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Abstract. To bridge the gap between large-scale GCM
(global climate model) outputs and regional-scale climate re-
quirements of hydrological models, a spatiotemporally dis-
tributed downscaling model (STDDM) was developed. The
STDDM was done in three stages: (1) up-sampling grid-
observations and GCM simulations for spatially continuous
finer grids, (2) creating the mapping relationship between
the observations and the simulations differently in space and
time, and (3) correcting the simulation and producing down-
scaled data to a spatially continuous grid scale. We applied
the STDDM to precipitation downscaling in the Poyang Lake
watershed using the MRI-CGCM3 (Meteorological Research
Institute Coupled Ocean–Atmosphere General Circulation
Model 3), with an acceptable uncertainty of ≤ 4.9 %. Then
we created future precipitation changes from 1998 to 2100
(1998–2012 in the historical scenario and 2013–2100 in the
RCP8.5 scenario). The precipitation changes increased het-
erogeneities in temporal and spatial distribution under future
climate warming. In terms of temporal patterns, the wet sea-
son become wetter, while the dry season become drier. The
frequency of extreme precipitation increased, while that of
the moderate precipitation decreased. Total precipitation in-
creased, while rainy days decreased. The maximum contin-
uous dry days and the maximum daily precipitation both in-
creased. In terms of spatial patterns, the dry area exhibited a
drier condition during the dry season, and the wet area exhib-
ited a wetter condition during the wet season. Analysis with
temperature increment showed precipitation changes can be
significantly explained by climate warming, with p < 0.05

and R ≥ 0.56. The precipitation changes indicated that the
downscaling method is reasonable, and the STDDM could
be successfully applied to the basin-scale region based on a
GCM. The results implied an increasing risk of floods and
droughts under global warming, which were a reference for
water balance analysis and water resource planning.

1 Introduction

Global warming has caused temporal and spatial redistri-
butions of precipitation (Frei et al., 1998; Alexander et al.,
2006; Trenberth et al., 2011) and has increased the frequency
and intensity of floods and droughts, seriously threatening
social systems and ecosystems (Pall et al., 2011; Dai, 2013).
To the fragile ecological and living environments, the state of
the future hydrological situation with future global warming
is a crucial question for avoiding or reducing damage from
climate warming.

Global climate models (GCMs) are basic tools for assess-
ing the effects of future climate change and provide an initial
source for future climates (Xu, 1999). However, GCMs have
coarse global resolutions, ranging from 1◦× 1◦ to 4◦× 4◦,
and are not applicable on regional scales, such as water-
sheds. Downscaling algorithms have been developed to link
the global-scale GCM outputs and the regional-scale climate
variables, including dynamic (Giorgi, 1990; Teutschbein and
Seibert, 2012) and statistic (Jones et al., 1998; Wilby and

Published by Copernicus Publications on behalf of the European Geosciences Union.



1650 L. Zhang et al.: Precipitation projection using a new downscaling method.

Dawson, 2002; Chu et al., 2010) models. The dynamic
method employs regional climate models (RCMs) that are
nested inside GCMs, are based on the complex physics of at-
mospheric processes, and involve high computational costs.
Limited by an insufficient understanding of the physical
mechanism and expensively computing resources, the dy-
namic downscaling model cannot easily satisfy small and
midsize regions like the Poyang Lake watershed. Unlike dy-
namic downscaling, statistic downscaling constructs an em-
pirical relationship between climate variables on the global
scale and local scale, with inexpensive computations. Bene-
fiting from inexpensive computations and easy implementa-
tions, downscaling methods have been widely used, includ-
ing regression models (Labraga et al., 2010; Quintana et al.,
2010; Von Storch and Zorita 1999), weather typing schemes
(Boé et al., 2007; Enke et al., 2005), and weather generators
(Mullan et al., 2016; Baigorria and Jones, 2010).

Most statistical downscaling methods are conducted in
discrete stations (Charles et al., 1999; Zhang et al., 2005;
Maurer et al., 2008; Mullan et al., 2016; Ben Alaya et al.,
2018; Chen et al., 2018) and produce downscaled data on the
station scale, including single-station and multi-station meth-
ods. The single-station method produces either the down-
scaled climate variable at a single point (or watershed av-
erage) or independently at several points (Zhang et al., 2005;
Maurer et al., 2008). The multi-station method generates the
downscaled climate variable dependently for multiple sites
(Charles et al., 1999; Ben Alaya et al., 2018; Chen et al.,
2018). For both the single-station and multi-station meth-
ods, the specific downscaling relationship and downscaled
climate variable are both discrete on the station scale, instead
of being spatially continuous on a grid scale of a finer resolu-
tion. Compared to the spatially continuous grid data, discrete
stations are sparse. As underlays of local region are complex
with different topographies, land covers, and cloud coverage,
the discrete point-scale data underrepresent the spatial vari-
ability. For ungauged areas without station coverage, it is in-
viable to obtain high-quality downscaling relationships and
downscaled local climate variables. Moreover, compared to
point-scale data, spatially continuous grid data can express
the spatial distribution of climate variables more accurately
and clearly, thus expressing the spatial correlation and het-
erogeneity more accurately and clearly. Additionally, spa-
tially continuous grid data can be directly used in a spatially
distributed or a semi-distributed hydrological model, such as
CREST (Wang et al., 2011), VIC (Liang et al., 1994), and
(Refsgaard and Storm, 1995, DHI, 2014), which is the fore-
front of international hydrological scientific research (Beven
et al., 1996). Spatially continuous downscaled climate data
can also be easily integrated with remote sensing data of ge-
ologies, topographies, soils, or land covers. In fact, spatially
continuous data are widely used in the rapidly developing
field of remote sensing, which benefits hydrological models
by providing a data source (Engman et al., 1998). Therefore,

the downscaling method processed on spatially continuous
data is of vital importance.

Some downscaling methods could obtain spatially con-
tinuous data. Dynamic downscaling methods could produce
downscaled climate variables in spatial continuous grid-
scale. However, the downscaled grid data are commonly
limited in the resolution coarser than 25 km (Trzaska and
Schnarr, 2014; Maraun et al., 2010), thus they cannot be
applied to small watersheds. A few statistical downscaling
methods of the weather generator could provide downscaled
climate variables on a spatially continuous scale (Perica et
al., 1996; Venema et al., 2010). The specific algorithms can
be divided into three cartographies: transformed Gaussian
processes (Guillot and Lebel, 1999), point process models
(Wheater et al., 2005; Cowpertwait et al., 2002), and spa-
tiotemporal implementation of multifractal cascade models
(Lovejoy and Schertzer, 2006). However, little research has
implemented these approaches in GCM outputs. Further-
more, as the refined data obtained from the weather gener-
ator are biased from the observed data, correction is needed.
However, in the research, there is no observed field of finer
resolution corresponding to the downscaled scale; thus, the
entire spatial unit in the downscaled field could not be cor-
rected by the observed field.

