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Diffusion Imaging in Python (Dipy) is a free and open source software project for the
analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI
is an application of MRI that can be used to measure structural features of brain white
matter. Many methods have been developed to use dMRI data to model the local
configuration of white matter nerve fiber bundles and infer the trajectory of bundles
connecting different parts of the brain. Dipy gathers implementations of many different
methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion
distributions in individual voxels; fiber tractography and fiber track post-processing,
analysis and visualization. Dipy aims to provide transparent implementations for all
the different steps of dMRI analysis with a uniform programming interface. We have
implemented classical signal reconstruction techniques, such as the diffusion tensor
model and deterministic fiber tractography. In addition, cutting edge novel reconstruction
techniques are implemented, such as constrained spherical deconvolution and diffusion
spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking
and original methods for tractography clustering. Many additional utility functions are
provided to calculate various statistics, informative visualizations, as well as file-handling
routines to assist in the development and use of novel techniques. In contrast to many
other scientific software projects, Dipy is not being developed by a single research group.
Rather, it is an open project that encourages contributions from any scientist/developer
through GitHub and open discussions on the project mailing list. Consequently, Dipy today
has an international team of contributors, spanning seven different academic institutions
in five countries and three continents, which is still growing.
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1. INTRODUCTION
Diffusion MRI (dMRI) (LeBihan and Breton, 1985; Merboldt
et al., 1985; Taylor and Bushell, 1985) is an MRI technique
(Callaghan, 1991) that provides information about the struc-
ture of neuronal pathways found in the white matter and other
body tissue with fiber-like structure (see Figure 1). dMRI acquires
one or more T2 reference images, and a collection of diffusion-
weighted images, in which T2 signal is attenuated according to the
diffusivity of water along prescribed gradient directions (Behrens
and Johansen-Berg, 2009; Jones, 2010). Because diffusion is hin-
dered across nerve fiber membranes and less hindered along the
length of nerve fibers, the signal is relatively more attenuated
when diffusion-weighting is applied along the length of the fiber.
Hence, the local structure of the neural tissue can be inferred
from the measurements. This has led to many applications of
the method, including diagnostic tools to assess the disruption of
the microstructure and methods of tractography, which estimate

the trajectories of nerve fibers that communicate information
between different parts of the brain.

Because of its unique capability to characterize the microstruc-
ture of neural tissue, and the inferences that can be made using
this information about structural connectivity, dMRI has had
increasing popularity, with more than 5000 papers published
in 2012 (according to PubMed). This popularity is also evident
from the large number of software tools available for the analy-
sis of diffusion-weighted images. Many of these tools are written
in C/C++: 3D Slicer (Pieper et al., 2006), AFNI (Cox, 2012),
MITK (Fritzsche et al., 2012), BrainVoyager QX (Goebel, 2012),
DTI-Query/Quench (Sherbondy et al., 2005), FreeSurfer (Fischl,
2012), FSL-FDT (Smith et al., 2004), MedInria (Toussaint et al.,
2007), MRtrix (Tournier et al., 2012), Diffusion Toolkit/Trackvis
(Wang et al., 2007), FiberNavigator (Vaillancourt et al., 2011;
Chamberland and Descoteaux, 2013). A few are written in other
languages, such as R: TractoR (Clayden et al., 2011), Java: Camino
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It is common to represent the primary diffusion direction
using a red-green-blue (RGB) representation and create a DEC
(Directionally Encoded Color) map (Pierpaoli et al., 1996; Pajevic
and Pierpaoli, 1999) which is also known as color FA (see
Figure 4):

from dipy.reconst.dti import color_fa
cfa = color_fa(fa, ten_fit.evecs)

Finally, a couple more points about the implementation of DTI.
The first is that there is still ongoing research on fitting methods
for the tensor model (Koay et al., 2006). Several different meth-
ods have been implemented, including non-linear least-squares,
ordinary least-squares, and weighted least-squares fitting (Chung
et al., 2006) as well as Riemannian modeling-based techniques
that assure that the estimated tensor is positive definite (Arsigny
et al., 2006; Lenglet et al., 2006). In addition, there is ongoing
research on methods to robustly fit the tensor model, in the face of
noisy data (Chang et al., 2005, 2012). For this purpose, an imple-
mentation of a robust tensor fitting algorithm (RESTORE) is also
available in Dipy.

Note also that Dipy implements many more univariate mea-
sures. Not only can users compute FA, MD, DEC, but also other
statistics that have been proposed in the literature, such as the
diffusion linearity, planarity and sphericity (Westin et al., 1997),
as well as the tensor mode, tensor norm (Ennis and Kindlmann,
2006), radial and axial diffusivity. All these tensor-based met-
rics are available under the dipy.reconst.dti module. In
Figure 4 a few of the many available measures are shown.

