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ABSTRACT: Nowadays, consumers are paying great attention to the characteristics of food such as smell, taste, and appearance.
This motivates scientists to imitate human senses using devices known as electronic senses. These include electronic noses,
electronic tongues, and computer vision. Thanks to the utilization of various sensors and methods of signal analysis, artificial
senses are widely applied in food analysis for process monitoring and determining the quality and authenticity of foods. This
paper summarizes achievements in the field of artificial senses. It includes a brief history of these systems, descriptions of most
commonly used sensors (conductometric, potentiometric, amperometic/voltammetric, impedimetric, colorimetric, piezoelectric),
data analysis methods (for example, artificial neural network (ANN), principal component analysis (PCA), model CIE L*a*b*),
and application of artificial senses to food analysis, in particular quality control, authenticity and falsification assessment, and
monitoring of production processes.
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■ INTRODUCTION

A quality control system is used at each step of the production
process to ensure quality and food safety as well as to meet the
expectations and needs of consumers.1,2 The quality of
products is determined on the basis of sensory evaluation,
chemical composition, physical properties, the level of micro-
biological and toxic contamination, and the ways in which
products are stored, packed, and labeled. Over the past decade,
quality control systems such as Hazard Analysis and Critical
Control Points (HACCP) and ISO 9000 certificates have
emerged. Implementation of the HACCP system ensures food
safety as well as the identification and evaluation of the scale of
health risks to consumers.3,4 ISO 9000 standards have been
used as a basis for formulating quality management systems in a
wide spectrum of organizations. These norms contain the
requirements related to the implementation, improvement, and
control of systems.5 The primary method for evaluating the
quality of food products is sensory analysis, which is based on
the use of human senses. The smell, taste, and appearance of
products is evaluated by a group of properly trained persons.
Because sensory evaluation is a subjective method, gas
chromatography coupled to a mass spectrometer (GC-MS)
or olfactometer (GC-O) is additionally used to control the
quality of food products. In recent years, comprehensive two-
dimensional gas chromatography coupled to a time-of-flight
mass spectrometer (GC×GC-TOFMS) has been used with
increasing frequency.6,7

Consumers pay attention to the smell, taste, and appearance
of a product; therefore, scientists have researched for long time
how to substitute human sensory organs with so-called artificial
senses. The latter require less time to perform sensory analysis
compared to chromatographic techniques.8 This paper is a
summary of the achievements in the field of artificial senses,
which include electronic noses, electronic tongues, and systems
of computer vision. It includes the historical development of
artificial senses; the structure and principles of operation of an
electronic nose, electronic tongue, and systems of computer

vision; a description of the most commonly used sensors
(conductometric (CP, MOS, MOSFET), potentiometric,
amperometic/voltammetric, impedimetric, piezoelectric
(QMB), colorimetric, electronic noses based on gas chroma-
tography and mass spectrometry, biosensors); CCD and
CMOS arrays in still cameras; data analysis methods (ANN,
kNN, HCA, CA, DFA, PCA, SVM, PLS, PCR, SIMCA,
ANOVA, LDA, FDA, QDA, MLR, CDA, CCA) and models
(RGB, CIE XYZ, CIE L*a*b*, CIE L*u*v*, HSV, HSL, HIS);
and analysis of image properties and application of artificial
senses to food analysis (milk, dairy products, meat products,
fish, shellfish, fruit, vegetables, oils, sauces, vinegars, spices,
grains, grain products, teas, coffees, herbal infusions, non-
alcoholic and alcoholic beverages, and others), in particular,
food process monitoring, evaluation of food freshness, testing
the shelf life of food, authentication of food, and stability testing
of food.

■ ARTIFICIAL SENSES

Historical Development of Artificial Senses. The
development of electronic senses was begun to create devices
that mimic the senses of smell, taste, and sight. The history of
electronic tongues and noses starts in the beginning of the 20th
century. Then the ion exchange theory was developed, which
has resulted in the construction of glass membrane electrodes
used for measuring pH.9 The first electrochemical sensor,
consisting of a microelectrode and a simple platinum wire, was
described by Hartman in 1954.10,11 In 1960, a Japanese
inventor, Taguchi (Figaro), constructed a sensor that has been
applied in household alarm systems for detecting gas leaks.12

The first mechanical instrument mimicking smell was
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elaborated by Moncrief in 1961; he worked on material
coatings that would enable discrimination between simple and
complex aromas such as polychloride vinyl, gelatin, and plant
fat. Moncrief proved that the electronic system containing an
array of six sensors with different coatings is capable of
detecting a large number of odors.13,14 In 1964, Wilkens and
Hartman developed another system for artificial smell
detection, which was based on electrochemical reactions taking
place on the electrodes as a result of stimulation with odorants.
Wilkens and Hartman concluded that transformation of the
sensor output in response to the chemical reaction is possible;
in other words, the transformation of a chemical signal into an
electrical signal is possible.7,11 In the following 20 years, new
sensors were designed, including MOSFET (metal oxide
semiconductor field-effect transistor), BAW (bulk acoustic
wave), ion exchange membrane, potentiometric biosensor,
ISFET (ion sensitive field-effect transistor), PdMOS (palladium
metal oxide semicoductor), and SAW (surface acoustic wave).
In 1982, at the University of Manchester, Persaud and Dodd
constructed the first electronic nose, which consisted of three
metal oxide sensors and was capable of identifying 20 odorants.
A detailed definition of an electronic nose was introduced by
Gardner in 1988.15 In 1985, Otto and Thomas presented the
first system for liquid phase analysis by using a multisensor
array.16 Seven years later, at the University of Kyusho, the taste
sensor was constructed by Toko; it consisted of ion-selective
lipid membranes immobilized in PCV polymer.17,18 In 1995, as
a result of cooperation between Russia and Italy, the concept of
an electronic tongue was presented; it was based on an
inorganic chalgogenide glass sensor, which enables both
qualitative and quantitative analysis.19

The history of the computer system for image analysis
started in the 1960s. In 1964, Minsky began to realize the
project that involved coupling a camera to a computer as well as
the interpretation of the obtained image.20 Five years later,
Boyle and Smith received the Noble Prize for developing the
CCD (charge coupled device) array used to register images in a
videophone.21 In 1970, attempts to better understand the
methods for image edge extraction were made, which has
resulted in the construction of 3D images.22 At the same time,
such algorithms as line labeling, articulated body model, and
optical flow became popular. In 1982, David Marr proposed
three levels of information (image) processing, that is,
computational theory, representations and algorithms, and
hardware implementation.23 Since 1980 the research has
focused on sophisticated mathematical techniques for the
segmentation and modeling of shapes and contours. This
phenomenon has given rise to the analysis of moving objects,
the so-called tracking, which is presently applied on production
lines. In 1989, the CMOS (complementary metal oxide
semiconductor) array was developed, having principles of
operation that are similar to those of the CCD array.24,25