Since the factors driving climate variables vary in regions
and seasons, the statistical downscaling method should con-
sider the spatial and temporal heterogeneity (Fowler et al.,
2007; Manzanas et al., 2018). Most methods (Charles et al.,
1999; Maurer et al., 2008; Ben Alaya et al., 2018) performed
the downscaling for each specific site (or specific types of
sites); thus the downscaled result showed spatial heterogene-
ity. However, few downscaling methods consider the spa-
tial heterogeneity on a spatially continuous scale. In terms
of temporal heterogeneity, some downscaling algorithms are
processed independently for months (or seasons; Boé et al.,
2007; Leander and Buishand, 2007). For different times, the
algorithm or parameters are different; thus the temporal het-
erogeneity is expressed. However, few downscaling methods
consider temporal heterogeneity combined with spatial het-
erogeneity on the spatially continuous scale.

To produce downscaled data on a spatially continuous
scale and consider temporal heterogeneity combined with
spatially continuous heterogeneity, the study proposed a spa-
tiotemporally distributed downscaling method (STDDM). A
finer-resolution observed field (Hutchinson et al., 1998a, b)
is induced as the reference to correct the refined GCM out-
puts for each grid and time; subsequently, the corrected data
are produced as the downscaled data. The correction is dis-
tributed in time and continuous space.

The Poyang Lake watershed is sensitive to climate changes
in the East Asian monsoon region and is therefore not im-
mune to global warming. Redistributions of precipitation due
to global warming have resulted in an increased occurrence
of extreme hydrological events; an enhanced flood frequency
and intensity (Wang et al., 2009; Guo et al., 2010); and a sig-
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nificant decline in lake level and inundation area (Feng et al.,
2012; Zhang et al., 2014), which threatened fragile wetland,
forest ecosystems (Han et al., 2015; Dyderski et al., 2018),
economic developments, and human lives (Ye et al., 2011).
However, the Poyang Lake Wetland ecosystem is an interna-
tionally important habitat for migratory birds, is abundant in
biodiversity, and is regarded as a nature reserve. In addition,
the watershed is a commercial grain production area and an
important part of the Yangtze River Economic Belt. As this
region is economically and ecologically significant, investi-
gating the future precipitation changes in the watershed is
crucial to protection from climate damage. Previous studies
of future precipitation changes in the Poyang Lake water-
shed include temporal and special patterns. Studies of precip-
itation changes with a temporal pattern focused on intensity
and frequency of precipitation extremes (Hong et al., 2014;
Wang H. et al., 2009) as well as the annual or quarterly total
precipitation (Guo et al., 2010, 2008; Li et al., 2016). With
regards to the spatial pattern, precipitation change analysis
covers five sub-basins (Xinjiang, Raohe, Xiushui, Ganjiang,
and Fuhe sub-basins; Guo et al., 2010; Hong et al., 2014) and
13 discrete meteorological stations (Li et al., 2016) or seven
coarse grids (Guo et al., 2008). There has been little research
concerning the spatiotemporal distribution of precipitation in
a continual fine-resolution grids space. In addition, driving-
force analysis of precipitation changes related to the temper-
ature increment has not been conducted.

In the study, using the Poyang Lake watershed as a test
case, we projected future precipitation based on the spa-
tiotemporally distributed downscaling method (STDDM),
using Meteorological Research Institute Coupled Ocean–
Atmosphere General Circulation Model 3 (MRI-GCM3)
simulations and meteorological observations. The objec-
tives are the following: (1) developing a spatiotemporally
distributed downscaling method (STDDM), (2) projecting
future climate variables in spatially continual scale, and
(3) documenting temporal and spatial changes in precipita-
tion for the Poyang Lake watershed in the 21st century and
the correlations between these precipitation changes and the
temperature increment. Future precipitation changes can pro-
vide the basic hydrological information necessary for a bet-
ter understanding of water volumes and flood-drought risks,
further benefiting wetland and forest ecosystem conservation
and aiding decision-making in development, utilization, and
planning of water resources.

2 Study area and data sets

2.1 Study area

The Poyang Lake basin (24◦28′–30◦05′ N and 113◦33′–
118◦29′ E) is located in the southeast of China and is con-
nected with the Yangtze River in the north (Fig. 1). Within
the southeastern subtropical monsoon zone, the annual aver-

age temperature of the watershed is 17.5◦. The mean annual
precipitation is 1638 mm, with 192 rainy days (daily precipi-
tation ≥ 0.1 mm day−1) and 173 rain-free days (daily precip-
itation < 0.1 mm day−1). The rainy season lasts from April
to July, occupying about 70 % of the annual total amount.
Inter- or intra-annual precipitation variations are dominated
by the southeastern and southwestern monsoon, mainly in
summer. With a coverage area of 162 000 km2, the diversi-
ties of topographies also affect precipitation changes. The to-
pography varies from high mountains of Luoxiao, Wuyi, and
Nanling in the east, south, and west, with the elevation reach-
ing 2200 m, to the lowlands of Jitai or Ganzhou in the south
or center and to the alluvial plains of the Poyang Lake plain
in the north, with the elevation reaching to < 50 m (Fig. 1a).
The different topography and location generate the uneven
distribution of precipitation in space and produce less rain
in the lowland, plain, and hilly areas because of the leeward
sloop but generate more orographic rain in the mountain area
for the reason of the windward sloop (Fig. 1b; Zhan et al.,
2011). To analyze precipitation changes in the areas rich in
rain or poor in rain, the meteorological stations were classi-
fied into dry and wet stations (Fig. 1a, b) according to the
annual precipitation amount. We sorted the annual precipi-
tation of the 15 stations, averaged over the time from 1961
to 2005. The four stations with the maximum or minimum
mean annual precipitation values are set as dry or wet sta-
tions, indicating the dry or wet area (Fig. 1b), respectively.

In the past 50 years in the Poyang Lake watershed, an-
nual mean temperature indeed experienced a significant (p <

0.02) increase, with a changing rate of 0.15◦ per 10 years
(Fig. 1d), based on the meteorological observations from
1961 to 2005. Under the condition of increasing tempera-
tures, the precipitation in temporal and spatial distribution
becomes more uneven (Zhan et al., 2011), which increases
the risk of floods and droughts (Li et al., 2016; Ye et al.,
2011).

2.2 Data sets

GCMs are widely used tools for projecting future cli-
mate change. GCMs from the Coupled Model Intercompar-
ison Project Phase Five (CMIP5) perform better than other
CMIPs, such as CMIP3 and CMIP4, with generally finer res-
olution and a more improved physical mechanism (Sperber,
2013; Taylor et al., 2012). Compared to the other GCMs
of CMIP5, the MRI-CGCM3 (Yukimoto et al., 2012) per-
forms better when simulating diurnal rainfall over subtrop-
ical China (Yuan, 2013) and has the finest resolution of
1.121◦×1.125◦. Thus we selected the MRI-CGCM3 data ap-
plied to the Poyang Lake watershed to test the performance
of the STDDM.

