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ABSTRACT 

This paper presents a new fault prognosis approach applied 

to wind turbine system based on self-excited induction 

generator (SEIG) for offshore and isolated areas. This 

generator is very sensitive to wind speed variation and 

excitation source. The SEIG is excited by a capacitor bank 

with an appropriate value to ensure the good operating of the 

production system. Capacitor bank faults are usually related 

to chemical aging, electrical and thermal stress conditions. 

These abnormalities can affect one or more properties of the 

system, which can lead to failures or even complete 

breakdown of the production system. Specifically, in this 

paper, we propose a saturated flux model for the SEIG and 

develop a hybrid monitoring method that detects faults 

occurrence gradually and estimates the remaining useful life 

(RUL). Such monitoring method applies data mining 

techniques in order to identify and track the faults using only 

useful data that captures the dynamics of the degradation. 

Moreover, to deploy efficient maintenance schedules, RUL is 

estimated by exploiting wind speed (variable and max speed) 

information. The proposed hybrid fault prognosis method is 

tested under variable excitation capacitors degradation 

scenarios. The obtained results confirm the robustness and 

accuracy of the proposed method.  

1. INTRODUCTION 

Nowadays, the use of wind energy as a renewable energy 

source, has grown rapidly and has become more important as 

the consciousness of global warming due to consumption of 

fossil energy and environmental pollution has increased 

(Derbal & Toubakh, 2018). 

Most wind farms in the world are offshore, where wind 

conditions are generally better, and the issues of noise and the 

impact on the landscape are somewhat improved. However, 

the reliability of an offshore wind generator and the resources 

required to maintain it can make up to 30% of the overall cost 

of energy produced. Typically, offshore wind generators 

failures require greater repair resources (i.e. material cost and 

labor) which leads to higher cost of energy. Consequently, 

wind farm developers try to select wind turbines with low 

failure rates and those that require the least amount of 

maintenance resources. Because of accessibility issues, 

reliability of turbines becomes even more important as 

offshore wind energy generation increases (Carroll, 

McDonald and McMillan, 2016). 

Self-excited induction generator is the best electromechanical 

converter to replace the synchronous generator in stand-alone 

power generators driven by sustainable energy resources 

such as micro-hydroelectric, biogas, wind, thermal, etc. SEIG 

is quite robust, relatively inexpensive and interestingly needs 

minimum maintenance. Using this generator in isolated and 

offshore wind energy system justifies the importance of 

supervising their normal operations (Derbal & Toubakh, 

2018). Unexpected faults of wind generator based on SEIG 

may occur in electronic control units, electric systems, 

hydraulic systems, the generator, the gearbox, the rotor cage 

malfunctions and the stator phase imbalance. Faults can occur 

also in excitation capacitor, which can lead to performance 

degradation, unscheduled turbine shutdown, and even 

Massinissa Derbal et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

mailto:massinissa.derbal@g.enp.edu.dz
mailto:abouchachia@bournemouth.ac.uk
mailto:abouchachia@bournemouth.ac.uk


EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

 

2 

damaging components of the turbine systems (Kumawat, 

Chourasiya, Agrawal and Paliwalia, 2015). 

When a standalone  induction  generator  is  driven  by  a wind 

turbine,  the  residual  magnetism  in  the  rotor of the machine 

induces an electromotive force (EMF) in the stator windings. 

EMF is applied to the capacitor bank that is connected to the 

stator terminals causing the reactive current to flow in the 

stator windings. Hence, a magnetizing flux in the machine is 

established.  The final value of the stator voltage is limited by 

the magnetic saturation within the machine. The voltage build 

process depends upon the capacitor value (Gao & Sheng, 

2018). However, the performance of excitation capacitors is 

strongly affected by working conditions, such as current, 

voltage, frequency and working temperature. The 

degradation during a period of time will lead to a component 

failure which may impact the working of the production 

system (Derbal & Toubakh, 2018). As a result, there is a high 

demand to improve the operation reliability, availability, and 

productivity of wind turbine systems. Therefore, it is 

important to detect and identify potential abnormalities and 

faults as early as possible by (i) using real-time monitoring 

and fault diagnosis, (ii) predicting the remaining useful life 

of the components through data analysis and processing, and 

(iii) implementing resilient control and management system 

to minimize the performance degradation and economic cost 

and avoid dangerous situations (Bu, Huang, Huand and Shi, 

2011). 