Structure and the Principles of Operation of an
Electronic Nose. An electronic nose is the analytical device
used for the fast detection and identification of mixtures of
odorants, which mimics the principles of operation of human
smell. Specific chemical sensors are used in the device, which
generates a characteristic odor profile, a so-called fingerprint, in
response to the interaction with a gaseous mixture;
identification of the mixture components is made by comparing
the obtained odor profile with odor standards.26 The electronic
nose is similar to the human nose because it is based on the
same principles of operation. The volatile components in the

investigated sample are analyzed by chemical sensors that
mimic olfactory cells present in the nose. Then the signal is sent
to the data recognition system, which simulates brain
functions.17,27

Usually, an electronic nose is composed of a set of sensors,
electronic components, pumps, a flowmeter, and software,
which is necessary for data processing and statistical analysis.7 A
sample dispensing system is the first element of the device.
Sampling can be conducted in different ways, for example, by
collecting a headspace sample, by using diffusion methods, and
via prior sample enrichment. Commercially available electronic
noses have two or more separate chambers, that is, a sample
dispensing chamber and a sensor chamber. Temperature and
humidity are measured in each chamber to determine the
influence of these two factors on the conducted analysis. The
sample dispensing chamber should be made of nonflammable
and nonreactive materials to avoid the effect of “wall memory”;
it should also be adjusted to the sample size.28 Moreover, a
thermostat is required to increase the amount of volatile
components in the headspace for the volatile fraction analysis.
Air or an inert gas in introduced into the sample chamber. A
special system of pumps and tubes made of plastic or stainless
steel delivers the gas together with the volatile sample
components to the chamber where the second element of the
electronic nose, that is, a set of sensors is located.29 The sample
injection step should be preceded by passing the clean and dry
air through both chambers. Such a procedure should stabilize
the signal at the baseline level and purge the remnants of
sample that had been analyzed earlier.30,31 Due to the contact
between odorants and the active material, the electric
properties of sensors change; for example, the conductivity
changes, which results in an electric signal.32 The strength of
the response signal depends on the type and concentration of
odorant. It is important to stabilize the sensors by heating them
for two or three days prior to measurement. The time required
to receive a sensor output is called a response time, whereas the
time required for a sensor to return to baseline after a response
is defined as a recovery time33 (Figure 1). Depending on the
application of an electronic nose, different numbers and types
of sensors are used.

Structure and Principles of Operation of an Electronic
Tongue. An electronic tongue, also known as an artificial
tongue, or taste sensor, is the analytical device mainly used to
classify the tastes of various chemical substances in liquid phase
samples. Its mode of operation is based on the human sense of
taste (Figure 2). An electronic tongue can be used to identify,
classify, and analyze in a qualitative and quantitative way the

Figure 1. Response characteristics of a semiconductor-based electronic
nose: Rmin, baseline; Rmax, resistance; 1, gas flow; 2, response time; 3,
recovery time.
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multicomponent mixtures by applying a fingerprint method,
that is, by comparing the mixture profiles with those of
standards.31,32 An electronic tongue consists of three elements,
that is, the sample-dispensing chamber or automatic sample
dispenser (it is not necessary), an array of sensors of different
selectivities, and software for data processing (image recog-
nition system, which mimics brain functions).34 The analysis of
liquid phase samples is performed directly; solid phase samples
have to be dissolved prior to analysis. An artificial tongue is
most commonly used to evaluate food and pharmaceutical
products.35

An electronic tongue consists of two chambers; the first
chamber is used to analyze the sample, whereas the second one
cleans the array of sensors after each analysis. A thermostat
enables continuous monitoring of the sample temperature
during analysis, which results in the repeatability of measure-
ments. Two mechanized flow analysis techniques are used in
artificial tongues, that is, flow injection analysis (FIA) and
sequential injection analysis (SIA). The first-generation equip-
ment (FIA), designed by Ruzik and Hanser in 1975, consists of
a pump, injection valve, solenoid, and detector. In 1995, Ruzick
and Marshal elaborated the second-generation apparatus (SIA)
consisting of a single-channel duct, two-way pump, solenoid,
multiposition valve, and flow sensor. Both techniques are
commonly used; however, SIA has more advantages, including
the capability to perform a larger number of analyses and a
significantly lower use of reagents. The mechanized sample
injection allows for decreasing analysis time and improving
repeatability. The injected sample reaches the array of chemical
sensors.34 These sensors are characterized by low selectivity
and generate information about a wide concentration range of
different substances present in the mixture. The sensor
response, which is a function of the concentration of
components in the liquid, is presented via image recognition
module. The signal from the chemical sensors is transformed
into a data matrix. The identification and classification are
based on a comparison of standard images and the image of the
analyzed sample.36 Depending on the application of an
electronic tongue, sensors with different modes of operation
are used.
Structure and Principles of Operation of Computer

Image Processing. Computer image analysis system, called,
“computer vision”, includes subjects such as acquisition,
processing, and analysis of images.37 The main reason for
creating the system was to understand the mode of operation of
human vision. In general, the computer system consists of five
elements, that is, lighting, a camera (in the case of an analog
camera, a frame grabber is necessary, which allows for analog-

to-digital signal conversion), a computer with software, and a
high-resolution monitor38,39 (Figure 3). The application of an

image analysis system is very broad, particularly in the food
industry. It is a fast, precise, and noninvasive way of evaluating
the product quality already at the production step. Moreover,
the system enables detection of imperfections, for example, in
meat structure, and the onset of food deterioration, which are
both invisible to the human eye.40

As in the case of the human eye, the operation of vision
systems depends on the intensity of lighting. Properly designed
lighting can improve the precision of analysis and decrease
analysis time. Fluorescent and incandescent bulbs are the most
frequently used light sources. Luminescent electric diodes
(LED), quartz halogen lamps, metal halide lamps (applied in
microscopy), and high-pressure sodium lamps (best suited for
lighting large industrial buildings) are also used. However, due
to more uniform and intensive light at specific wavelengths,
fluorescent lamps are the most popular. There are two types of
lamp arrangements, that is, a circular system used with flat
samples and a scattered system for lighting ball-shaped samples.
An X-ray tube is used to perform a detailed evaluation of the
quality and ripeness of food products; the penetration of X-rays
depends on the emitted energy, absorption coefficient, and
density and thickness of the analyzed objects.41 On the other
hand, fluorescent spectroscopy is applied to monitor stress in
plants.42 Another part of the image analysis system is a still
camera, movie camera, or scanner; its purpose is to record a
photograph of a given object. There are two types of cameras,
that is, analog and digital cameras, which are equipped with
CCD or CMOS sensor arrays.43 In an analog camera, the
recorded image is transformed into the analog signal and then
transferred to a frame grabber (in the form of a card), which
transforms the analog signal into a digital data stream and sends
it to the computer memory. In digital cameras, a frame grabber
is not needed because the analog signal is sent directly to the
computer via a USB or FireWire adapter.38,41

Figure 2. Comparison of the principles of operation of the senses of taste and smell and electronic tongue and electronic nose.