The future data of MRI-CGCM3 include simulations of
the Representative Concentration Pathways (RCPs) of 8.5,
6, 4.5, and 2.6. Compared to the other RCPs, in the RCP8.5
scenario temperature increases the most, which corresponds
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Figure 1. The topography and landforms (a), precipitation distribution and dry–wet stations (b), temperature change (d), and location of the
Poyang Lake basin (c). We sorted the annually accumulated precipitation of the 15 stations, averaged over the period from 1961 to 2005. The
four stations with the maximum or minimum mean annual precipitation values are set as dry or wet stations, respectively.

to the highest greenhouse gas emission, leading to a radiative
forcing of 8.5 W m−2 and a temperature increase of 7.14 ◦C
at the end of 21st century (Taylor et al., 2012). The research
is used to detect the remarkable precipitation changes under
climate warming; thus we selected future simulations in the
RCP8.5 scenario. In the study, we merge the historical (from
1961 to 2005), historical-extent (from 2006 to 2012), and
RCP8.5 (from 2013 to 2100) data as the merged data (1961–
2100). To quantitatively analyze the precipitation changes
under climate warming in the 21st century, we compared pre-
cipitation between the baseline and future periods. As annual
precipitation observations have main oscillation periods of
around 20 years (Zhan et al., 2011), we selected three 20-year
periods from the merged data. From the merged data, simu-
lations from 1998 to 2017 were selected as the baseline pe-
riod data, simulations from 2041 to 2060 were selected as the
near-future period data, and simulations from 2081 to 2100
were selected as the further future period data.

The local grid observations (Hutchinson et al., 1998a, b;
Zhao et al., 2014) with a resolution of 0.5◦× 0.5◦ are down-
loaded from the National Meteorological Information Center
(http://data.cma.cn/, last access: 21 January 2019). The local
grid observations and MRI-CGCM3 historical simulations

were used to construct a relationship to correct the GCM
data. Chinese meteorology point data were also downscaled
and used to validate the grid observations and the downscaled
GCM simulations. To investigate the relationship between
precipitation changes and the temperature increment, we ex-
tract not only precipitation values but also temperature.

3 Methodology

3.1 Future climate projection based on the
spatiotemporally distributed downscaling model

Considering the spatiotemporal heterogeneity of precipita-
tion at the regional scale such as the Poyang Lake water-
shed, we developed a spatiotemporally distributed downscal-
ing model (STDDM), which is a logical framework based
on a specific mathematic algorithm. The mathematic algo-
rithm was used to create a mapping relationship between
the global-scale GCM simulations and the local-scale cli-
mate variables. The mapping relationship is used as a trans-
form function to correct the future climate simulations to no-
bias data. In the framework, we constructed respective rela-
tionships with maps between the pairs of GCM simulations
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and local climate observations in each time (e.g., months
or seasons) at each location. The STDDM was improved
compared to the traditional downscaling methods by adjust-
ing the specific downscaling algorithm to be suitable in the
distributed space and time. Therefore, the downscaling pro-
cesses show spatiotemporal differences in the parameters or
the equations, and the output data are spatially continuous,
unlike those in traditional downscaling methods, which ig-
nore the temporal and continuous spatial differences and ex-
press space as discrete points instead of continuous grids.

Figure 2a shows the logical framework of the STDDM
while Fig. 2b demonstrates how it was applied in the
Poyang Lake watershed using MRI-CGCM3 based on a
linear-scaling algorithm. The STDDM contains three parts
(Fig. 2a, b): (1) up-sampling GCM simulations and local-
scale observations to a continuous grid space of the same
finer resolution, (2) constructing respective mapping rela-
tionship between the GCM simulations and local obser-
vations in distributed space and time, and (3) correcting
the GCM simulations using the mapping relationship con-
structed in step two.

3.1.1 Up-sampling GCM simulations

MRI-GCM3 simulations were interpolated by Natural
Neighbor Interpolation (Sibson et al., 1981) to a scale of
20 km× 20 km, the smallest size of the sub-basin of the
Poyang Lake watershed (Zhang et al., 2017), generating 263
spatial grids (Fig. 2b). For the spatiotemporally distributed
downscaling, we used Chinese meteorological spatially con-
tinuous grid data as observations, instead of Chinese meteo-
rological station data. We interpolated the gridded observa-
tions to 20 km× 20 km, the same as the downscaled climate
simulations. The grid pairs of simulations and observations
at each time and each grid box were generated.

3.1.2 Constructing relationships between the GCM
simulations and local observations

Because there is an inevitable mismatch between the simu-
lations and observations (Li et al., 2010; Wood et al., 2004)
after the up-sampling, bias correction should be performed.
The bias correction was processed by the transform func-
tion between pairs of the up-sampled simulations and obser-
vations, which represents the mapping relationship between
the pairs. The transform function could be any bias cor-
rected model, including linear scaling, local intensity scal-
ing, power transformation, and the distribution of mapping
models (Teutschbein and Seibert, 2012) and other linear or
nonlinear regression models.

As the influencing factors on climates show heterogeneity
in space and time, we created spatiotemporally distributed
relationships, described by the following formula:

C′T ,S = FT ,S(CT ,S), (1)

where C′T ,S and CT ,S indicate the up-sampled global-scale
climate simulations and the local climate variables, respec-
tively, in the given time of T and the space of S. FT ,S demon-
strates a transform function, used to correct the up-sampled
GCM simulations. The function is a specific bias correction
model, spatiotemporally distributed in mathematic equations
or parameters, which is constructed based on the data from
the historical period from 1961 to 2005.

In this study, we use a linear-scaling algorithm (Lenderink
et al., 2007) as the bias correction model. For the linear-
scaling algorithm, the simulations were corrected by the dis-
crepancy between the simulations and observations. Precipi-
tation values derived from the GCMs were corrected by mul-
tiplying the precipitation bias coefficient, which is the ra-
tio of the mean monthly observation to simulation from the
historical period; temperatures were corrected by adding the
temperature bias coefficient, which is the difference between
the mean monthly observation and simulation in the histor-
ical period. However, as the bias varies among the months
from January to December and among the locations of the
236 spatial grids, a global standard bias coefficient is prohib-
ited. To better capture the bias in distributed time and space,
we should create an individual bias coefficient for the given
month and gird box. Thus, a spatiotemporally distributed bias
matrix was constructed. The respective downscaling model
and bias coefficient for a given month (T ) and space (S) were
established by Eqs. (2) and (3):

P ′ = P ×PCof, (2)
TM′ = TM + TMCof, (3)

where P (TM) represents the precipitation (or temperature)
of up-sampled simulations, P ′ (TM′) represents the down-
scaled result or up-sampled observations, and PCof (TMCof)
represents the bias correction coefficient of precipitation val-
ues (or temperatures). In the construction of PCof (TMCof), P
(TM) and P ′ (TM′) were set as the average monthly precipi-
tation (or temperature) over the historical period, from 1961
to 2005. All the input and output data in the equations are in
the given month (T ) and space (S).