In recent years, many studies have been conducted around 

prognosis. Prognostic methods are divided into two groups:  

analytical model based methods, and data driven methods. In 

the case of model-based prognosis, the analytical models can 

be developed from the system’s failures (Clark, Elder, 

Guerry, Braitman, Trock, Schultz and Halpern, 1989) and are 

usually based on the physical knowledge of the system in 

terms of estimating possible deterioration that may occur in 

the future. The advantage of the model-based approach is that 

the number of sensed parameters can be reduced, while others 

can be directly determined from a model. On the other hand, 

the major drawbacks of the model-based approach result 

from the requirement of perfect physical knowledge of the 

system dynamics and from the scalability issue in presence of 

high number of discrete (Toubakh, Sayed-Mouchaweh, 

Benmiloud, Defoort and Djemai, 2020). 

In the data-driven approach, data are collected and processed 

to obtain discriminative features and then learn the 

parameters of the prognosis model. Interestingly enough, 

data-driven methods can be designed to learn without prior 

physical knowledge of the system dynamics and to operate 

efficiently while handling non-linear and multi-variable 

problems. There exist many methods used for this aim 

including signal analysis (FFT, filters, etc.), graphical models 

(hidden Markov models, Bayesian networks), decisions trees 

and fuzzy rule-based systems, statistical methods (auto-

regressive models, least squares and canonical variant 

analysis, linear and quadratic discriminant, static and 

dynamic principle component analysis) as well as black-box 

methods based on artificial neural (self-organizing feature 

maps, MLP, etc.) (Emeksiz, Doğan, Mehmet and Hekim, 

2017) (Toubakh & Sayed-Mouchaweh, 2016). 

In this study, we focus on fault prognosis of an excitation 

capacitor bank of SEIG, operating in a standalone mode in 

offshore area. The wind system is considered as a hybrid 

dynamic system combining both discrete and continuous 

dynamics, the wind system switches between several discrete 

modes in response to wind speed variation. We therefore 

propose a new approach that models the dynamical behavior 

of SEIG according to wind speed in order to disaggregate the 

RUL estimation process by considering switching between 

the different control modes. To achieve this target, we start 

by describing the wind production system (Section 2) and 

modeling the capacitor bank degradation (Section 3), then we 

explain the proposed data-driven prognostic approach for 

RUL estimation (Section 4). The approach applies data 

mining techniques in order to identify and track the faults 

using only useful data that captures the dynamics of the 

degradation and by exploiting wind speed (variable and max 

speed) information. This approach contributes to improve the 

RUL estimation accuracy. Finally, we evaluate the developed 

approach for different degradation scenarios and discuss the 

obtained simulation results using MATLAB (Section 5) 

before concluding in Section 6. 

2. SYSTEM DESCRIPTION 

Figure 1 depicts the overall system studied here. It includes a 

wind turbine, an induction generator excited with a capacitor 

bank, converter and controller. This system is designed to 

feed isolated arrears with electricity based on wind energy. 

The DC output power can be consumed directly by DC loads 

or converted to AC for AC loads. 

 

Figure 1. Structure of the wind system 

The controller operates in four zones (see Figure 2), where 

zone 1 is the startup of the turbine; zone 2 covers power 

optimization; zone 3 covers a constant power production and 

zone 4 corresponds to the shut-down of the turbine due 

extreme high wind speed. 
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Figure 2. Generated power curve depending on wind speed. 