Figure 3. Schematic structure of an image analysis system.
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■ SENSORS USED IN ELECTRONIC SENSES

Sensors are the most important element of electronic senses;
their task is to collect information about the parameters
measured.27,29,43 During this process, the input signal, which
occurs as some form of energy, is transformed into the output
signal in a different energy form, for example, electric, magnetic,
chemical, thermal, or radiation energy.44 Sensors are divided
into five groups: piezoelectric; electrochemical (potentiometric,
voltammetric, amperometric, conductometric, and impedimet-
ric) and colorimetric sensors; biosensors; and sensors based on
gas chromatography and mass spectrometry.7,34,36,45

Conductometric Sensors. The mode of operation of a
conductometric sensor is based on the changes in conductivity.
These changes result from the interactions with the volatile
odorants, which leads to the changes in the sensor’s electrical
resistance; the underlying mechanism differs depending on the
material used. Despite the fact that various materials are used,
the construction and distribution of specific elements in
conductometric sensors are, in principle, the same. There are
three types of conductometric sensors that are most commonly
used in electronic noses; they are conductive polymer (CP)
sensors, metal oxide semiconductors (MOS), and metal oxide
semiconductor field-effect transistors (MOSFET). In addition,
the conductometric sensors are divided into cold and hot
sensors, the latter being capable of performing at higher
temperatures.7,30 Publications on the use of conductometric
sensors in an electronic tongue are very scarce.46

The advantages of CP sensors are a low price and fast
response, whereas susceptibility to humidity is the main
disadvantage.32 These sensors have been used in an electronic
nose to, among others, identify stages of wine fermentation,47

monitor decomposition in Atlantic salmon during its storage at
different temperatures,48,49 and detect spoiled vacuum-packed
beef.50 Cyranose 320, Aroma Scan A32/50S, and Bloodhound
BH114 are commercially available electronic noses that employ
CP sensors. MOS sensors are also inexpensive, stable, easy to
use, and highly sensitive.7,48 They require a high working
temperature, which is a disadvantage.51 These sensors are used
in electronic noses to monitor red wine spoilage52 and the
dehydration process in tomatoes;53 for the quality control of
Atlantic salmon;54 to determine the freshness of meat;55 to
classify fruits on the basis of their ripeness;56,57 and to detect
aflatoxins in corn.58 The commercially available electronic
noses that employ MOS type sensors are, among others, i-PEN,
i-PEN3, PEN-2, PEN3, FOX 2000, 3000, 4000, 5000, FishNose
(GEMINI), KAMINA, EOS835, and FF-2A. Compared to the
above-mentioned, the MOSET sensors are small and
inexpensive; however, their main disadvantage is low sensitivity
to ammonia and carbon dioxide and drifting baseline.13 These
sensors have been employed in electronic noses that are used to
evaluate the oxidation level of olive oil stored under various
conditions;59 to detect the presence of fungi, bacteria, and
ergosterol in grain samples;60 to monitor fermentation in
sausages;61 and to determine the freshness of shrimp and cod
roe.62 NST 3210, NST 3220, and NST 3320 are the
commercial electronic noses that employ MOSET type sensors.
Amperometric/Voltammetric Sensors. Measurements

by means of these sensors are based on the electric current
reading between the working and reference electrode in an
electrochemical cell as a function of analyte concentration.63

The main disadvantage of such sensors is the lack of selectivity.
This type of sensor in electronic noses is used to assign the

correct class to wheat samples in accordance with the quality
classification,64 whereas in the electronic tongue it is used to
evaluate different conditions under which olive oil is stored,59

to identify white wines with regard to the type of grape and
geographical origin,65 and to discriminate among various blends
of fruit juices.66 Additionally, similarly to potentiometric
sensors, these sensors are used to monitor the aging phase of
wine,67 to monitor beer fermentation,68 to control the freshness
of milk stored at room temperature,69 to detect chemically
adulterated red wine,70 and to identify rice wine with regard to
its age.71

Potentiometric Sensors. Potentiometric sensors are based
on the voltage measurement at null current, which is usually
needed to retain the balance of electrochemical process.7

Potentiometric sensors have the following positive properties:
well-known principles of operation, low cost, ease of
commercial production, the possibility of obtaining selective
sensors, and the highest degree of similarity with the
mechanism of molecular recognition. Their disadvantages are
the dependence of the measured value on temperature and
adsorption of the solution components onto the electrodes,
which influences the changes in potential.32,34,36 Potentiometric
sensors are most frequently found in electronic tongues, which
are used to monitor cheese fermentation;72 to evaluate the
impact of micro-oxygenation and oak chip maceration on wine
composition, in particular, on the presence of phenol
compounds;73 to monitor changes during beer brewing;74

and to identify the botanical origin of honey.75

Impedimetric Sensors. The principle of operation of
impedimetric sensors is based on measuring the impedance at
one constant frequency or for a frequency spectrum by means
of impedance spectroscopy.34 They could be employed in an
electronic tongue; however, in practice, this happens only
sporadically. This sensor was used, for example, to discriminate
brands in red wines in an electronic tongue.76

Piezoelectric Sensors. The operation of piezoelectric
sensors is based on a piezoelectric phenomenon. As a result
of sensor exposure to odorants, a change in mass occurs due to
the adsorption or absorption of odorants by the sensor, which,
in turn, causes changes in the sensor resonance. Consequently,
the electric current also changes, which is the output signal.
The main advantages of piezoelectric sensors are high
sensitivity, real-time measurements, small size, durability, low
cost, and the principle of detecting analytes on the basis of the
universal change in mass.77 A quartz crystal microbalance
(QMB) is an example of the application of a piezoelectric
sensor.7,29 Piezoelectric sensors are more commonly used in
electronic noses (e.g., to determine the optimal time for
harvesting apples78 and to evaluate the quality of tomatoes79)
than in electronic tongues. It seems, however, that their wider
use in electronic tongues is just a question of time.32