3.1.3 Correcting the GCM simulations

The constructed relationship between the GCM simula-
tions and the observations from the historical period (in
Sect. 3.1.2) also hold for the future (Maraun et al., 2010).
Thus, the transform function was used to correct the future
CGCM simulations. In this study, we corrected the daily and
monthly precipitation values (or temperatures) from MRI-
CGCM3 by adding (or multiplying) the bias coefficients in
the corresponding month and grid box.
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Figure 2. Conceptual flow chart of the climate projection including up-sampling, relation construction, and correction; the common frame-
work of the STDDM (a), and the test case based on the linear-scaling algorithm (b). The STDDM was used to project MRI-CGCM3
simulations from 1998 to 2100.

3.2 Precipitation change analysis

3.2.1 Statistic indices of precipitation changes

To obtain the general change in the temporal distribution, we
calculated monthly precipitation values from 1998 to 2100,
averaged over the whole watershed. As floods and droughts
occur more frequently in wet and dry months, we specifi-
cally analyze the extreme wet and dry precipitation changes
in the 21st century. Therein, monthly precipitation values,
> 75 % percentile of the 12 months, were classified as the ex-
treme wet monthly precipitation values for each year in the
103-year period; monthly precipitation values, ≤ 25 % per-
centile were classified as the extreme dry monthly precipita-
tion. The monthly precipitation of the 25 %–50 % and 50 %–
75 % quantiles was classified as normal dry and wet monthly
precipitation values. The wet monthly precipitation values
include extreme and normal wet monthly precipitation val-
ues; the dry monthly precipitation values included extreme
and normal dry monthly precipitation values. To understand
precipitation dynamics in terms of frequency and intensity,
daily precipitation values were categorized into five classes
based on the classification by the China Meteorological Ad-
ministration and the possible risk of floods and droughts:
light rain, medium rain, heavy rain, rainstorms, and extreme
rainstorms, with daily precipitation values of 0.1–10, 10–25,

25–50, 50–100, and > 100 mm day−1, respectively. The fre-
quency of precipitation intensities indicates heterogeneity in
temporal distribution. The higher the frequency of moder-
ate rain, the more homogeneous the distribution, and the op-
posite is true for extreme rain. Therefore, the precipitation
intensities were separated to moderate or extreme rain. The
moderate rain includes light and medium rain, while the ex-
treme rain includes heavy rain, rainstorms, and extreme rain-
storms.

To further analyze the changes in precipitation frequen-
cies and intensities, we calculate the annual days of light
rain, moderate rain, heavy rain, rainstorms, and extreme rain-
storms from 1998 to 2100, averaged over the whole wa-
tershed. Annual total precipitation, annual dry days, annual
maximum daily precipitation, and annual maximum contin-
uous dry days were displayed as well. The meteorological
stations (Fig. 1a) are uniformly distributed in the whole wa-
tershed and cover most kinds of the topographies and land
covers. Therefore, in the study, all the above precipitation
indices for 1 year for the whole watershed were calculated
based on the precipitation averaged over the grids containing
the 15 stations, instead of using all the grids. Under global
climate warming, precipitation becomes more concentrated,
which leads to more heterogeneity in temporal and spatial
distribution (Donat et al., 2016; Min et al., 2011). Thus, we
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Figure 3. Validation of gridded meteorological data (GridObs) by using gauging stations observation: precipitation (pcp; a, b, c, and d) and
temperature (tem; e,f,g, and h) at meteorological stations Yichuan (a, e), Boyang (b, f), Guangchang (c, g), and Xunliao (d, f).

calculated variation coefficients for each year from 1998 to
2100 to investigate the precipitation changes in temporal and
spatial distribution. The variation coefficient measures the
standard dispersion of the data items, which can indicate the
unevenness of temporal and spatial distributions of the pre-
cipitation. In this study, heterogeneity in temporal, spatial,
and spatiotemporal distributions was measured by the tempo-
ral, spatial and spatiotemporal variation coefficient, respec-
tively. Temporal variation coefficients were calculated from
the daily or monthly precipitation values in 1 year, and the
variation coefficient for 1 year is averaged from those of the
15 stations. For monthly precipitation, we only select ex-
treme wet and dry precipitation values, as the extreme wet
and dry are more likely to cause floods or droughts and thus
should be paid more attention to. Spatial variation coeffi-
cients were calculated on the annual total precipitation val-
ues of the 15 stations in 1 year. The spatiotemporal variation
coefficient was calculated on the monthly precipitation val-
ues of the extreme wet months of the wet stations and the
extreme dry months of the dry stations in 1 year, as the ex-
treme precipitation values were more likely to cause floods
or droughts.

3.2.2 Relationship analysis between precipitation
changes and increasing temperature

We investigated the precipitation changes as a result of global
temperature increase. To this end, we calculated linear re-
gression between the precipitation index and temperature
changes from 2005 to 2100. We note that a mean filter with
a window size of 21 years can reduce potential random

fluctuation from precipitation the most; thus it was used to
smooth annual precipitation indices and temperature simu-
lations from 2005 to 2100. The long-term smoothed annual
precipitation or temperature minus the average annual value
from 1998 to 2017 is set as the precipitation index or tem-
perature changes. A linear regression model was used to in-
vestigate whether precipitation changes are related to climate
warming. The two 11-year periods, 2005 to 2015 and 2090
to 2100, did not have filter diameter of 21 years at the start
and end; thus the climate data used for regression are from
2016 to 2089.

4 Result and discussion

4.1 Model assessment

Validation of the Chinese meteorological grid observations
as well as the STDDM should be performed. As the STDDM
introduces the Chinese meteorological grid observations, and
the grid data are not the direct on-site data, validation of the
gridded data is necessary. The determination coefficient (R2),
root-mean-square error (RMSE), and PBias (percent bias)
were used to examine the model performance.

4.1.1 Evaluation for the gridded meteorological

The Chinese meteorological grid observations are data ref-
erenced to corrected GCM simulations, and the reliability of
the observations is vital to the performance of the STDDM,
so we make a validation using meteorological station obser-
vations, as shown in Fig. 3.
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As shown in Fig. 3, we select four meteorological stations.
The selected stations are uniformly distributed. The valida-
tion produced an acceptable precision, with R2 > 0.91, an
absolute PBias < 2 % for precipitation values and R2

= 0.99,
and an absolute PBias < 6 % for temperature. All the dots of
gridded and stationed values were distributed along the 1 : 1
line, thus confirming the satisfactory performance.

