one rock type (such as shale), it can have
more than one hardness. (For example, shale
could consist of 100 meters of very soft rock
and 300 meters of soft rock.)

(defrelation hardness
:domain LITHOLOGY
:range HARDNESS
:characteristics (:closed-world :multiple-valued))

To support drill bit run modeling, the
ontology includes a collection of func-
tions that relate formation sequences, con-
stituent lithologies, and accumulated
hardness.

In addition to the generic geological con-
cepts, the knowledge store includes repre-
sentations of the concepts involved in
drilling, such as drill bit.

(defconcept DRILL_BIT :is-primitive
(:and DOWN-HOLE_EQUIPMENT_CONCEPT

(:exactly 1 bit-gauge)))

Querying the knowledge store
The retrieve function, which retrieves

instances from the knowledge base, pro-
vides an interface to Loom’s deductive
query facility. Formation sequence queries

are among the most sophisticated forms of
query that users can issue to the knowledge
store. The concepts likely to be of interest
are individual formations and formation
sequences. Two common queries are on an
overall cumulative amount of a certain hard-
ness of a particular lithology over a forma-
tion sequence and formations that have
amounts of particular lithologies of a cer-
tain hardness.

The following example query looks for
cases that have a formation sequence that has
as constituents of its formation(s) at least
1,900 feet of very soft to soft shale (includ-
ing all subtypes of shale).

(retrieve ?case
(:and

(CASE ?case)
(>= (sum (:collect ?lithology-amount-ft

(:and
(:exists (?formation-sequence ?formation

?lithology ?hardness)
(:and

(formation-sequence ?case ?formation-
sequence)

(formation ?formation-sequence
?formation)

(lithology ?formation ?lithology)
(lithology-hardness-amount-ft ?lithology

?hardness ?lithology-amount-ft)
(:or

(VERY_SOFT ?hardness)
(SOFT ?hardness))

(SHALE ?lithology)
))))) 1900)))

Users typically also want to look for
cases in which engineers achieved specific
goals or outcomes. The following example
query retrieves cases that have a drill bit
decision in which one of its goals was good
ROP (rate of penetration) with good bit
cleaning.

(retrieve ?case
(:and

(CASE ?case)
(:exists (?decision)

(decision ?case ?decision)
(DRILL_BIT_PLANNING_DECISION ?decision)
(goal ?decision

GOOD_ROP_WITH_GOOD_BIT_CLEANING))))

It is worth emphasizing how the Loom rep-
resentation supports querying. First, the clas-
sification engine automatically associates
new concepts (including new cases) with

40 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

K n o w l e d g e M a n a g e m e n t

The system describes the drilling

environment chiefly in terms of

conceptual rock sequences. The

team achieved representations of

these by defining an ontology of

geological concepts.

super- and subconcepts. This means that a
query for a subconcept will automatically
find all superconcepts. This also means that,
by using the Ontosaurus concept browser, a
user can quickly find subconcepts related to
the result of a query. Second, the pattern-
matching mechanism, combined with the
way Loom represents drilling sequences,
means that the system easily accommodates
partial matches. A user need only specify dis-
continuous fragments of a formation se-
quence, for example, to retrieve useful cases
of drilling wells including those sequence
fragments.

Adding to the knowledge store
As we described earlier, the knowledge

store comprises a conceptual and a database
part. We consider the conceptual part stable
and expect that knowledge will rarely need
to be added or modified. However, additions
to the database part will surely be regular.
The Loom operations used to update the
database part of the knowledge base are tell
and about: tell is used to assert propositions
and facts about the world or domain; about
references the instance to which those
propositions refer. The following example
shows how a user might enter a case
instance. This example case has one forma-
tion sequence name and zero or more deci-
sions and observations.

(tell (:about Case-Name
CASE
(formation-sequence Formation-Sequence-

Name)
(decision Decision-Name)
(observation Observation-Name)))

Current status and future plans
The Loom Drilling Knowledge Reposi-

tory currently contains 1,200 concepts and
240 relations, with further expansion
planned. The knowledge store is accessible
on the company’s intranet using a standard
Web browser through the Ontosaurus sys-
tem (see Figure 1).

The use of Loom has facilitated great flex-
ibility in the modeling process allowing the
ontology to grow naturally over the first two
years of the project. Attempting to model a
comparable richness of interrelationships in
a relational database, for example, would
have been extremely difficult and more time-
consuming, and it would doubtless have
involved many more modifications to the
schemas.

Nevertheless, although it is relatively
straightforward to browse the case base and
ontology using Ontosaurus, the current sys-
tem has several significant problems:

• It is difficult to issue complex queries to
the Loom knowledge store through the
Ontosaurus interface because Ontosaurus
provides direct support only for simple
queries (retrieve cases with matching sim-
ple role values).

• It is hard to add new cases because these
require the user to have knowledge of
Loom syntax, an unrealistic expectation
for optimization engineers.

• Multiuser access (basic locking and
restricted concurrent access) is limited.