Colorimetric Sensors. Colorimetric sensors are devices
mostly based on the interaction of electromagnetic radiation
with matter. Colorimetric sensors can be based on different
phenomena such as fluorescence, reflection, and absorbance.
These sensors consist of an indicator, detector, and light source,
the latter set at a specific wavelength to maximize selectivity.
Due to the interaction with an analyte, the properties of an
indicator change, which influences the membrane absorbance
or fluorescence. The changes are monitored via a detector,
which converts the signal from optical into electric form.32

There is a great variety of colorimetric sensors; therefore, they
are characterized by low cost, simple procedure, and high
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selectivity.7 Thanks to the use of colorimetric sensors, it is
possible to detect substances that are not electrochemically
active and therefore cannot be detected by an electrochemical
sensor. Colorimetric sensors have some disadvantages that
significantly limit their application, for example, sensor
durability and output signal distortion.32 These sensors have
been employed in electronic noses to discriminate commercial
drinks80 and in electronic tongues to evaluate the quality of
beer brands81 and discriminate wines with regard to wine age
and grape variety.82

Electronic Noses Based on Gas Chromatography and
Mass Spectrometry. In the electronic nose technology, it is
possible to use the technique of fast gas chromatography. A fast
gas chromatograph is a stationary device that requires a short
time for analyzing samples; it simulates the work of a system
consisting of hundreds of orthogonal sensors, which allows for
precise separation of volatile components in the investigated
sample. There are also electronic noses employing a mass
spectrometer;52,83−85 the mass spectra of particular substances
are then used as the output signal from the sensor. However,
due to the high cost of such devices, their application is
relatively rare.7,51 A mass spectrometer was used, for example,
to predict the shelf life of pasteurized and homogenized low-fat
milk in an electronic nose86,87 and to discriminate bacterial
strains and monitor the smell intensity during fermentation of
milk and cheeses.83

Biosensors. A biosensor consists of a biological measuring
element, which is located close to the transducer to achieve
high sensitivity to the target analytes (Figure 4).31 A biosensor-

based electronic tongue is often called a bioelectronic tongue.
Such a device can be described as an analytical system made of
a number of biosensors that are sensitive to particular
compounds present in a solution; the system is connected to
the properly selected chemometric tool for data processing.88

Until now, different principles of operation of bioelectonic
tongues have been proposed, including voltammetric, amepro-
metric, and potentiometric principle. Biosensor arrays display
high selectivity due to enzyme−substrate interactions. More-
over, the biosensor efficiency can be improved by the
introduction of electron mediators, which facilitate the transfer
of electrons from the enzyme to the electrode.89 Such sensors

have been used to, among others, monitor changes occurring
during the aging process in beer.90

Arrays in Still Cameras. CCD Array. A charge coupled
device (CCD) array consists of hundreds of thousands of light-
sensitive elements, or semiconductor sensors, which are called
pixels. The creation and storage of the electric charge
originating in the presence of light is one of the sensor’s
functions. The task of the whole array is to sample the image,
be light-sensitive, and store and transport the created charges.
CCD sensors are made of light and fragile materials; they can
be in the form of diodes and a MOS capacitor stacked in rows.
Light, upon reaching the array covered with a crystal silicon
plate, ejects electrons from particular pixels. The number of
ejected electrons is proportional to light intensity at a given
pixel. A CCD array has two working modes, that is, passive and
active. In passive mode, different numbers of electrons are
gathered depending on light intensity, whereas in active mode
the pixel readout takes place, where charges from higher levels
are transferred one pixel lower. This process is repeated until all
pixels have been read. Next, the content of consecutive rows
ends up in the shift register, a so-called output register, where a
conversion of charge into a voltage occurs at the output (Figure
5).41

Color Sensors. The most commonly used color sensors are a
Bayer sensor and a device called 3CCD. The Bayer sensor is
employed as an RGB (red, green, blue) filter in CCD sensors of
digital cameras. It is a chess board-like grid having a filter
pattern that is 50% green, 25% red, and 25% blue. Such an
arrangement of colors results from the fact that a human eye is
most sensitive to green color. Unfortunately, the filter transmits
only a part of the spectrum; therefore, some information does
not reach the sensor. Additional information is created by using
a demosaicing algorithm. The 3CCD sensor has better color
resolution because it contains three independent image sensors
and dichroic prisms, which split light into red, green, and blue
beams. This sensor is characterized by better light sensitivity as
it absorbs the whole beam of light, whereas sensors covered
with a Bayer filter absorb only 33%.41

CMOS Array. A complementary metal oxide semiconductor
(CMOS) array is based on the same principle as a CCD array.
Light absorbed by silicon crystals generates electric charges.
The CMOS sensors differ from the CCD sensors with regard to
distribution and structure (Figure 6). The basic difference is
that each so-called active pixel has its own voltage transducer.
As a result, the coefficient of a transformation of electric charge
to voltage is almost the same for each pixel. Consequently, it is
necessary to calibrate the CMOS array with regard to
differences between pixels by using digital camera software.
Contrary to the CCD array, the CMOS pixels can be read in

Figure 4. Exemplary structure of a biosensor.

Figure 5. Simplified schematic representation of a CCD array.
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any order. The main advantages of the CMOS array are low
energy use and the possibility to miniaturize the camera.41,91,92

■ METHODS OF SIGNAL ANALYSIS USED IN
ELECTRONIC SENSES

A measurement performed by means of electronic senses
generates a vast volume of data; therefore, it is necessary to
apply methods of data analysis which allow for data
classification. The simplest method is the graphical representa-
tion of data in the form of a histogram or circle diagram. Both
of these graph types are used to determine the sample
components that significantly differ from the others. Another
method of signal analysis is based on statistical analysis or
multidimensional data analysis. Besides the aforementioned
methods, artificial neural networks can also be applied.
Artificial Neural Networks (ANN). An artificial neural

network mimics a biological neural network, which collects and
transfers signals to the central nervous system, processes the
data, and makes specific decisions depending on the identified
objects. The basic elements of ANN are artificial neurons. The
most important parts of a neuron are the nucleus, dendrites,
synapses, axon hillock, and axon. The nucleus is the computing
center of the neuron. Dendrites are entrance gates of the
neuron through which the input signals enter, whereas a
synapse is the end part of dendrites and a so-called exit gate of
the neuron. The input signal at a synapse undergoes a
preliminary modification; that is, it is either amplified or
attenuated. As in a dendrite, the axon is the exit gate from the
neuron, whereas the axon hillock is the so-called neuron’s exit.
In an axon, the neuron’s exit is intertwined with the dendrites