4.1.2 Validation of precipitation and temperature
projections in the Poyang Lake watershed

Before being used in future climate projection, the model
should be examined. Data from 1961 to 1985 were used to
construct the model, and the remaining historical data from
1986 to 2005 were used to validate it.

To test whether the downscaling method (STDDM) is ef-
fective in climate projections, we compare the results before
and after the bias correction in Fig. 4. The results before and
after the bias correction were marked as the outcomes by the
STDDM and non-STDDM, respectively. The projections by
the STDDM show better performance, with high correlations
and narrow bias, compared to the result of non-STDDM.
Considering the complexity of the physical mechanism of
the climate and the difficulty of accurately simulating with
the present methods, the uncertainty could be acceptable.

Using the STDDM and MRI-CGCMs, we obtained the
temporal and spatial variation of future precipitation values
in the Poyang Lake watershed and investigated the hetero-
geneity changes of precipitation in the temporal and spatial
distribution.

4.2 Temporal variation of future precipitation

To discover the temporal variation under the future climate
warming, we analyzed the monthly and daily precipitation
changes during the period from 1998 to 2100. For monthly
precipitation, we analyzed intra-annual and inter-annual dy-
namics of precipitation; based on the dynamics, we inves-
tigated the heterogeneity changes of monthly precipitation.
For daily precipitation, we analyzed the changes of precipi-
tation intensities and frequencies; based on the changes, het-
erogeneity changes of daily precipitation were also investi-
gated.

4.2.1 Monthly precipitation changes

We analyzed the monthly precipitation changes during the
period from 1998 to 2100, as shown in Fig. 5. Precipita-
tion shows significant intra-annual dynamics. Months with
abundant rain (wet months), indicated by a reddish color, are
mainly in April–July (the wet season), while the rain-poor
months (dry months), indicated by a bluish color, are mainly
from September to the subsequent February (the dry season).
Precipitation concentrates in spring (March–May) and sum-
mer (July–August), occupying 73 % of the annual amount.
The intra-annual dynamics of precipitation are similar to

those shown by Feng et al. (2012). Precipitation also showed
inter-annual dynamics. The wet months become wetter, and
the wet season comes earlier from April to March, even
in February. In addition, each monthly precipitation value
for 7 months (April–November) saw an increasing trend, of
which most months (5 months: April, May, June, and Au-
gust) are in the wet season, while precipitation values of the
other 5 months saw a decreasing trend, all of which were in
the dry season. It seems that wet months become wetter and
dry months become drier, in general.

To better demonstrate the inter-annual dynamics of pre-
cipitation, monthly precipitation values in each year were
sorted in a descending order in Fig. 5b. Since the time of
the monsoon reaching the Poyang Lake watershed varies
in different years, with a 1–2 month advance or delay, the
wet or dry months for different years are not the same. By
sorting monthly precipitation values, wet months and dry
months could be distinguished intuitively in Fig. 5b. Obvi-
ously, the monthly precipitation values of wet months expe-
rienced an increasing trend, and some of these values even
had slight significance; in contrast, each dry monthly precip-
itation value exhibited a decreasing trend, despite being in-
significant. We accumulated the extreme wet or dry monthly
precipitation values for each year in Fig. 6. The precipita-
tion of extreme wet months showed a significantly increas-
ing trend (p < 0.05; Fig. 6a), while the precipitation of the
extreme dry months demonstrated a significantly decreas-
ing trend (p < 0.05). Extreme wet months increased from
277.82 mm month−1 yr−1 over the historical time period
from 1998–2017 to 344.10 mm month−1 yr−1 over the future
time period from 2081 to 2100, with a difference of 23.86 %
and a rate of change of 7.3 mm month−1 per 10 years. Ex-
treme dry months decreased from 35.44 mm month−1 yr−1

over the historical time period from 1998–2017 to
30.46 mm month−1 yr−1 over the future time period from
2081 to 2100, with a difference of −14.05 % and a rate
of change of 0.92 mm month−1 per 10 years. Therein, the
extreme wet months are mainly concentrated in March–
July (Fig. 6c), part of the wet season, while the extreme
dry months are mainly concentrated in September–February
(Fig. 6d), consistent with the dry season.

Overall, under climate warming over the 21st century, the
wet month becomes wetter, while the dry month becomes
drier, which suggested the uneven temporal distribution of
precipitation (Fig. 7). As shown in Fig. 7, the temporal varia-
tion coefficient of the extreme month (including extreme wet
and months) precipitation values in each year from 1988 to
2100 experience significantly increasing trends (p < 0.01)
and increased from 0.76 yr−1 over the historical time pe-
riod from 1998–2017 to 0.84 yr−1 over the future time period
from 2081 to 2100, with a difference of 10.53 % and a rate
of change of 0.01 per 10 years. The significantly increasing
trends indicated the more uneven trend of precipitation in the
temporal distribution, which might lead to increased risks of
floods and droughts.
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Figure 4. Validation of the precipitation (pcp) (a) and temperature (b) projections by the STDDM (in black) and non-STDDM (in red).
Dots represent the monthly precipitation values (or temperatures) averaged over 20 years, from 1986 to 2005. The dots contain monthly
precipitation values of the 15 stations. The solid lines represent the linear regression that is the best fit of all pairs of the projections and
observations.

Figure 5. Total variability of monthly precipitation from 1998 to 2100. Each column represents the data for 1 year, and each cell represents
an accumulative precipitation of 1 month. The red arrows indicate that the monthly precipitation experienced an increasing trend over the
103 years, and the blue arrows indicate that the monthly precipitation experienced a decreasing trend. The asterisk demonstrates the significant
trends with p < 0.05. (a) Monthly precipitation in the order of the months, referring to spring (March–May), summer (June–August), autumn
(September–November), and winter (December to February of the next year), from top to bottom. (b) Monthly precipitation, sorted in the
descending order for each year, where months are classified as extreme wet (EWet), normal wet (NWet), normal dry (NDry), and extreme
dry (Edry) months, from top to bottom. Therein, wet months (Wet) include extreme and normal wet months, while dry months (Dry) include
extreme and normal dry months.

4.2.2 Daily precipitation changes

To understand the changes in precipitation intensities and fre-
quencies under future climate warming, daily precipitation
variations were also analyzed and are shown in Fig. 8. Mod-
erate vs. extreme rain frequencies (Fig. 8a, b), the annual to-
tal rain vs. the annual total rainy days (Fig. 8c), and the an-
nual max precipitation vs. the annual maximum continuous
rainy days (Fig. 8d) were analyzed.