6.2. DIFFUSION SPECTRUM IMAGING
For those who have acquired DSI data, i.e., data with mul-
tiple b-values and gradients that span a Cartesian keyhole

grid (Tuch, 2002; Wedeen et al., 2005; Garyfallidis, 2012),
Dipy currently provides three different models. The standard
DiffusionSpectrumModel can be accessed using:

from dipy.reconst.dsi import DiffusionSpectrumModel
dsi_model = DiffusionSpectrumModel(gtab)

Wedeen et al. (2005) showed that the dMRI signal is positive for
any type of spin motion without net flux (i.e., spin displacements
due to thermal molecular agitation) or other random fluxes such
as intravoxel incoherent motion. Under this assumption we can
replace the complex signal S with its modulus |S| in Equation (2)
and apply the Fourier transform:

P(r) = S−1
0

∫
|S(q)| exp(−i2πq · r)dq (4)

In DSI this 3D-integral is approximated in a discrete way and the
PDF P for every single voxel is returned as a 3D array. We can
obtain P using:

dsi_fit = dsi_model.fit(data)
dsi_pdf = dsi_fit.pdf()

However, we recommend this method only when the dimensions
of data are very small. This is because the dsi_pdf is a 6D array
with 3 dimensions for the voxel positions and 3 for the q posi-
tions. For a moderate data set of 150 × 150 × 90 where every
PDF is 35 × 35 × 35 we would need about 600 GB of RAM. As
a solution to this problem Dipy provides a method which can
facilitate traversing through each voxel and calculating each voxel
independently:

FIGURE 4 | Diffusion Tensor based scalar maps created with Dipy.
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from dipy.core.ndindex import ndindex
for index in ndindex(data.shape[:-1]):

vox_pdf = dsi_model.fit(dataslice [index]).pdf()

With this method we do not need to store all the PDFs at once. If
it is necessary to save all the PDFs then our advice is to create a
Numpy memory-map which will store the PDF for each voxel as
a binary file on disk while still appearing as an array in memory.
Memory-mapped files are used for accessing small segments of
large files on disk, without reading the entire file into memory.

Recently, an alternative method for DSI was proposed by
Canales-Rodríguez et al. (2010) using a deconvolution technique
based on a Lucy–Richardson (LR) algorithm of the 3D PDF. The
deconvolution technique accounts for the truncation of q-space
by standard DSI and can thus achieve a higher angular resolution
for resolving crossing fibers. This can be used in exactly the same
way as the standard DSI method:

from dipy.reconst.dsi import
DiffusionSpectrumDeconvModel

dsid_model = DiffusionSpectrumDeconvModel (gtab)
dsid_fit = dsid_model.fit(data)

In Figure 5 we show noiseless volumetric renderings of the PDFs
of a simulation of a 60◦ crossing with the two different meth-
ods. It is evident that the LR deconvolution reconstruction better
represents the underlying structure.

Since we are mainly interested in the angular structure of
the underlying tissue, we further simplify the data by taking the
weighted radial summation of P(r)

ψDSI(û) =
∫ ∞

0
P(rû)r2dr (5)

This defines the orientation density function (ODF) for DSI
which measures the quantity of diffusion in the direction of

FIGURE 5 | Volumetric rendering of the 3D diffusion propagator of a

60◦ crossing with standard DSI (top-left) and DSI with deconvolution

(top-right) with their corresponding ODFs (bottom).

the unit vector û where r =rû. ψDSI is a function on a sphere.
Therefore, in order to calculate it or even visualize it we will need
a set of spherical coordinates. Here is how we can obtain this ODF:

from dipy.data import get_sphere
sphere = get_sphere("symmetric724")
dsi_odf = dsi_fit.odf(sphere)

where sphere is an object holding the vertices and faces of
the sphere. Here we used a symmetric sphere with 724 vertices.
The dsi_odf is an array of the 724 ODF values corresponding
to the vertices of the sphere. Note at this point that in order to
find the ODF we have to first create the diffusion propagator
(PDF) by applying the Fourier transform on the lattice (see
Figure 5). Nonetheless, Dipy, for reasons explained before
does not store the PDFs as it computes the ODF. Yeh et al.
(2010) proposed a direct way (GQI) to calculate a slightly
different ODF using the Cosine transform. GQI is available from
dipy.reconst.gqi.GeneralizedQSamplingModel.
The advantage of GQI is that it is much faster to calculate than
DSI or DSI with deconvolution.