of other neurons (i.e., entrances), which enables further transfer
of the signal. An artificial neuron has been designed to simulate
its biological counterpart. The entrances, or more specifically
the signals passing through them, correspond to dendrites.
Weights are digital analogues of changes made in the signals at
a synapse. The summation function block corresponds to a
nucleus, the activation function block corresponds to the axon
hillock, and the exit is analogous to the axon. Signal processing
by an artificial neuron can be presented in a generalized way as
follows. Signals delivered by the entrance gates are multiplied
by weights. The multiplied signals are then summed using a
summation function block, which results in the signal called a
membrane potential. This signal is passed through an activation
block, which can be described by different activation functions
depending on the requirements. The value of a activation
function is the neuron’s output signal, which is transferred to
the neurons in the next layer. The activation function can have
one of three forms: step function (a so-called threshold
function), linear function, and nonlinear function. Neurons are
usually distributed in layers. The first neuron layer is called an

input layer and is responsible for inputting data into the
network. The number of neurons in this layer equals the
number of values that are concurrently being fed into the
network. The last neuron layer, a so-called output layer, is used
to generate the output values. Hidden layers can be present
between the input and output layers. Neurons assigned to
specific hidden layers process the input information into the
output information. Neurons in adjacent layers are connected,
which results in a system of paths used for information transfer;
these connections can be of a one-way or two-way type. One of
the main advantages of neural networks compared to other
methods of data processing is the learning process, which
enables the proper reaction to signals that have not been
foreseen by the constructor. Contrary to mathematical methods
and algorithms, a neural network can be used for many different
models without significant alterations. The aforementioned
advantages are available only when a proper learning algorithm
is employed. The most commonly used methods of training
ANN include error back-propagation (BPNN) and its modified
versions.93−95 We can identify different types of ANN used in
the analysis of data obtained through electronic senses: radial
basis function (RBF), counterpropagation−artificial neural
network (CP-ANN), generalized regression neural network
(GRNN), time delay neural networks (TDNN), probabilistic
neural networks (PNN), self-organizing maps (SOM), and
neural networks of learning vector quantization (LVQ) type.

k-Nearest Neighbor (kNN) Algorithm. The kNN
algorithm belongs to the group of algorithms in which the
description of the classifier’s target function is not performed
during the classifier’s training, but at the stage of assigning an
object to the specific classes. The underlying principle of the
classifier’s operation is that the object belonging to a specific
class has in its close proximity other objects belonging to the
same class. Classification is performed by comparing the fitted
object to all objects stored in the training set and then choosing
from among them k objects that are most alike. To estimate
how similar the two feature vectors are, the Euclidean distance
is commonly used; the objects that are separated by the
shortest Euclidean distance are considered similar. The object is
assigned to the class represented by the highest number of
objects from among k selected neighbors. When more than one
class is represented by the same number of neighbors, the class
consisting of the closest neighbors is chosen. Parameter k is
selected experimentally to obtain the best classification for a
given data set.96,97

Hierarchical Cluster Analysis (HCA): Czekanowski’s
Method. Czekanowski’s method/diagram is mainly used to
cluster territorial units into homogeneous regions. The starting
point of Czekanowski’s method is the matrix of distances
between the objects, D[dii′], which are defined on the basis of
any distance type. The distance measures in the D matrix are
divided into similarity classes of objects, and the appropriate
graphical symbols are assigned to these classes. In this way, an
unorganized Czekanowski’s diagram is created, which allows for
a visual evaluation of the object classification. Object sorting is
performed by organizing the diagram, that is, by rearranging its
rows and the corresponding columns to align the graphical
symbols that code the shortest possible distances along the
main diagonal. As the distance from the main diagonal
increases, the symbols corresponding to larger distances appear.
The sequence in which objects are organized is defined by the
sequence of the corresponding rows (columns).98

Figure 6. Comparison of the CMOS and CCD arrays: 1, microlenses;
2, color filter; 3, signal transmission path; 4, photodiodes; 5, transistors
and amplifiers.
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Cluster Analysis (CA). CA is a method that allows for
grouping elements described by more than one feature into
relatively homogeneous classes. The most important part of CA
is the formation of clusters, that is, the sets of objects for which
the similarity between any two objects from the same set is
higher than that between any object from the same set and any
object not belonging to the set. The clusters do not overlap;
that is, none of the objects can belong to more than one class.
The clusters are separated by a precisely determined distance,
which can be defined in a number of ways. There are two types
of clustering methods, that is, hierarchical methods that allow
for generating a hierarchy of clusters depending on the distance
between the clusters and nonhierarchical methods based on
relocating objects from one cluster to another in the search for
the most suitable scheme according to the desired criterion.
Agglomeration and k-means clustering are considered hier-
archical and nonhierarchical methods, respectively.99,100

Discriminant Function Analysis (DFA). DFA is used
when the assumptions of a linear regression are met. The cases
are classified into groups using a discriminant prediction
equation to examine differences between or among groups. It
allows for the rejection of variables that are little related to
group distinctions and to determine the fastest way to
distinguish groups of elements. Discriminant analysis is carried
out in two stages. The first stage, the F test, is used to check
whether the discriminant model as a whole is significant. The
second step is carried out when the F test shows significance.
The individual independent variables are evaluated to see which
differ significantly in mean by the group, and they are used to
classify the dependent variable.101

Principal Component Analysis (PCA). PCA is mainly
used to model, compress, and visualize multivariate data
(Figure 7). The aim of PCA is to present the data set X, with m
objects and n variables, in the form of a product of two new
matrices T (m × f) and P (n × f), where f ≪ n; matrices T and
P contain the object coordinates and parameters that lie on the
first new coordinate (first principal component), which is the
direction of maximum variance. The PCA model can be
described by the equation

= +X T P Em n m f f n
T

m n[ , ] [ , ] [ , ] [ , ]

where E is the matrix of residues for the PCA model with f
principal components. The columns of matrices T and P
contain the object coordinates and parameters that are assigned
to new variables called principal components. The principal
components are derived by iteration in such a way as to
maximize the data variance. Each consecutive principal
component explains the variance that has not been accounted
for by the earlier principal components; therefore, the variance
assigned to it decreases. Each principal component has an
associated value, a so-called eigenvalue, vi, which is computed
by summing the squares of results for a specific principal
component. Eigenvalues quantitatively describe the variance
associated with the consecutive principal components. Principal
components form a new coordinate system in which the
Euclidean distances between the objects remain the same; that
is, new distances are identical with the original distances in the
data space. Each object has coordinates defined by specific
results.102