Under climate warming, the annual frequency of mod-
erate rain experienced decreasing trends; in contrast, the
annual frequency of extreme rain experienced significantly
increasing trends (Fig. 8a). Statistically, averaged over
103 years, annual precipitation frequencies are dominated by
the moderate-rain frequency, on a total of 163.70 or 44.8 %
of days (163.70/365), while the extreme rain occurs less
often, on a total of 20.70 or 6.70 % of days (20.7/365).
The remaining are rain-free days, on a total of 180.75 or
49.5 % of days (180.75/365). The annual moderate-rain fre-
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Figure 6. The trends of changes in monthly precipitation values of extreme wet (EWet) (a) and dry (EDry) (b) months from 1998 to 2100.
The further future period from 2081 to 2100 (Fur2081–2100) and baseline period from 1998 to 2017 (His1998–2017) are indicated by arrows.
Frequencies of the months in extreme wet (c) or dry (d) months are calculated during the period from 1998 to 2100.

Figure 7. The temporal variation coefficient (VCs) of the extreme
month precipitation values for each year from 1988 to 2100. The ex-
treme months are composed of the extreme wet and dry months. The
far future period from 2081 to 2100 (Fur2081–2100) and baseline
period from 1998 to 2017 (His1998–2017) are indicated by arrows.

quency decreased, from 170.56 days yr−1 over the historical
period from 1998 to 2017 to 159.55 days yr−1 over the fu-
ture period from 2081 to 2100, with a difference of −6.46 %
and a rate of change of −14.4 days per 10 years; on the
contrary, the annual extreme rain frequency increased from
19.18 days yr−1 over the historical time period from 1998
to 2017 to 23.42 days yr−1 over the future time period from
2081 to 2100, with a difference of 22.10 % and a rate of
change of 0.49 days per 10 years (Fig. 8b).

Furthermore, the annual total rainy days, the sum of
the moderate and extreme rain frequencies, demonstrated a
significantly decreasing trend in the 21st century, whereas
the annual total precipitation exhibited a significantly
increasing trend (Fig. 8c). Rainy days decreased from
187.57 days yr−1 over the historical period from 1998 to

2017 to 180.37 days yr−1 over the future period from 2081 to
2100, with a difference of −3.84 % and a rate of change of
−1.00 days per 10 years, while the annual total rain amount
increased, from 1650 mm yr−1 over the historical period
from 1998 to 2017 to 1906 mm yr−1 over the future period
from 2081 to 2100, with a difference of 15.55 % and a rate of
change of 23.00 mm per 10 years. The increase in the annual
total rain and decrease in the annual rainy days suggested
more concentrated precipitation and dry days in the future.
This tendency might lead to the increased risk of floods
and droughts, which was also indicated by the increased an-
nual maximum daily precipitation and maximum continuous
dry days (Fig. 8d). Annual maximum daily precipitation in-
creased from 148.76 mm day−1 yr−1, averaged over the his-
torical period from 1998 to 2017, to 212.01 mm day−1 yr−1,
averaged over the future period from 2081 to 2100, with a
difference of 42.51 % and a rate of change of 7.2 mm day−1

per 10 years, while the maximum continuous dry days in-
creased from 25.35 days yr−1 over the historical period from
1998 to 2017 to 28.15 days yr−1 over the future period from
2081 to 2100, with a difference of 11.05 % and a rate of
change of 0.5 days per 10 years.

Overall, the significantly inversed trends of change in the
moderate vs. extreme rain frequencies, the annual total rain
vs. the annual total rainy days, and the annual maximum pre-
cipitation vs. the annual maximum continuous rainy days in-
dicated an increasing temporal heterogeneity in precipitation
distribution over the 21st century. Obviously, the increasing
heterogeneity was exhibited by the increasing temporal vari-
ation coefficient of daily precipitation values (Fig. 9). The
temporal variation coefficient of daily precipitation values in-
creased from 1.50 yr−1 over the historical period from 1998
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Figure 8. The changes in daily precipitation intensities and frequencies. (a) Precipitation intensities and frequencies for each year from 1998
to 2100, where each column represents a year and each row indicates a precipitation intensity. Daily precipitation intensities are categorized
into five classes: light rain (LR), moderate rain (MR), heavy rain (HR), rainstorms (S), and extreme rainstorms (ES), with daily precipitation
values of 0.1–10, 10–25, 25–50, 50–100, and > 100 mm day−1, respectively. The moderate rain includes LR and MR, while the extreme rain
is composed of HR, S, and ES. Each cell of (a) represents an annual frequency of one precipitation intensity, with a unit of days. The red
arrows indicate that annual frequency of the precipitation intensity experienced an increasing trend over the 103 years (from 1998 to 2100),
while the blue arrows indicate a decreasing trend. The asterisk represents the significant trends with p < 0.05. The far future period from 2081
to 2100 (Fur2081–2100) and baseline period from 1998 to 2017 (His1998–2017) are indicated by arrows. (b) Precipitation frequencies of
LR, MR, HR, S, and ES for Fur2081–2100 and His1998–2017. (c) The change of the long-term data for annual total precipitation (totalPcp)
and total rainy days (Raindays). (d) The change in the long-term data for annual maximum daily precipitation (PMax) and annual maximum
continuous dry days (CCD).

Figure 9. The temporal variation coefficient of daily precipitation
values for each year from 1988 to 2100. The far future period from
2081 to 2100 (Fur2081–2100) and baseline period from 1998 to
2017 (His1998–2017) are indicated by arrows.

to 2017 to 1.62 yr−1 over the future period from 2081 to
2100, with a difference of 7.48 % and a rate of change of
0.016 per 10 years.

4.3 Spatial variation of future precipitation

Climate warming could cause the rain belt shift (Putnam and
Broecker, 2017), which might lead to precipitation changes
in the spatial pattern. To investigate the spatial variation,
we analyzed the similarities and differences of precipitation
changes in space (Fig. 10); based on the differences, we
use the indices of the spatial and spatiotemporal variation
coefficient to investigate the spatial heterogeneity changes
(Fig. 11). Figure 10 shows the precipitation changes in the
spatial pattern during the period from 1998 to 2100; Fig. 11
shows the spatial and spatiotemporal variation coefficient for
each year from 1988 to 2100.