In this study, we focus on zone 2 and zone 3 where we have 

two different SEIG excitation dynamics: 

a) Control mode 1: in this control mode the wind generator 

speed is less than its nominal speed (zone 2) and the 

power optimal value is achieved by the controller sitting 

the pitch reference β = 0 and the reference torque value 

𝜏𝑔,𝑟 as follows :  

 𝜏𝑔,𝑟 = 𝐾𝑜𝑝𝑡   𝜔𝑟
2 (1) 

       where 𝐾𝑜𝑝𝑡 =  
1

2
 𝜌 𝐴 𝑅3

𝐶𝑝_𝑚𝑎𝑥

𝜆𝑜𝑝𝑡
3   (2) 

𝜔𝑟 is the angular rotor speed, ρ is the air density speed (𝜌 

=1.225 kg/m3), 𝐴  is the area swept by the turbine 

blades, 𝑅 is the radius of the blades and 𝐶𝑝_𝑚𝑎𝑥  is the 

maximal value of power coefficient 𝐶𝑝 ,  𝜆𝑜𝑝𝑡  is the 

optimal value of the tip speed ratio 𝜆. As a result, we 

have a variable excitation due to the variation of the wind 

speed (Odgaard, Stoustrup and Kinnaert, 2013). The 

capacitor bank is designed to provide reactive energy for 

an interval around the defined operating point. In this 

study the capacitor bank is designed according to the 

nominal operating point. The blue vertical line (Figure 

2) is the limit of this interval and corresponds to the 

minimum capacitance required for self-excited induction 

generator. This value can be determined using generator 

parameters (Eltamaly 2002). 

b) Control mode 2: in this mode, the controller sets the 

generator’s power at its reference by controlling β, such 

that 𝐶𝑝  is decreased. As a result, we have a pre-set 

excitation. 

3. CAPACITOR DEGRADATION MODELING 

Faults in a capacitor can be catastrophic as they lead to 

complete loss of functionality. Manifesting as gradual 

deterioration of the capacitor, the degradation is related to 

decrease in the capacitance and increase in the equivalent 

series resistance (ESR) over time (Derbal & Toubakh, 2018). 

The performance degradation of the excitation capacitor 

banks often results from chemical aging. As the capacitor 

degenerates, the ESR rises, causing the output voltage of the 

SEIG’s capacitor to drop and consequently the output power 

reduces. 

 

Figure 3. Lumped parameter model. 

A simplified electrical lumped parameter model of 

impedance, defined for a capacitor, is shown in Figure 3. Part 

of the stored capacitor energy is dissipated by the ESR. An 

ideal capacitor has no resistance to the current flow at its 

leads (Toubakh & Sayed-Mouchaweh, 2016).In order to 

simulate this degradation in SEIG excitation capacitor bank, 

the nominal value of ESR is increased gradually over time. 

The voltage of the capacitors is directly impacted by this 

gradual increase in ESR, as follows:  

 𝑉𝑐𝑗 =
1

𝐶
∫ 𝐼𝑐 𝑑𝑡 + 𝐸𝑆𝑅𝑗  𝐼𝑐 (3) 

In this study, multiple degradation scenarios are produced in 

order to simulate the nominal value of ESR. Thus, ESR 

increases linearly in high, moderate and slow speeds. The 

objective of simulating different degradation speeds is to 

investigate the impact of different SEIG’s degradation 

dynamics and to evaluate the performance of RUL 

estimation. 

4. PROPOSED APPROACH 

In this section, the proposed hybrid fault prognosis approach 

of the excitation capacitor bank of SEIG is discussed. This 

approach uses hybrid dynamical behaviors of the wind 

system according to wind speed. The goal is to achieve 

condition monitoring by using only the recent useful data 

corresponding to active control mode and improve RUL 

estimation process. The approach proposes to (i) process and 

analyze data which were collected across the capacitor bank 

terminals and (ii) using Auto-adaptive Dynamical 

Classification Algorithm AuDyC to detect degradation and 

finally (iii) generate a health indicator for each control mode 

and estimate the RUL using Auto-Regressive Recurrent 

Radial Based Function network (ARRRBF). The proposed 

approach is graphically portrayed in Figure 4. 

