Adaptive MapReduce using Situation-Aware Mappers

Rares Vernica¹ (HP Labs), Andrey Balmin, Kevin S. Beyer, Vuk Ercegovac (IBM Research)

¹Work done at IBM Research.

15th International Conference on Extending Database Technology, March 26-30 2012
Outline

1 Motivation

2 Problem Statement

3 Situation-Aware Mappers
 - Adaptive Mappers
 - Adaptive Combiners
 - Adaptive Sampling and Partitioning

4 Summary
MapReduce Review

map \((k,v)\) \rightarrow \text{list}(k,v);
reduce \((k,\text{list}(v))\) \rightarrow \text{list}(k,v).

combine \((k,\text{list}(v))\) \rightarrow \text{list}(k,v).
MapReduce Review

map \((k,v)\) \rightarrow \text{list}(k,v);
reduce \((k,\text{list}(v))\) \rightarrow \text{list}(k,v).

combine \((k,\text{list}(v))\) \rightarrow \text{list}(k,v).

Rares Vernica (HP Labs) Adaptive MapReduce EDBT 2012 3 / 25
Motivation: MapReduce Issues

MapReduce
- Parallel data-processing framework
- Open-source implementation (Hadoop)
- Simple programming environment

MapReduce: “simplicity over performance”

Limited choice of execution strategies:
- Mappers checkpoint after every split
- Map outputs are sorted and written to file
- Reducer read statically predetermined partitions
Solutions to MapReduce Issues

MapReduce-inspired alternatives

- Dryad (Microsoft)
- Spark (UC Berkeley)
- Hyracks (UC Irvine)
- Nephele (TU Berlin)

Have more choices in runtime execution
Our Solution: Adaptive MapReduce

Make MapReduce (Hadoop) more flexible

- Leverage existing investment in:
 - Framework (Hadoop)
 - Query processing systems (Jaql, Pig, Hive)

- Techniques for:
 - Dynamic checkpoint intervals (Map)
 - Best-effort hash-based aggregation (Combine)
 - Dynamic, sample-based, partitioning (Reduce)

- Performance tuning:
 - Cardinality and cost estimation (due to UDFs)
 - Adaptive to runtime environment
Problem Statement: Adaptive MapReduce

Goals

Improve MapReduce (Hadoop) performance by:

- New runtime options
- Adaptive to runtime environment

Preserve Hadoop’s

- Fault-tolerance
- Scalability
- Programability
Outline

1 Motivation

2 Problem Statement

3 Situation-Aware Mappers
 - Adaptive Mappers
 - Adaptive Combiners
 - Adaptive Sampling and Partitioning

4 Summary
Main idea

- Make MapReduce more dynamic
Main idea

- Make MapReduce more dynamic
- Mappers:
 - Aware of the global state of the job
Situation-Aware Mappers

Main idea

- Make MapReduce more dynamic
- Mappers:
 - Aware of the global state of the job
 - Communicate through a distributed meta-data store
Situation-Aware Mappers

Main idea
- Make MapReduce more dynamic
- Mappers:
 - Aware of the global state of the job
 - Communicate through a distributed meta-data store
 - Break assumption: isolation
Situation-Aware Mappers

Main idea

- Make MapReduce more dynamic
- Mappers:
 - Aware of the global state of the job
 - Communicate through a distributed meta-data store
 - **Break** assumption: isolation
- **Situation-Aware Mappers**
Adaptive MapReduce

Adaptive Techniques

AM: Adaptive Mappers
AC: Adaptive Combiners
AS: Adaptive Sampling
AP: Adaptive Partitioning

Rares Vernica (HP Labs)
Adaptive MapReduce

Distributed Meta-Data Store
- Distributed read/write
- Transactional
- e.g., ZooKeeper

DFS

DMDS

DFS

MAP

REDUCE

Distributed Techniques
- AM: Adaptive Mappers
- AC: Adaptive Combiners
- AS: Adaptive Sampling
- AP: Adaptive Partitioning