Precipitation values showed a regular spatial pattern in
both the wet and dry season, shown in Fig. 10a–c and e–g.
More specifically, precipitation was distributed more in the
east and west, however it was distributed less in the north-
ern central plain and the southern bottom lowland. Abundant
rain in the east and west is dominated by the southeastern
and southwestern summer monsoons. Less precipitation was
due to the leeward sloop of the eastern (Xuefeng Mountains)
and western mountains (Wuyi Mountains). Less precipitation
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Figure 10. The precipitation changes in the spatial pattern during the period from 1998 to 2100. Average monthly precipitation values of the
wet season (April–July) during the period from 1998 to 2017 (a), 2041 to 2060 (b), and 2081 to 2100 (c), and average monthly precipitation
values of the dry season (December to next February) during the historical period from 1998 to 2017 (d), 2041 to 2060 (e), and 2081 to
2100 (f); rate of change of monthly precipitation in wet (g) and dry (h) season from 1998 to 2100. As floods and droughts occur more
frequently in extreme months, the precipitation in the analysis considered only the extreme wet (April–July) and dry (September–February)
months (Fig. 5c, d). Besides this, precipitation is dominated by the southeastern summer monsoon, which brings water vapor from the sea.
The summer monsoon is frequent, from the end of spring to the start of autumn, covering the wet months April–July. However, though they
are dry months, the autumn period from September to November is affected by southeastern summer monsoon (Tan, 1994), because, to some
extent, autumns are the transpiration periods of summer to winter. Therefore, winter (December–February) was represented as the dry season
with poor rain, while April–July was represented as the wet season with abundant rain.

Figure 11. The spatial (a) and spatiotemporal (b) variation coefficient for each year from 1988 to 2100. The further future period from 2081
to 2100 (Fur2081–2100) and baseline period from 1998 to 2017 (His1998–2017) are indicated by arrows.

in the southern bottom lowland occurred, because that water
vapor was blocked from this region by the Nanling Moun-
tains in the south (Fig. 1a). The precipitation distribution in
spatial pattern from 1998 to 2100 (Fig. 10 a–f) was con-
sistent with the observations from 1951 to 2005 (Fig. 1b),
thus confirming the satisfactory performance of the STDDM.
Moreover, wet and dry season precipitation showed inverse
changes. The wet season precipitation values exhibited an in-
creasing (Fig. 10a–c, g) change, while the dry season precip-
itation exhibited a decreasing (Fig. 10d–h) change from 1998

to 2100. The inverse changes were consistent with the inter-
annual variability of increased precipitation in wet months
and decreased precipitation in dry months (Sect. 4.2). The
increase of precipitation in the wet seasons and decrease in
precipitation in the dry seasons were also detected in the rate
of change of the cells over the entire watershed (Fig. 10g or
h).

However, precipitation change also showed a different
spatial pattern. The precipitation rate of change for dry
or wet season was heterogeneous in spatial distribution
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(Fig. 10g, h). In the wet season, the precipitation increased
more in the northern part of the watershed, except for the
central plain (Fig. 10g); in the dry season, the precipitation
decreased more in the central area (Fig. 10h). Statistically,
in the wet season, precipitation increased, with the rate of
change raising from ≤ 3.6 mm per 10 years in the southwest
to ≥ 11.7 mm per 10 years in the northeast; in the dry sea-
son, precipitation decreased with the rate of change falling
from ≥−2.0 mm per 10 years in the surrounding region to
≤−2.7 mm per 10 years in the central region. Furthermore,
precipitation changes show different spatial characteristics in
wet and dry seasons. From 1998 to 2100, in the wet season
(Fig. 10a–c), the wet area (the reddish area, mainly in the
north, except for the central plain) becomes wetter; in the
dry season (Fig. 10d–f), the dry area (the bluish area, mainly
in the northern center plain and in the southern lowland) be-
comes drier.

The uneven rates of change may lead to increase of the
spatial heterogeneity of precipitation under global warming,
and the tendency of the wet area to become wetter and the
dry area to become drier also indicated the increasing spa-
tiotemporal heterogeneity of precipitation values. Indeed, the
spatial heterogeneity did increase, with the spatial variation
coefficients raising from 0.097 yr−1 over the historical pe-
riod (1998–2017) to 0.110 yr−1 over the future period (2081–
2100), with a difference of 12.64 % and a rate of change of
0.002 per 10 years (Fig. 11a). The spatiotemporal hetero-
geneity did increase with the spatiotemporal variation coeffi-
cient raising from 0.89 yr−1 over the historical period (1998–
2017) to 0.94 yr−1 over the future period (2081–2100), with
a difference of 4.96 % and a rate of change of 0.008 per
10 years. Overall, the uneven rates of change for the whole
basin and inverse changes for the dry and wet area indicated
increasing spatial heterogeneity in precipitation distribution
over the 21st century.

4.4 The impact assessment of temperature increment
on precipitation changes

Previous studies have detected precipitation changes and
have attributed these changes to climate warming (Westra et
al., 2013; Zhang et al., 2013). In this study, the spatiotempo-
ral changes of precipitation in the Poyang Lake watershed in
the 21st century were hypothesized to be related to tempera-
ture increments. So we analyze the correlations qualitatively
and quantitatively.

The following points try to demonstrate the driving force
related to climate warming on precipitation changes in the
temporal pattern. In the wet season from April to July, the
summer monsoon might become weaker in southeastern Asia
as the temperature increases (Zhou et al., 2008; Guo et al.,
2003). Consequently, the summer monsoon is delayed for
a longer time in the middle and lower Yangtze River basin
instead of moving further north. The delay leads to much
more rain during the wet season. Being located in the mid-

dle of the Yangtze River basin, the Poyang Lake watershed
becomes wetter in the wet season (Figs. 5, 10a–c). In fact,
the increase in precipitation in the Poyang Lake watershed
was detected in previous studies (Yu and Zhou, 2007; Ding
et al., 2009). In the dry period from September to the sub-
sequent February (especially in the winter season, from De-
cember to February), during which summer monsoon is in-
active, there is less water vapor in the atmosphere to con-
dense into rain. Additionally, stronger winds in the winter
(Wu, Q. et al., 2013) blow the evaporation away, thus en-
hancing the difficulty of generating rain from water vapor
compared to the other seasons. When temperature increases,
the ability of the atmosphere to hold water vapor is strength-
ened, which makes it more difficult to precipitate. Therefore,
precipitation decreases in the dry season, consistent with Li
et al.’s (2016) results. Since the temperature increment in-
creases the ability of the atmosphere to contain water vapor,
rain is more difficult, and if it rains, it will rain heavily (Min
et al., 2011; Zhang et al., 2013). Thus, the frequency of heavy
rain and rain-free events increases, indicating the increased
frequency and strengthened intensity of the extreme precip-
itation. Overall, climate warming might make precipitation
more temporally uneven.