4.1. Data Processing and Analysis  

This step aims at finding the relevant features that are 

sensitive to the capacitor bank operating conditions using 

voltages and currents measured by the capacitor bank sensors 

as well as prior knowledge about system physics and 

dynamics (e.g., reference normal capacitor voltage and 

normal current).
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Figure 4. Steps of the proposed approach. 
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These features are selected depending on the operation mode 

in order to select only the useful data that captures the 

dynamics of the degradation and to detect at early stage 

abnormalities of the capacitor bank. To determine such 

abnormalities, the following residuals are computed:  

 RVs= (Vse-Vsn) (4) 

 RIs= (Ise-Isn)   (5) 

where Vsn, Isn are the voltage and the current values in 

normal conditions respectively. Likewise, Vse and Ise are the 

voltage and the current values in evolving conditions.  

We define here faulty class as the class indicates a complete 

failure and non-function of the system while evolving class 

is the class representing the degradation from normal 

operation to a complete failure. In the evolving class, the 

system is still functional but will failing soon. In order to 

distinguish as much as possible the operation conditions and 

improve RUL estimation  process, the normal and the faulty 

classes are split into four classes 1, 2, 3 and 4  according to 

SEIG dynamics, which are represented by two different 

modes. Class 1 is the normal class whereas class 2 represents 

the faulty class in control mode 1. Class 3 and class 4 

represent the normal and faulty classes in control mode 2 

respectively. 

Each control mode is active in one zone, which can be then 

modeled by a finite state machine (see figure 5).  

 
Figure 5. Control mode 1 and 2 modeled by a finite state 

machine (automaton) 

The transition between the control modes changes the 

dynamics of the wind system according to wind speed. The 

control mode changes from one state to another, as long as 

wind speed is less than the predefined threshold 

corresponding to nominal value of  𝜔𝑟, E11 keeps the system 

in mode 1. The control mode should switch form control 

mode 1 to control mode 2 (E12) if the following event is 

realized:         

E12: 𝜔𝑟 ≥  𝜔𝑛𝑜𝑚 

where 𝜔𝑛𝑜𝑚  is the nominal value of 𝜔𝑟 . If wind speed is 

greater than the predefined threshold corresponding to 

nominal value of  𝜔𝑟, then the event E22 will be generated. E22 

kept the system in mode 2. The control mode should switch 

form control mode 2 to control mode 1 (E21) if the following 

event is realized: 

E21: 𝜔𝑟 <  𝜔𝑛𝑜𝑚 

4.2. Learning of the Control Mode Classes  

The classifier aims at deciding if the present operation 

condition of the capacitor bank is normal. The normal and the 

present operation condition are represented respectively by 

classes in the feature space of each control mode. Therefore, 

the model of each control mode is designed in the form of a 

classifier that categorizes patterns in one of the normal 

classes. When the degradation occurs, the characteristics of 

pattern representing the present operation conditions in each 

discrete mode starts to change according to the one of normal 

classes. A degradation is detected if the difference between 

the evolving and normal classes characteristics is greater than 

a three-standard deviation for each control mode. The 

clustering algorithm AuDyC (standing for Auto-adaptive and 

Dynamical Clustering), proposed by Toubakh & Sayed-

Mouchaweh (2014) is used implement the assignment task of 

data to the control modes. Here AuDyC builds clusters 

around the pre-defined classes. AuDyC calculates the initial 

classes parameters and continuously updates the classes by 

integrating the new input X and by removing the oldest one 

in the time window.  The choice of AuDyC is justified by the 

ability to model data streams, since it always reflects the final 

distribution of the measurements in the features space and it 

is clustering method. 

4.3. Health Indicator 

Degradation of the excitation capacitor bank occurs, when the 

operating condition changes from healthy to a complete 

failure. In this study we use a health indicator based on 

Mahalanobis distance (6) which is used as a metric in order to 

measure the distance between two classes for each control 

mode, the initial normal class CN and the evolving class Ce. 