Support Vector Machine (SVM). SVM is a mathematical
model described by the supervised learning algorithm that is
capable of making predictions. Similarly to ANN, the
assignment of objects to specific classes by the SVM method
is realized with the use of a training set. SVM is a great
alternative to ANN because of better classification compared to
the latter, for example. The underlying principle of SVM is the
creation of an optimal hyperplane that would separate the data
belonging to the opposite classes, with the highest possible
confident margin. The SVM algorithm assumes that a
maximum-margin hyperplane separates the two classes of
data sets in the best way. The margin is a distance between the
hyperplane and the support vectors. The support vectors are
hyperplanes that separate two classes of data points and are
supported by these data sets. Besides the standard support
vector machine, different modifications of this method exist
such as support vector regression (SVR) and least-squares
support vector regression (LSSVR).103

Partial Least Squares (PLS). Partial least squares
regression (PLSR) is a technique commonly used in data
analysis. PLSR is a variant of PCA; a number of linear
combinations of the predictors, which predict the response
variable in a satisfactory way and are orthogonal, is sought. In
the case of the PLSR method, the new explanatory variables
should not only explain the variability of the original data but

Figure 7. Example of a PCA plot for the varieties of Polish honey.
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also be correlated with the response variable. This method is
used when one analyzes a relationship between one response
variable and many explanatory variables. PLSR is particularly
useful when the number of variables is larger than the number
of data points. For these reasons, the method is frequently
applied in chemometry. The multiple-regression methods, for
example, PLS, can also be used to construct discriminant
analysis models (PLSDA).104

Principal Component Regression (PCR). In PCR the
model is composed of principal components instead of the
original variables. The principal components are derived via
iteration by decomposing the original data matrix X into the
result matrix T and the weight matrix P. The role of principal
components is to maximize the data variance. In general, a PCR
model with f factors that allows for the prediction of dependent
variables can be described by the following set of equations:

= +X T P Em n m f f n
T

m n[ , ] [ , ] [ , ] [ , ]

= +Y T Q Gm k m f f k
T

m k[ , ] [ , ] [ , ] [ , ]

The coefficients of the regression model Q are estimated by the
least-squares method, as follows:

= −Q T T T Y( )f k f m
T

m f f m
T

m k[ , ] [ , ] [ , ]
1

[ , ] [ , ]

The principal components used for the construction of the
PCR model are orthogonal. This property allows for the
calculation of regression coefficients by applying the least-
squares method. Moreover, a part of the experimental error of
data set X is reduced after a couple of principal components
have been chosen. The number of columns in matrix T, that is,
the number of principal components used in the constructed
model, defines the model’s complexity. Matrices E and G
contain this part of variance of X and Y, which has not been
accounted for by the fitted model.104

Soft Independent Modeling of Class Analogies
(SIMCA) Classifier. In the SIMCA method, a separate
model is constructed for each class, which is based on the
principal component approach. Next, a so-called confidence
envelope (i.e., a certain volume or hypervolume) is created
around the model, which should contain all elements belonging
to the specific class with a given probability. For each class, the
number of significant principal components in the model is
individually chosen in accordance with the commonly used
methods. In the case when only one principal component is
significant for a given class, the component mean and the
vector associated with this component become the model of
the class. For two significant components, the model is defined
by the location of class center and the plane determined by the
component vectors. The remaining models are constructed in a
similar way.97

Analysis of Variance (ANOVA). ANOVA is a parametric
tool that allows for comparing more than two groups that had
been categorized on the basis of one variable (one-way
ANOVA). The underlying idea is to compare the variance of
dependent variables within the groups that had been created on
the basis of the values of independent variables. To apply
ANOVA, the following assumptions must be fulfilled: the
dependent variable is normally distributed; between-group
variance is homogeneous; the dependent variable must be
measured at least on an interval scale; and the analyzed groups
should contain equal numbers of objects.105,106

Linear Discriminant Analysis (LDA). The aim of LDA is
to construct linear discriminant functions for the samples in the
model set that belong to specific groups. The constructed
discriminant functions are used to classify new samples. The
underlying idea of the method is to reduce the dimension of the
data set and, at the same time, retain the value of the T2

statistic, which is used to evaluate the hypothesis about the
equality of means in a multidimensional space. As a result of
LDA, a space is created having a dimension that had been
reduced to k − 1 at best (k is the number of classes). For
normal multidimensional distributions of the analyzed data in
such a space, the discriminatory features remain intact. To
properly apply LDA, a number of assumptions has to be
fulfilled, that is, the distribution of objects in each group should
be approximately normal; the groups should be linearly
separable; variance−covariance matrices of each group should
be linearly separable; and the total number of objects has to be
at least 3 times larger than the number of variables. There are
three variants of LDA, stepwise linear discriminant analysis
(SLDA) being an example of one of them.104,107

Fisher Discriminant Analysis (FDA). FDA assumes that
data vectors occupy p-dimensional space X × 1/2R

p, whereas its
aim is to obtain a discrimination rule based on a linear function.
For g = 2 (g is the number of classes), the rule determines the
direction a in X that separates the two training sets in the best
possible way and, at the same time, creates a distance measure
between the classes that includes a within-group variability. A
within-group dispersion should be characterized by appropriate
covariance matrices that are based on suitable data. FDA
requires that the information about classes, to which new
observations are assigned, should be categorized by using the
indicators of location and dispersion of g subsets in the training
set.108

Quadratic Discriminant Analysis (QDA). QDA is also
considered a statistical method however, of a more
sophisticated type than LDA. In QDA, the data set is
subdivided by using quadratic curves. This method is applied
when variance−covariance matrices significantly differ. In the
case of QDA, the boundaries between the groups are
nonlinear.107,108

Multiple Linear Regression (MLR). The aim of MLR is to
determine the relationships between many independent
(explanatory) variables and the dependent (response) variable.
In the regression analysis, the parameters of a theoretical model
are estimated to reflect the true relationship in the best possible
way, as illustrated by the plot of real and theoretical values of
the response variable.
The basic regression models assume the existence of linear

relationships between the response variable and the explanatory
variables.104

Complex Data Analysis (CDA). CDA is based on the
assumption that data consist of x vectors containing non-
negative elements x1, ..., xD, which form a specific unity:

+ + =x x... 1D1

The variables in the aforementioned equation are not
independent because they sum to 1; such data are called
closed data.
Information contained in the vectors is connected to the

relative content of a component. Therefore, the relationships
between the components can be expressed in the form of
proportions. A transformation of the component vector spaces
(simplex) into a Euclidean space can be performed by applying
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logarithmic transformations. The characteristic feature of a
complex data set is that each row in the data matrix
corresponds to only one sample, whereas each matrix column
corresponds to one component. Moreover, each matrix element
is non-negative, and all matrix rows sum to 1 (e.g., proportions)
or 100 (e.g., percentage shares).108