In addition to these issues, the team
wanted the drilling knowledge repository to
have a familiar interface, preferably that of
the existing systems implemented using
Lotus Notes/Domino. At the same time, the
team wanted to link the knowledge repre-
sented in the Loom repository with informa-
tion and knowledge relating to the perfor-
mance optimization projects that yielded the
stored knowledge. Thus, the team went with
an interim solution, partially incorporating
the Loom knowledge map and cases into a
Lotus Notes/Domino database of project-
related knowledge, to provide structure for
technical lessons learned on each project.
Figure 2 is a screenshot of the ported system.
The immediate benefits of this included

JANUARY/FEBRUARY 2001 computer.org/intelligent 41

Figure 1. Loom Drilling Knowledge Repository screenshot.

Figure 2. Lotus Notes/Domino drilling knowledge store screenshot.

• easy access to the most valuable knowl-
edge in the knowledge store to all opti-
mization engineers;

• linkage between optimization-related
knowledge and other knowledge from the
projects in which it was created;

• a familiar interface seamlessly integrated
with other Notes/Domino knowledge
sources; and

• Domino’s scalable architecture, with built-
in support for concurrent access.

The team had to port the Loom knowl-
edge map and cases to Lotus Notes/
Domino manually. In addition, the Notes
knowledge schemata are nowhere near as
rich as those in the Loom system. As this
is obviously not ideal, future work will
focus on providing an automatic conduit
for knowledge exchange between the
Notes/Domino and Loom systems. This
will allow knowledge management engi-
neers to maintain the knowledge map
through the Loom system and optimization
engineers to retrieve and enter cases
through the Notes/Domino system.

Knowledge-engineering techniques
bring significant benefits to knowl-

edge management projects. Our case study
in drilling optimization reveals three specific
benefits to the knowledge management
group at Baker Hughes OASIS. First, the
principled methodology for knowledge
acquisition led to the effective capture of
valuable knowledge, instilling the staff with
confidence in the process. Second, develop-
ing a common ontology for the knowledge-
modeling process was useful not only for
acquiring experiential cases from company
experts; it also provided a knowledge map
applicable to multiple company knowledge
sources. (We have subsequently developed a
knowledge acquisition tool that is driven by
the nature of the task and the ontology. We
believe that this tool, Cockatoo,15 would be
effective in acquiring cases directly from
domain experts.) Third, while the team used
semistructured knowledge books to provide
feedback to participating personnel, the for-
mal representation of acquired knowledge in
an operationalizable form proved very valu-

42 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

K n o w l e d g e M a n a g e m e n t

T h e A u t h o r s
Alun Preece has worked in the area of knowledge-based systems for 15
years, the last six of which he has spent at the University of Aberdeen, Scot-
land. His current research interests are in distributed knowledge-based sys-
tems and industrial knowledge management. He received his PhD from the
University of Wales, Swansea, developing decision support systems for
health care planning. He is a member of the IEEE Computer Society, the
AAAI, and the British Computer Society Specialist Group on Knowledge-
Based Systems and Applied AI. Contact him at apreece@csd.abdn.ac.uk.

Alan Flett works as a knowledge engineer at Interprice Technologies,
GmbH, Berlin, Germany, which specializes in knowledge communications
using natural-language dialog systems. He holds a BSc in electronic and
electrical engineering from Strathclyde University, Scotland, UK, and an
MSc in applied artificial intelligence from Aberdeen University, Scotland,
UK. Contact him at alan.flett@interprice.com.

Derek Sleeman is one of the principal investigators of the EPSRC-spon-
sored IRC in advanced knowledge technologies. His research activities have
remained at the intersection of AI and cognitive science, but his focus has
moved from ITSs to cooperative knowledge acquisition and knowledge
refinement systems. He has been a program committee member for the inter-
national, European, and national conferences in machine learning and
knowledge acquisition. He has also served on various editorial boards,
including the Machine Learning Journal and the International Journal of
Human–Computer Studies. Contact him at sleeman @csd.abdn.ac.uk.

David Curry is a technical manager for Baker Hughes OASIS. His
research interests include drilling and rock mechanics and applied knowl-
edge management. He has an MA in natural sciences and a PhD in frac-
ture mechanics, both from the University of Cambridge. He is a Chartered
Engineer and a member of the Institute of Materials and of the Society of
Petroleum Engineers. He is also a member of the Institution of Mechani-
cal Engineers Offshore Engineering Committee. Contact him at david.curry@
bakerhughes.com.

Nigel Meany is the director of engineering services at Baker Hughes
OASIS. In his current post he established and now has overall managerial
responsibility for the OASIS group. He has held a variety of engineering,
technical, and marketing posts with Hughes Christensen, a major manu-
facturer of drill bits for the oil and gas industry. Contact him at nigel.
meany@bakerhughes.com.

Phil Perry is a knowledge development engineer for Baker Hughes OASIS.
He has 10 years’experience in the drilling industry, and has recently become
more involved in knowledge engineering and knowledge management. He
has a BSc in geology and an MSc in sedimentology, both from the Univer-
sity of Reading. He is a member of the Society of Petroleum Engineers and
the Petroleum Exploration Society of Great Britain. Contact him at
phil.perry@bakerhughes.com.

able for knowledge verification and integrity
checking.