The degradation is detected when dMah exceeds three-standard 

deviation of the normal class.  

𝑑𝑀𝑎ℎ(𝐶𝑁, µ
𝑒
) = √(µ

𝑁
− µ

𝑒
) ∑ (µ

𝑁
− µ

𝑒
)𝑇−1

𝑁                   (6) 

Where µe is the center of the evolving class Ce, µ𝑁
 is the 

center of the normal class CN, and Σ𝑁  is the covariance 

matrix of the normal class. We note here that the health 

indicator is a dissimilarity metric and consequently is 

unbounded. 

4.4. RUL Estimation 

Recall that RUL is the time to failure subtracted by its present 

age. RUL is obtained as soon as the health indicator trajectory 

of the capacitor bank reaches a pre-defined threshold. Such 

threshold corresponds to total system failure. RUL estimation 

can be seen as a prediction problem, since it depends on the 

behavior of the health indicator curve in the future. The 

choice of the prediction model depends on the degradation 

trend which is often nonlinear.  The popular tools used in the 

literature for time series prediction are neural networks and 
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the Support Vector Machine (SVM) (Heydarzadeh, Zafarani, 

Akin and Nourani, 2017). 

There are two main types of temporal neural networks: neural 

networks whose time is represented by an external 

mechanism, and those whose time is represented by an 

internal mechanism. In this study, a neural network is used to 

predict the progress of the health indicator, called ARRRBF 

(standing for Auto Regressive Recurrent Radial-Based 

Function network).The architecture of ARRRBF is given in 

Figure 6. This network has an internal representation of time 

with two types of memory: a dynamic memory (input layer) 

for considering the dynamics of the input data, and a static 

memory (hidden layer) for storing the prototypes. The output 

layer is the decision layer. ARRRBF has shown good 

performance compared to autoregressive prediction model 

applied to a similar RUL estimation problem, it has a high 

learning ability that makes the error between the input and 

output neglected, its efficient model among recurrent neural 

networks for time series prediction, hence the choice of this 

model besides its ease of integration and implementation 

(Djeziri, Toubakh and Ouladsine, 2013). Which justified the 

choice of this network to show the possibility of integrate the 

data of each control mode in the global approach of RUL 

estimation. 

The output of the radial basis function is calculated as 

follows:  

 𝛷𝑖(µ𝑖 , 𝜎𝑖) = exp (−
∑ (𝑥𝑖(𝑡) − µ𝑖

𝑗
)𝑚

𝑗=1

𝜎𝑖
2 ) (7) 

µ𝑖  and 𝜎𝑖  are respectively the mean and standard deviation of 

the radial basis function. 𝑗 and 𝑚 are respectively the index 

and total number of sigmoid functions.  

 

Figure 6. ARRRBF structure. 

The answer of the basis function depends on the distance 

from the entrance 𝑥 to the prototype vector µ𝑖   such as:  

 𝛷𝑖(𝑥) = 𝛷(‖𝑥 − µ𝑖‖, 𝜎𝑖) (8) 

The output of the looped neuron is governed by the following 

equation: 

𝑥𝑗(𝑡) =
1 − exp (−𝑘. (�̅�.  𝑥𝑗(𝑡 − 1) +  𝑥j−1(𝑡)))

1 + exp (−𝑘. (�̅�.  𝑥𝑗(𝑡 − 1) +  𝑥𝑗−1(𝑡)))
 (9) 

�̅� is the weight associated with the self-connection of input 

neurons. 

The output of the neural network is governed by the 

following equation: 

 �̂�(𝑡 + 1) = ∑ 𝜔𝑖 . 𝛷𝑖(µ𝑖 , 𝜎𝑖)

𝑛

𝑖=1

 (10) 

𝜔𝑖  are the weights of connections between the hidden layer, 

based on radial function and the output layer. 𝑖  and 𝑛  are 

respectively the index and total number of the radial basis 

functions. 

AuDyC uses the historical data corresponding to normal 

operating conditions for each mode in the learning phase. 