Canonical Correlation Analysis (CCA). CCA allows one
to find points (variables) in the new coordinate system and
points (objects) in the same coordinate system.
In this way, a relationship between the variables and objects

under observation can be defined. The analysis of relationships
between the variables and objects is conducted directly, which
is contrary to the indirect analysis via relationships among the
variables and factors, as in other factor-based methods. The
rows of matrix X, that is, the input data matrix, can be
interpreted geometrically as the coordinates of data points of
the variables in n-dimensional object space Rn, whereas the
matrix columns as the coordinates of points (objects) in m-
dimensional variable space Rm. The input variables are made
uniform by applying a canonical transformation. The stand-
ardization process in CCA aims at homogenizing the columns
and rows of the relative frequency matrix. This type of
standardization is performed by scaling the coordinates after
matrix columns and matrix rows had been standardized.109

Color Image Analysis. RGB Model. The most popular
method of color image analysis is the RGB model based on
three components, that is, red (R), green (G), and blue (B).
The RGB color space can be depicted in the form of a cube
with three perpendicular axes R, G, and B, each with the axis
range from 0 to 255,25,110 as presented in Figure 8.

For R = G = B = 0, no light is present; therefore, such
assignment indicates the color black. In the case when all
components assume maximum values, white color is the
outcome. Points with different hues of gray color, which lie
along the achromatic axis of the RGB cube, are also shown in
the figure. The achromatic axis has been defined as a set of
points lying on the main diagonal of RGB cube between the
points [Rmin Gmin B min] = [0,0,0] and [Rmax Gmax Bmax] =
[255,255,255]. The RGB model is called an additive color
model because a broad spectrum of colors is obtained by
adding beams of primary colors in space.25,110

CIE XYZ Model. The CIE XYZ, or CIE 1931 color space, is
the first mathematically defined color space model. It is
considered a standard and reference point for CIE L*a*b* and
CIE L*u*v* color spaces. The abbreviation CIE stands for the
International Commission on Illumination (Comission Inter-
nationale de I’Eclairage). The tristimulus values XYZ

correspond to the percentage shares of primary colors in the
RGB model.111

CIE L*a*b* and CIE L*u*v*. Unfortunately, the CIE XYZ
model has numerous flaws, for example, the lack of uniform
color perception; that is, similar differences among colors are
not separated by the same Euclidean distances in the color
space. As a result of mathematical transformation of the CIE
XYZ model, two models are produced: CIE L*a*b* and CIE
L*u*v*.25,112 Colors in the CIE L*a*b* model are defined by
three components: L*, which is luminance, an achromatic
property in the range between black and white; a*, which is a
chromatic component in the range between green and
magenta; and b*, another chromatic component in the range
between blue and yellow.111,112

Contrary to the CIE L*a*b model, the CIE L*u*v* model is
characterized by a simpler calculation required to transform the
CIE XYZ model, which does not involve so many cube root
operations. However, the transformation requires intermediate
parameters, u* and v*. As in the previous model, the symbol L*
stands for luminance, whereas u* is a chromatic component in
the range between green and red and v* is a chromatic
component in the range between blue and yellow.111,112

HSV, HSL, and HSI Models. HSV, HSL, and HSI are other
color space models; each letter codes a specific model
component, that is, hue, saturation, value, lightness, and
intensity. These models are modified versions of the RGB
space that more precisely reflect the perception of a human eye
and, at the same time, retain the simplicity of calcula-
tion.41,113−115 Figure 9 shows a comparison of the three
aforementioned models.
The HSV model has the shape of a pyramid, whereas the

HSL and HSI models are a double pyramid and a cylinder,
respectively. The HSV model is based on the cube that has
resulted from the RGB model. The analogy is also visible in the
HSL model. The HSI model has a different shape; saturation is
expressed as a distance from the cylinder center, and intensity is
defined as the axis height. As all color models, the HSV, HSL,
and HSI models have certain flaws, for example, unspecified H
value for S = 0. In the HSI model, intensity contains
information that is tightly connected to the other system
components. In the case when intensity is close to 0, the
analysis of hue and saturation is pointless because of the
possible occurrence of large errors.113

Analysis of Image Properties. An image has basic
properties such as resolution, dimension, the number of
discrete intensity levels for each pixel, color space, and the
signal-to-noise ratio.38,116 The processing of a raw image
consists of many graphical operations, which enable the
improvement of image quality by removing specific flaws, for
example, geometric distortions, inappropriate sharpness,
uneven lighting, and camera movement. Image analysis is
mostly based on the discrimination between a given object and
its background. There are three levels of image processing: low,
medium, and high.38,110 In low-level image processing, simple
corrections can be introduced to the image by using
geometrical operations such as moving, rotating, and scaling
to correlate the image with the coordinate system. The
consecutive processes that improve image quality are arithmetic
operations; they allow for increasing the contrast and adjusting
the brightness to increase the differences between the object
and the background.117 Image filtering is one of the possible
operations where the intensity at pixel location is recalculated
on the basis of the pixel intensity and the intensity of

Figure 8. 3D volume of RGB model in a Cartesian coordinate system.
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neighboring pixels. Due to the use of filters, it is possible to
improve image quality by removing the sensor noise or by
correcting the nonuniformly lit image. Moreover, filtering
enables the sharpness correction of edges and boundaries
between the objects. Segmentation, which is considered a
medium-level image processing, is one of the most important
methods of image analysis. In this method, the previously
filtered image is partitioned into fragments that correspond to
specific objects. This allows delineation of image areas that
fulfill the homogeneity criterion with regard to color,
brightness, and texture.38,118 A high-level image processing is
based on image recognition and interpretation by using
statistical classification, neural networks, and fuzzy logic. This
stage of image processing supplies information that is necessary
for quality control, sorting operations, and object classification
on the production lines in food-processing plants.38,119

■ APPLICATION OF ARTIFICIAL SENSES TO FOOD
ANALYSIS

At first, an electronic nose was used only to analyze the
mixtures of volatile air contaminants that had already been
detected by olfaction. At present, the application of this device
is much broader and includes the analysis of liquids and
oxygen-free gas mixtures. The use of electronic nose
encompasses environmental monitoring (detection of air
pollution, tracking of pollution pathways, and efficiency
assessment of wastewater and waste gas treatment), medical

sciences (identification of selected diseases, including tumors,
based on odorants excreted by the infected cells and organs),
the perfume industry (authentication of perfumes), the
pharmaceutical industry (production control of medicines),
forensic operations, and the food-processing industry.7

An electronic tongue is used to analyze liquid samples. This
device enables a parallel analysis of multiple components
present in the investigated liquid. The artificial tongue is
applied in environmental monitoring (detection of contami-
nants in samples of water and wastewater), medical sciences
(detection of pathogens in liquid samples), and the food-
processing industry.120

On the other hand, computer vision is used in the food-
processing industry for quality control. The system is
commonly employed on the production lines for sorting and
discriminating specific products.