Climate warming could also explain the spatial distribu-
tion of precipitation changes in the dry and wet seasons. In
the wet season, the summer monsoon is delayed in the mid-
dle and lower Yangtze River basin. The delayed area covers
only the northern part of the Poyang Lake watershed. As it re-
ceives abundant water vapor from the delayed summer mon-
soon, the northern part of the Poyang Lake watershed experi-
ences a greater increase in precipitation, with a larger rate of
change (Fig. 10g). The eastern Poyang Lake watershed is the
nearest to the western Pacific Ocean; thus the eastern region
receives more continuous water vapor. So the precipitation
rate of change decreases from the southeast to the northwest
in the wet season. However, in the dry season, especially in
winter, during which there is a low-frequency or absent sum-
mer monsoon, the water vapor mainly comes from evapo-
transpiration. In the watershed, the periphery is covered by
the Poyang Lake in the northern plain and high-density veg-
etation in the northwestern, southeastern, and southwestern
mountains, so there is more evapotranspiration in the periph-
ery. The center is mainly covered by farmland and grassland,
so there is less evapotranspiration in the center (Wu, G. et
al., 2013). Thus, the moisture decreases from the surround-
ing areas to the center. Therefore, as temperature increases,
it is more difficult for rain to occur in the area of lower mois-
ture, the center of the Poyang Lake watershed. Therefore the
precipitation decreased, with a rate of change falling from the
surrounding areas to the center in the dry season (Fig. 10h).

To quantitatively analyze the relationship between precipi-
tation changes and temperature increment, we created scatter
plots between precipitation index changes and the tempera-
ture increment, as shown in Fig. 12. A trend analysis was
conducted using the linear regression of each annual precip-
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Figure 12. The relationship between the precipitation index changes (dPcpIndex) and the temperature increment (dT ). The precipitation
indices include annual precipitation in the wet season (PcpWet) (a), annual precipitation in the dry season (PcpDry) (b), temporal variance
coefficient of monthly precipitation values (Temp-VC-of-MonPcp) (c), annual maximum daily precipitation (PMax) (d), annual maximum
continuous dry days (CCD) (e), temporal variance coefficient of daily precipitation values (Temp-VC-of-DayPcp) (f), spatial variance coeffi-
cient (Spatial-VC) (g), and spatiotemporal variance coefficient (Spatiotemporal-VC) (h). All the precipitation index changes show significant
correlations with temperature increment.

itation index over 103 years, from 1998 to 2100. The associ-
ated slopes represent the rate of change of each precipitation
index, relative to the temperature increment. The significance
of the trend is indicated by the p value. As shown in Fig. 12,
there is a significant correlation between the precipitation
change and the temperature increment, with p ≤ 0.001 and
R ≥ 0.78 for six precipitation indices: the annual precipita-
tion in the wet season (Fig. 12a), the annual maximum daily
precipitation (Fig. 12d), the temporal variation coefficient of
the monthly precipitation (Fig. 12c), the temporal variation
coefficient of the daily precipitation (Fig. 12f), the spatial
variation coefficient (Fig. 12g), and the spatiotemporal vari-
ation coefficient (Fig. 12h). However, changes in the other
two precipitation indices, the annual precipitation in the dry
season (Fig. 12b) and the annual maximum continuous dry
days (Fig. 12e), appeared to be less correlated, with slightly
larger values of p ≤ 0.05 and smaller R ≤ 0.58. The overes-
timation of the moderate-rain frequency from the GCM sim-
ulations (Teutschbein and Seibert, 2012; Ines and Hansen,
2006) might explain the slightly low correlation between the
annual precipitation values in the dry season and temper-
ature increment, while the overestimation of the precipita-
tion frequencies (Prudhomme et al., 2002) could explain the
slightly low correlation between the annual maximum con-
tinuous dry days and temperature increment. For all the cor-
relations (Fig. 12a–h), the precipitation changed with fluc-

tuation, which might be caused by random variations from
GCMs.

Overall, despite the low correlations and stochastic fluctu-
ation, the correlations could indicate that the climate warm-
ing can partly explain the precipitation changes. Statistically,
precipitation changes relative to the temperature increment
are 16.657 mm month−1 K−1, −4.31 mm month−1 K−1,
17.45 mm day−1 K−1, 0.71 days K−1, 0.028 K−1, 0.033 K−1,
0.0074 K−1, and 0.02 K−1 for the annual precipitation in
the wet season, the annual precipitation in the dry season,
the annual max daily precipitation, the annual maximum
continuous dry days, the temporal variation coefficient of
the monthly precipitation, the temporal variation coefficient
of the daily precipitation, the spatial variation coefficient,
and the spatiotemporal variation coefficient, respectively.

In summary, the explanation of precipitation changes in
temporal and spatial distribution, qualitatively and quantita-
tively, suggests that the downscaling method is reasonable
and that the STDDM could be applied successfully to the
basin-scale region based on a GCM.

5 Conclusions

A spatiotemporally distributed downscaling method
(STDDM) was proposed in this study. The downscaling
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method considered the heterogeneity in spatial and temporal
distributions and produced local climate variables as spa-
tially continuous data instead of independent and discrete
points. The STDDM showed a better performance than
the non-STDDM. Using the STDDM, we constructed the
spatially continuous future precipitation distribution and
dynamics in the wet and dry season from 1998 to 2100,
based on the MRI-CGCM3. Several findings were obtained.

First, the spatial and temporal heterogeneity of precipita-
tion increased under future climate warming. In the tempo-
ral pattern, the wet season become wetter, while the dry sea-
son become drier. The frequency of extreme precipitation in-
creased, while that of the moderate precipitation decreased.
Total precipitation increased, while rainy days decreased.
Both the maximum dry day number and the maximum daily
precipitation increased. These precipitation changes demon-
strated an increasing heterogeneity of precipitation in tem-
poral distribution, and the rate of change of temporal het-
erogeneity is 0.01 per 10 years (0.016 per 10 years) for the
temporal variation coefficient of the monthly (daily) precipi-
tation. In the spatial pattern, the rate of change of precipita-
tion was uneven over the whole watershed. Additionally, the
wet areas become wetter in the wet season, and the dry areas
become drier in the dry season. The uneven rates of change
for the whole basin and inverse change for dry and wet areas
demonstrated an increasing heterogeneity in the spatial dis-
tribution, and the rate of change of spatial heterogeneity was
0.002 per 10 years.

Second, precipitation changes can be significantly ex-
plained by climate warming, with p < 0.05 and R ≥ 0.56.
The explanation of precipitation changes in temporal and
spatial distribution, qualitatively and quantitatively, suggests
the downscaling method is reasonable and that the STDDM
could be successfully applied to the basin-scale region based
on a GCM.

The results can be applied to a hydrological and hydrody-
namic model to study the future changes in water volumes,
lake levels, and regional responses to climate warming. The
relationship between precipitation variations and the temper-
ature increment could be helpful for the driving-force analy-
sis of precipitation changes. The condition in which dry be-
comes drier and wet becomes wetter may lead to an increased
risk of floods and droughts. In particular, in the region where
floods and droughts do not usually occur, additional adapta-
tion measures could be taken to prevent loss from the future
frequent hydrological disasters.
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