Then the Mahalanobis distance is applied to detect 

degradation occurrence in each mode. Once the degradation 

is detected, the neural network predicts the health indicator 

evolution across the time according to wind speed. Finally, 

RUL is estimated depending on the present control mode. 

5. EXPERIMENTAL SIMULATIONS AND DISCUSSION 

The induction generator used in this study is rated: 3.5kW, 

220/380V, 14/8A, 50Hz, 4 poles and a 90 μF capacitor bank 

connected onto the stator terminals (normal operating). 

In order to test the proposed approach under different 

degradation dynamics, three capacitor bank degradation 

scenarios are generated (see Figure 7), which correspond to 

gradual increase of ESR at: (1) high rate evolution, (2) 

moderate rate evolution and (3) slow rate evolution (see 

Figure 7). ESR rises gradually from ESRN (ESR value in 

normal condition) to ESRF (ESR value in complete failure). 

 

Figure 7. Capacitors bank degradation scenarios. 

Our database consisted of two attributes represent the current 

and the voltage residuals. The ARRRBF used in this study 

has two hidden layers, the first hidden layer have 5 nodes of 

hyperbolic tangent sigmoid transfer functions while the 

second layers have 8 nodes of radial functions, this model 

have only one output corresponding to the health indicator 

prediction. The residuals size is 36,000 calculated by 

applying a slide window (window size=10, sliding step=5) 

The sampling time=0.01s, the epochs number is sited to 5000 

iterations and the size of training data is 25,000. The 
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threshold set for capacitor value equal to 75 µF. This value is 

empirically obtained following by studying the effect of 

gradual faults on capacitor banks of self-excited induction 

generator (Derbal, Toubakh and Hayat, 2019). 

Figure 8. Health indicator progress in mode 1. 

Compared to existing work not considering the change of the 

system dynamics according to wind speed in RUL estimation 

process, this study uses the wind data in order to distinguish 

between the control modes and also uses only the useful data 

corresponding to each mode to maximize the discriminating 

power between the normal and faulty classes. In control mode 

1, the excitation current and the voltage are low making 

failure detection very difficult. In control mode 2, the 

excitation current and the voltage are high enough to detect 

the degradation. By doing so, we can improve the accuracy 

of RUL estimation.  

 

Figure 9. Health indicator progress in mode 2. 

The wind speed value between control mode 1 and control 

mode 2 is set to 12m/s.  

Table 1. Fault detection and RUL estimation. 

 

Degradation type 

rate 
Detection time RUL1  

RUL2 

High  
6.50 s 

10 min 

53 s 

9 min 

12s 

Moderate  
14.30 s 

16 min 

36 s 

13 min 

51s 

Low  
29.20 s 

23 min 

08 s 

18 min 

47 s 

From Figure 8, Figure 9 and Table 1, we can say that RUL1 

estimated values in control mode 1 are greater than RUL2 

estimated values in control mode 2. In control mode 1 the 

capacitor bank operates under its nominal value, which 

means less stress to capacitor bank comparing to control 

mode 2. This explain the difference between the RUL 

estimated values in each control mode. 

The obtained results show the importance of this hybrid 

approach which uses only helpful data to distinguish between 

the controls modes contributing to improve the RUL 

accuracy by disaggregating the estimation process according 

to the wind speed. This approach needs to be validated on 

real-world data. 

6. CONCLUSION 

In this paper, a hybrid prognosis approach of excitation 

capacitor of stand-alone wind power system based on SEIG 

is presented and discussed. This approach uses wind speed to 

separate the features in two control mode, then applies a 

classifier AuDyC to detect the degradation occurrence based 

on Mahalanobis distance. Finally an efficient neural network, 

ARRRBF, is proposed to predict RUL using the specific data 

of each operation mode. The obtained results show the 

efficiency of this hybrid method which introducing a line of 

investigation into how weather prediction data can be 

exploited to improve RUL estimation. Such investigation will 

be further followed-up in the future.  
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