












division (28). Furthermore, previous studies have shown that
peroxisomes in mammalian cells often exhibit a tubular mor-
phology (27, 36). Our data indicate that Pex11� deficiency
impairs peroxisome elongation and hinders peroxisome divi-
sion; this may result in smaller and a lower number of peroxi-
somes with a regular spherical shape present in the livers of
Pex11��/� mice. We propose that this small size and regular
spherical shape signifies a lower exposed cellular surface area,
which may reduce the efficiency of fatty acid translocation
from the cytoplasm into the peroxisomes, thereby impairing
peroxisomal fatty acid metabolism.

Peroxisomes can also form de novo from the ER via a
maturation process (12, 13, 31–33). Hoepfner et al. (13) pro-
posed that during de novo formation, preperoxisomal vesicles
bud from the ER membrane and fuse homotypically, followed
by the formation of large preperoxisomal structures that ac-
quire additional PMPs to form import machinery. Only when
the import machinery for lumenal proteins is incorporated into
the newly forming peroxisome structure can the lumenal pro-

tein actually be imported, completing the maturation process to
form functional peroxisomes (30, 31). These possibilities led
us to hypothesize that newly forming peroxisomes from the ER
are ineffective (at least early in the process) and that there is a
larger number of ineffective newly forming peroxisomes in
Pex11��/� mice. Our results support this hypothesis and indicate
that newly formed peroxisomes in Pex11��/� mice lack meta-
bolic function.

ABCD2 encodes the adrenoleukodystrophy-related protein, a
peroxisomal member of the ATP-binding cassette half-
transporters, which are known to participate in the entry of fatty
acids into peroxisomes (9). ACOT3 encodes a peroxisomal long-
chain acyl-CoA thioesterase that catalyzes the hydrolysis of acyl-
CoAs to free fatty acid and coenzyme A (CoASH) to prevent
CoASH sequestration and to facilitate excretion of chain-
shortened carboxylic acids from the peroxisomes to mitochondria
for further metabolism (14). Decreased ABCD2 and ACOT3
expression in Pex11��/� mice may result in an impaired capacity
for peroxisomal fatty acid �-oxidation particularly of VLCFA and
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Fig. 6. Immunoelectron microscopy and immunofluorescence images indicate that Pex11� deficiency impairs peroxisome elongation and size. Pex11��/� and
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long-chain fatty acids (9). Under fasting conditions, higher ex-
pression levels of PPAR� and its target genes (ACOX1, ACLS1,
ACAA1A, CYP4A10, and HMGCS2) in the livers of Pex11��/�

mice may have resulted because impaired peroxisomal fatty acid
oxidation leads to the accumulation of fatty acid oxidation inter-
mediates that subsequently activate PPAR� and its target genes.
Although activated PPAR� can induce its target gene Pex11� and
promote peroxisome multiplication, as described above, peroxi-
some multiplication may depend on forming new peroxisomes
from the ER in Pex11��/� mice, but these new peroxisomes may
lack metabolic function. As a result, higher ACLS1, ACOX1, and
ACAA1A expression induced by PPAR� in Pex11��/� mice may
be ineffective for recovering metabolic functions. Whether and
how Pex11� deficiency affects peroxisomal fatty acid oxidation-
related protein import and activity and how it subsequently affects
peroxisome metabolic function requires further study.

Consistent with our results, Pex11� overproduction is suf-
ficient for inducing peroxisome proliferation in mouse and
human cultured cells (23). However, in contrast to our results,
Li et al. (20) reported that mice lacking Pex11� developed
normally, showing no obvious defects in peroxisome abun-
dance and metabolism. The reason for this difference is pres-
ently unclear. However, in the present study, HFD and fasting
conditions, which were not investigated by Li et al. (20), were
investigated. Pex11� is an inducible gene, and phenotypic
differences in WT mice and Pex11��/� mice will be more evident
under HFD and fasting conditions, in which the Pex11� gene
is upregulated. This may account for the differences between
the study of Li et al. (20) and our results.

In conclusion, our results demonstrate that Pex11� deficiency
impairs peroxisome elongation and abundance and peroxisomal

fatty acid oxidation, contributing to increased lipid accumulation
in the livers of Pex11��/� mice.
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