Rares Vernica (HP Labs)
Adaptive MapReduce
EDBT 2012 10 / 25
Adaptive Techniques

- AM: Adaptive Mappers
- AC: Adaptive Combiners
- AS: Adaptive Sampling
- AP: Adaptive Partitioning
Adaptive Mappers Motivation

- Input data is divided into splits
- One-to-one correspondence of mappers and splits
- AM decouple # splits from # mappers

Large splits
- Small startup cost
- Inbalanced workload

Small splits
- Large startup cost
- Balanced workload

Startup cost, e.g., scheduling, loading ref. data
Split processing cost

: Startup cost, e.g., scheduling, loading ref. data
: Split processing cost
Adaptive Mappers Motivation

- Input data is divided into splits
- One-to-one correspondence of mappers and splits
- AM **decouple** # splits from # mappers

Large splits
- Small startup cost
- Inbalanced workload

Small splits
- Large startup cost
- Balanced workload

Adaptive Mappers
- Small startup cost
- Balanced workload

- Startup cost, e.g., scheduling, loading ref. data
- Split processing cost
Adaptive Mappers Algorithm

MapReduce Client

ZooKeeper

Root

JobID

locations

Host1

[Split1, Split2, ...

Host2

...

2

3

Store meta-data in ZooKeeper

Implemented as a new InputFormat
Adaptive Mappers Algorithm

MapReduce Client

JobID

locations

Host1

[Split1,
Split2,
...]

Host2

...

Host2

Map1

Init

Map2

Init

...

Host2

...

Store meta-data in ZooKeeper

Implemented as a new InputFormat

Rares Vernica (HP Labs)
Adaptive Mappers Algorithm

MapReduce Client

ZooKeeper

Root

JobID

locations

Host1

[Split1, Split2, ...

Host2

...

Host1

Map1

Init

Map2

Init

...

Host2

...

2

3

4

assigned

Split1{Map2}

5

OK/Fail

Store meta-data in ZooKeeper

Implemented as a new InputFormat

Rares Vernica (HP Labs)

Adaptive MapReduce

EDBT 2012
Adaptive Mappers Algorithm

MapReduce Client

ZooKeeper

Root

JobID

locations

Host1

[Split1, Split2, ...

Host2

...

assigned

Split1{Map2}

Host2

Map1

Init

Map2

Init

Split1

OK/Fail

Store meta-data in ZooKeeper

Implemented as a new InputFormat

Rares Vernica (HP Labs)
Adaptive Mappers Algorithm

Store meta-data in ZooKeeper

Implemented as a new InputFormat
Adaptive Mappers Algorithm

Additional Features

- Process local splits first, then remote splits
- Fault tolerance
 - Restated task unlocks splits
 - Split reprocessing is shared
- Scheduler aware (FIFO, FAIR, and FLEX)
Experimental Setting

Hardware
- 40-node IBM Systemx iDataPlex dx340
- Two quad-core Intel Xeon E5540 64-bit 2.83GHz
- 32GB RAM
- Four SATA disks
- 160 map and 160 reduce slots

Software
- Ubuntu Linux, kernel 2.6.32-24 64-bit server edition
- Java 1.6 64-bit server edition
- Hadoop 0.20.2
- ZooKeeper 3.3.1
Start-up Cost vs. ZooKeeper Overhead

- 2000 1-byte records
- Sleep 1s/record
- 5 nodes, 20 map slots
- 20-2000 Reg. Mappers
- 20 Adaptive Mappers

- Small ZooKeeper overhead
- Large Map startup cost \(\sim 2s/map \)
Adaptive Mappers Workloads

1. Set-Similarity Join [Vernica et al., 2010]
 - Publication datasets
 - DBLP: 1.2M records, 310MB
 - CITESEERX: 1.3M records, 1,750MB
 - Increased to $\times 10$ and $\times 100$

2. JOIN
 - Single dataset ("fact" table), Sort Benchmark data generator
 - Fan-out coefficient ("dimension" table)
 - average join fan-out 1 : 30
 - TERASORT: 1B records, 93GB
Adaptive Mappers Experiments - Set-Similarity Join

Stage 3:
One-Phase Record Join
Broadcast join equivalent
DBLP and CITESEERX × 10
Single wave of AM