6.3. Q-BALL IMAGING
To reduce the acquisition requirements of DSI, several techniques
have been proposed to compute the ODF from Equation (5)
using only a single b-value dMRI acquisition, often called single-
shell high angular resolution diffusion imaging (HARDI) (Tuch
et al., 2002; Descoteaux et al., 2011). Spherical harmonics (SH)
are mathematical functions that provide a complete orthonormal
basis for functions on the sphere. In practice, these can be used
to approximate any spherical function (such as the ODF) up to a
highest frequency (SH order). Due to their practical mathemat-
ical properties, there have been several proposals using spherical
harmonics to describe the apparent diffusion coefficient (ADC)
computed from HARDI, starting from the work of Frank (2001,
2002) and Alexander et al. (2002) and Tuch et al. (2002). Then,
Tuch showed that the Funk Radon Transform (FRT), used in a
method he called q-ball imaging (QBI), reconstructs a smoothed
version the ODF directly from a single-shell dMRI acquisition.
This q-ball ODF ψQBI can be obtained analytically from a SH esti-
mation of the diffusion signal (Anderson, 2005; Hess et al., 2006;
Descoteaux et al., 2007):

ψQBI(θ,φ) =
R∑

j = 1

2π
cj

S0
Pl(j)(0)Yj(θ,φ) (6)

where Pl(j) is the Legendre polynomial of order l corresponding to
coefficient j and the coefficients have been normalized by the S0
(non-diffusion weighted) image. Hence, the q-ball ODF is a linear
transformation of the SH coefficient, cj. This technique is called
analytical QBI (aQBI), in contrast to the original QBI solution,
which performs the FRT numerically. It is important to note that
these solutions are based on Equation (5), without the r2 term. So
these ODFs are not properly normalized. Hence, Dipy also imple-
ments the Constant Solid Angle analytical solution more recently
proposed by Aganj et al. (2010) and Tristan-Vega et al. (2009).

The SH of order l and phase m, Ym
l (θ,φ), arises from the angu-

lar solution to Laplace’s equation in spherical coordinates and
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they form an orthonormal basis for complex functions defined
on the unit sphere. However, in single-shell acquisitions, S is real
and symmetric. Hence, it is common to define a real and sym-
metric modified orthonormal SH basis, Yj, using only even order
terms and real/imaginary parts of Ym

l (θ,φ). Therefore, the mea-
sured signal S is estimated with a truncated SH series of order
lmax, which has R = (lmax + 1)(lmax + 2)/2 terms. For example,
for lmax = 4, 6, 8, and 16 SH series have R = 15, 28, 45, and 153
coefficients, respectively.

In Dipy we have implemented three different Q-ball meth-
ods in the module dipy.reconst.shm: (a) Descoteaux et al.
(2007), (b) Aganj et al. (2010), and (c) Tristan-Vega et al. (2009).
For example (a) can be used in the following way:

from dipy.reconst.shm import QballModel
qb_model = QballModel(gtab, order=6, smooth=0.006)
qb_fit = qb_model.fit(data)
qb_odf = qb_fit.odf(sphere)

Important points to note are that SH order is set at 6 and the
regularization parameter at 0.006, following the optimization rec-
ommendations of Descoteaux et al. (2006). Furthermore, because
the analytical ODF method produces smoother ODFs it is useful
for visualization purposes to use min-max normalization.

from dipy.reconst.odf import minmax_normalize
qb_nodf = minmax_normalize(qb_odf)

The SH coefficients are accessible using the attribute
qb_fit.shm_coeff. Methods (b) and (c) can be used
in a very similar way. For example, for the Constant Solid Angle
(CSA) (Aganj et al., 2010) method (b) we only need to remove
the normalization function and reduce the SH order as the CSA
method becomes considerably noisier in higher orders:

from dipy.reconst.shm import CsaOdfModel
csa_model = CsaOdfModel(gtab, order=4, smooth=0.006)
csa_odf = csamodel.fit(data).odf(sphere)

As a side note: the term Constant Solid Angle derives from the
fact that this method calculates the ODF taking account of radial
distance as we see in Equation (5).

6.4. CONSTRAINED SPHERICAL DECONVOLUTION
QBI-based techniques reconstruct the diffusion ODF (dODF).
To improve the angular resolution of the reconstruction, spher-
ical deconvolution (SD) techniques have been introduced and
reconstruct what is called the fiber ODF (fODF). SD was first
introduced by Tournier et al. (2004). With this method, the signal
measured on single spherical shell acquisitions can be expressed
as the convolution over spherical coordinates of the response
function with the fODF. The response function describes the
signal intensity that would be measured as a function of orien-
tation for a single fiber aligned along the z-axis. In the spher-
ical harmonics (SH) framework, the convolution operation is
performed as follows. For each harmonic order l, the SH coef-
ficients of the signal profile S(θ,φ) and the fODF F(θ,φ) are
written as vectors sl and fl of length 2l + 1, whereas the rota-
tional harmonic coefficients of the convolution kernel R (the

response function) are written as a matrix Rl of size (2l +
1) × (2l + 1). The convolution operation then simply consists of
one matrix multiplication per harmonic order l: sl = R · fl. The
spherical deconvolution operation can be performed by simple
matrix inversion. However, the spherical deconvolution problem
is ill-posed and thus severely affected by noise (Tournier et al.,
2004).