In doing this work, we detected two weak-
nesses in current knowledge-engineering tech-
niques and technology. First, as we noted, PC-
PACK and other textual mark-up systems do
not cope adequately with concepts defined by
several nonadjacent words. Thus, we have
identified the need for a more flexible tool.
Second, it is very difficult to integrate expres-
sive reasoning tools such as Loom with intranet
knowledge management environments such as
Lotus Notes/Domino. It seems reasonable to
conclude, therefore, that while knowledge-
engineering processes are ready to bring sig-
nificant benefits to knowledge management
projects, the knowledge-engineering toolbox
needs some improvement.

Acknowledgments
The case study described here was supported by

Teaching Company Scheme funding from the UK
Department of Trade and Industry and the Engi-
neering and Physical Sciences Research Council.
The Lotus Notes version of the Drilling Knowl-
edge Store was constructed largely by John Law-
ton and David Bowden, Transition Associates, who
also proposed and developed the OASIS Univer-
sity. The authors thank Tom Russ of ISI/Univer-
sity of Southern California for advice and techni-
cal assistance regarding Loom and Ontosaurus.
This article is published with the kind consent of
the Hughes Christensen Company.

References

1. Harvard Business Review on Knowledge
Management, Harvard Business School Press,
Cambridge, Mass., 1998.

2. J. Liebowitz and L. Wilcox, Knowledge Man-
agement and Its Integrative Elements, CRC
Press, Boca Raton, Fla., 1997.

3. G. Schreiber et al., Knowledge Engineering
and Management, MIT Press, Cambridge,
Mass., 2000.

4. N. Milton et al., “Towards a Knowledge Tech-
nology for Knowledge Management,” Int’l J.
Human-Computer Studies, vol. 51, no. 3,
1999, pp. 615–641.

5. E. Motta, Reusable Components for Knowl-
edge Modeling, IOS Press,Amsterdam, 1999.

6. S. Russell and P. Norvig, Artificial Intelli-
gence, Prentice-Hall, Old Tappan, N.J., 1995.

7. J. Domingue and E. Motta, “Planet-Onto:
From News Publishing to Integrated Knowl-
edge Management Support,” IEEE Intelligent
Systems, May/June, 2000, pp. 26–32.

8. D.A. Curry, A.V. Singelstad, and D. Bowden,
“Drilling Performance Guidelines—A Tool
for Sharing Drilling-Related Knowledge and
Experience,” SPE/IADC paper no. 52804,
SPE/IADC Drilling Conf., Society of Petro-
leum Engineers, Dallas, 1999.

9. J.M. Evans, M.J. Fear, and N.C. Meany, “A
New Graphical Representation for Rule Def-
inition and Explanation in an Expert System,”
Applications and Innovations in Intelligent
Systems III, Springer-Verlag, Berlin, 1995.

10. R. Kremer, “Concept Mapping Tool to Han-
dle Multiple Formalisms,” AAAI Spring
Symp. Artificial Intelligence in Knowledge
Management, AAAI Press, Menlo Park,
Calif., 1997.

11. R. MacGregor, “The Evolving Technology of
Classification-Based Knowledge Represen-
tation Systems,” Principles of Semantic Net-
works: Explorations in the Representation of
Knowledge, Morgan Kaufmann, San Fran-
cisco, 1991, pp. 385–400.

12. J-L. Ermine, “Knowledge Management in the
Commissariat a l’Energie Atomique,”
PAKeM98—Practical Application of Knowl-
edge Management, Practical Applications
Co., London, 1998.

13. W.J. Clancey, “Model Construction Opera-
tors,” Artificial Intelligence, vol. 53, 1992, pp.
1–115.

14. R.J. Brachman et al., “Living with Classic:
When and How to Use a KL-ONE-like Lan-
guage,” Principles of Semantic Networks:
Explorations in the Representation of Knowl-
edge, Morgan Kaufmann, San Francisco,
1991, pp 401–456.

15. S. White, Enhancing Knowledge Acquisition
with Constraint Technology, doctoral disser-
tation, Dept. Computing Science, University
of Aberdeen, Aberdeen, UK, 2000.

JANUARY/FEBRUARY 2001

How to Reach Us
Writers
For detailed information on submitting
articles, write for our Editorial Guidelines
(isystems@ computer.org), or access
computer.org/intelligent/edguide.htm.

Letters to the Editor
Send letters to

Dennis Taylor
Associate Editor
IEEE Intelligent Systems
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
dtaylor@computer.org

Please provide an e-mail address or
daytime phone number with your letter.

On the Web
Access computer.org/intelligent for infor-
mation about IEEE Intelligent Systems.

Subscription Change of Address
Send change-of-address requests for maga-
zine subscriptions to address.change@ieee.
org. Be sure to specify Intelligent Systems.

Membership Change of Address
Send change-of-address requests for
the membership directory to directory.
updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact membership@
computer.org.

Reprints of Articles
For price information or to order reprints,
send e-mail to isystems@computer.org or
fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

IE
E

E