×3 speedup over default Hadoop split size (64MB)
Optimal with no tuning
Adaptive Mappers Experiments - JOIN

- Map-only job
- 1B TERASORT records
- Models a skewed join
- Single wave of AM

Regular Mappers:
- Large split: data skew
- Small split: scheduling and start-up overhead
- Optimal with no tuning
Adaptive MapReduce

Adaptive Techniques
- **AM**: Adaptive Mappers
- **AC**: Adaptive Combiners
- **AS**: Adaptive Sampling
- **AP**: Adaptive Partitioning
Adaptive Combiners

Main idea

- Replace sort with hashing
- Reduce serialization, sort, and IO

Regular Combiners

- **Map**
- **Sort Buffer**

Legend:
- **Blue**: User code
- **Red**: Data

Rares Vernica (HP Labs)

Adaptive MapReduce

EDBT 2012 20 / 25
Adaptive Combiners

Main idea
- Replace sort with hashing
- Reduce serialization, sort, and IO

Regular Combiners
- Map
- Sort Buffer
- Sort
- Combine

Adaptive Combiners
- Hash-group and Combine

[Diagram showing the comparison between regular and adaptive combiners]

Legend:
- Blue: User code
- Red: Data
Adaptive Combiners

Main idea
- Replace sort with hashing
- Reduce serialization, sort, and IO

Regular Combiners
- Map
- Sort Buffer
- Sort
- Combine

Adaptive Combiners
- Hash-group and Combine

: User code
: Data
Main idea

- Replace sort with hashing
- Reduce serialization, sort, and IO
Adaptive Combiners

Main idea
- Replace sort with hashing
- Reduce serialization, sort, and IO

Regular Combiners

Map
Sort Buffer
Sort
Combine
Merge

Adaptive Combiners
Hash-group and Combine

Legend:
- User code
- Data
Adaptive Combiners

Main idea
- Replace sort with hashing
- Reduce serialization, sort, and IO

![Diagram showing the comparison between regular and adaptive combiners.](Image)
Adaptive Combiners Details

- “Best-effort” aggregation
- Never spill to disk
- Hash-table replacement policies:
 - No-Replacement (NR)
 - Least-Recently-Used (LRU)
- Implemented as:
 - Library for Hadoop
 - Optimization choice for Jaql
Adaptive Combiners Experiments

GROUP-BY

- Synthetic dataset with 3 dimensions (A1, A2, and A3) and 1 fact
- Group records and apply aggregation function
- TWL: 10B records, 120GB

GROUP-BY on A1

×2.5 speedup

GROUP-BY on A1 and A2

×3 speedup
Adaptive MapReduce

Adaptive Techniques

- AM: Adaptive Mappers
- AC: Adaptive Combiners
- AS: Adaptive Sampling
- AP: Adaptive Partitioning

Rares Vernica (HP Labs)
Adaptive Sampling and Partitioning

Step 1: Compute and publish local histogram.

Step 2: Collect local histograms and compute partitioning function.

Step 3: Broadcast partitioning function.

MAP
REDUCE
MAP
REDUCE
MAP
REDUCE

MAP
REDUCE
MAP
REDUCE
MAP
DMDS

MAP
REDUCE
MAP
REDUCE
MAP

DMDS

Rares Vernica (HP Labs)

Adaptive MapReduce

EDBT 2012 24 / 25
Adaptive Sampling and Partitioning

Step 1: Compute and publish local histogram.

- **MAP**
- **REDUCE**

DMDS
Adaptive Sampling and Partitioning

Step 1 Compute and publish local histogram

Step 2 Collect local histograms and compute partitioning function

DMDS
Adaptive Sampling and Partitioning

Step 1: Compute and publish local histogram

Step 2: Collect local histograms and compute partitioning function

Step 3: Broadcast partitioning function
Summary

- Adaptive runtime techniques for MapReduce
- Situation-Aware Mappers
- Make MapReduce more dynamic

- Up to $\times 3$ speedup for well-tuned jobs
- Orders of magnitude speedup for badly tuned jobs
- Never hurt performance
- Configure themselves
- Part of IBM InfoSphere BigInsights