Constrained super-resolved spherical deconvolution (CSD)
Tournier et al. (2007) gives a robust solution to this problem by
applying two major constraints on the fitting of the fODF. The
first is that it applies a non-negativity constraint: fODF values that
are smaller than 0 are non-physical and are precluded. The other
is that CSD assumes that only a few of the fODF values will be
large. Applying these two constraints allows fitting the SH basis
up to very high orders, in essence fitting more parameters than
the data allows. This super-resolved method can be accessed in
Dipy using:

from dipy.reconst.csdeconv import
ConstrainedSphericalDeconvModel as CsdModel

csd_model = CsdModel(gtab, response)

The main choice to consider is the estimation of the single fiber
response function. We assume that R is derived from a prolate
tensor, where the single-tensor model is accurate. The eigenval-
ues of this tensor are estimated from the voxels with FA > 0.7.
The input parameter response is a tuple with two parameters:
(a) the eigen-values of the tensor and (b) the estimated aver-
age S0 signal for those voxels. The response function is usually
estimated from the corpus callosum areas. For further infor-
mation on how to initialize the CSD please read our examples
at dipy.org.

Dipy also implements a second constrained spherical decon-
volution method: the Spherical Deconvolution Transform (SDT)
(Descoteaux et al., 2009), which is a sharpening operation that
can transform the smooth diffusion ODF into a sharper fiber
ODF. The method is inspired by CSD (Tournier et al., 2007) with
the main difference that the CSD is applied directly to the ini-
tial signal and the SDT directly to the ODF (Descoteaux, 2008;
Descoteaux et al., 2009).

For the derivation and explanation of the formula see
Descoteaux et al. (2009). You can use the SDT in the following
way:

from dipy.reconst.csdeconv import
ConstrainedSDTModel as SdtModel

sdt_model = SdtModel(gtab, ratio)

Here the response function is provided as a scalar parameter
ratio, which is the ratio of the smallest eigenvalue to the largest
eigenvalue. Both spherical deconvolution methods perform sim-
ilarly as shown in Descoteaux et al. (2009) and Garyfallidis et al.
(2013).

In Figure 6 the ODFs of the TensorModel, CsaOdfModel
and CsdModel of a region in the centrum semiovale show cross-
ings between the corpus callosum, corticospinal tract and the
superior longitudinal fasciculus.
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FIGURE 6 | (A) Tensor ellipsoids color-coded with a DEC map, (B) tensor ODFs, (C) constant solid angle ODFs, and (D) constrained spherical deconvolution
ODFs in a region in the centrum semiovale showing crossings between the corpus callosum, corticospinal tract and the superior longitudinal fasciculus.

6.5. PEAKS FROM MODELS
In the previous sections we showed that the reconstruction mod-
els have a uniform API and can be called in similar ways. For
example, they all have an odf() method. This design gives us
the opportunity to create utility functions where the model is
one of the parameters. peaks_from_model is a multipurpose
function which can be used to (a) find the maxima (peaks) of
the ODFs, (b) find the directions of the maxima in the ODFs
(which can be useful for tracking), (c) discretize those directions
on the unit sphere for efficiency, (d) compress the ODFs as spher-
ical harmonics to reduce memory usage, and (e) calculate many
metrics simultaneously—e.g., generalized fractional anisotropy
(GFA) (Tuch, 2004)—without the need to create all ODFs at once.
peaks_from_model can be called as:

from dipy.reconst.peaks import peaks_from_model
pmd = peaks_from_model(model=dsi_model,

data=data,
sphere=sphere,
relative_peak_threshold=.5,
min_separation_angle=25,
mask=mask,
return_odf=False,

return_sh=True)
gfa = pmd.gfa

The model parameter can be set to any of the models
discussed in the previous sections e.g., dsi_model. The
relative_peak_threshold parameter specifies that only
peaks greater than relative_peak_threshold∗m should
be returned, where m is the value of the largest peak.
min_separation_angle sets the threshold for the mini-
mum angular distance in degrees between two peaks. If the
peaks are closer than this threshold only the larger of the two is
returned. These two parameters help to get robust fiber direc-
tions when the ODFs are noisy. peaks_from_model returns a
PeaksAndMetrics object which holds all the different output
arrays, peak_values, peak_indices, gfa , qa (Yeh et al.,
2010), odf and shm_coeff.

If the parameter return_sh is set to True then the ODFs
will be represented by their SH expansion. This reduces mem-
ory usage, as the SH coefficients need much less memory than
the ODF represented on the sphere. If we want to calculate the
ODF back from the SH coefficients we can use the function
sh_to_sf:
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