Milk and Dairy Products. Dairy products are a very
diverse group due to the fact that they comprise many types of
yogurt, cheese, and milk, each of these foods being broadly
diversified as well. Dairy products are made in various ways by
using a wide spectrum of fermentation techniques, micro-
organisms, and food additives. This scenario stimulates the
search for analytical tools that would allow for the
discrimination of products and their quality evaluation. The
electronic nose and tongue are used to monitor food
processing, evaluate food freshness, authenticate products,
and determine the shelf life of foods. This allows for reducing

Figure 9. Three color models: (A) HSV; (B) HSL; (C) HSI.
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the number of poisonings and allergic reactions in human. The
electronic eye is employed to monitor visual changes in cheese
during the pizza-baking process.121

In the case of food process monitoring, the electronic nose
and tongue have been used to monitor fermentation in milk
and cheese.72,83 The application of artificial senses assures
product quality at the very start of the food production line.
The monitoring of food freshness and product quality during

storage is the foremost application of the electronic nose and
tongue.69,87,122−126 This allows the exclusion of spoiled
products from the market as well as the determination of
appropriate shelf times and storage conditions for milk and
cheese to avoid financial losses by the dairy industry.
Another important application of electronic senses is product

authentication. Thanks to this procedure, falsified products are
excluded from the market; therefore, consumers can purchase
merchandise of quality precisely specified by the manufacturer.
In the case of dairy products, the conducted studies were aimed
at discriminating the brands of milk and yogurt127−130 and
identifying hydrogen peroxide in cow’s milk.131 The determi-
nation of age, geographical origin, type, and maturation level in
cheeses is also very important; such studies were conducted on
a broad variety of cheeses by means of an electronic
nose.132−139 It is necessary to perform this type of research
because the investigated parameters influence the cheese quality
and therefore the price of specific cheese varieties.
Meat Products. Chemical analyses of meat products are

mainly performed via an electronic nose; the use of an
electronic tongue in this case is less suitable because it requires
a more complex preparation of samples. On the other hand, an
electronic eye can be employed to evaluate the freshness of
different meat types,140−145 the medical condition of meat,146

and the influence of storage conditions on meat quality to
determine an expiration date147,148 based on color and shape.
Computer image analysis was used to evaluate the freshness of
beef,140,142 pork,141,144,147 and poultry.144,146 The electronic
tongue was applied to analyze ground meat to predict the level
of chlorides, nitrates, and nitrites.149 Actually, it is the electronic
nose that has found a broader application in the field of meat
product analysis. This device is used to, among others, monitor
the curing process in Iberian ham to detect spoilage;150 this
allows exclusion of a production batch that could possibly pose
a health risk to consumers. Moreover, the electronic nose is
frequently used to detect spoilage, evaluate freshness,55 and
determine the storage time of meat. Until now, the conducted
studies were aimed at discriminating between fresh and spoiled
meat in samples of beef,50,151,152 turkey meat,153 sheep meat,151

and sausages.61 Another field of application of electronic senses
is the freshness evaluation in meat during storage, which is
aimed at determining the optimal storage time and conditions
to avoid meat spoilage.154 On the basis of freshness evaluation
studies, different freshness categories of meat products can be
defined. Research on the influence of storage time on meat
quality was conducted on samples of veal,155 beef,156 lamb,157

and meat products used in pizza production.158 The meat price
depends on the animal species from which meat is produced.
Therefore, it is specifically important to avoid falsified or
misidentified meat. The electronic nose was used to
discriminate llama meat from alpaca meat,159 identify the
meat of Iberian pigs among other pork meat,160 discriminate
among hams and sausages on the basis of their type and
quality,161,162 and discriminate meats on the basis of the meat
preparation.163

Fish and Shellfish. The electronic senses are employed in
the fish-processing industry to mainly evaluate the freshness of
fish and shellfish. The electronic nose has been used to perform
such analysis in sardines,164−166 shrimp and cod roe,62 and
Atlantic salmon,54 whereas the electronic tongue has been used
on samples of bream.167 The electronic eye was employed to
analyze the freshness of shrimp,145,168 sturgeon fillets,148 and
salmon fillets.143 The duration and conditions of storage have a
great influence on the freshness of fish and shellfish. To protect
consumers from the purchase of old fish, studies on the
relationship between the duration and conditions of storage
and product freshness were conducted by means of an
electronic nose on cod fillets,169 fresh and frozen Atlantic
salmon,48,49 tilapia,170 Argentine hake,171 and oysters.172,173

Similar investigations were performed on gilt-head bream174,175

and tench fillets176 by employing an electronic tongue; in the
case of gilt-head bream, the analysis aimed at predicting the
biochemical and chemical parameters of spoilage.175 Another
aspect of the application of artificial senses is discrimination
between fish species. The electronic tongue was used to
discriminate between freshwater and marine fish species.177

Similar studies were conducted by using an electronic eye.176

Moreover, the electronic nose was applied to discriminate
shrimp on the basis of the presence of phosphates, sulfates, and
bleaching agents due to processing.178

Fruits and Vegetables. An electronic nose is mainly used
to analyze fruits and vegetables. The application of this device is
related to the monitoring of food processing and the evaluation
of freshness, shelf life, and authenticity of food. On the other
hand, the electronic tongue has been mostly used to classify
cultivars (e.g., discrimination between onion and shallot),179

tomatoes on the basis of various parameters,180,181 apples,182

and apricots, the latter being also discriminated on the basis of
storage duration.183 The electronic eye is employed to
determine the quality of product by using shape and size
parameters;38,119,184−187 to identify the presence of unwanted
objects, for example, twigs and leaves;119,188 to establish the
relationship between storage time and product condition on the
basis of color analysis;189−192 and to identify bruising.191,193

The following fruits and vegetables have been investigated so
far: bananas, apples, pears, oranges, strawberries, broccoli,
potatoes, and carrots. The electronic nose was used to monitor
dehydration in tomatoes53 and grapes194,195 to determine the
optimal storage time. Studies aimed at evaluating the freshness
of fruits and vegetables were conducted to determine the
optimal harvest time (apples78), the ripeness level (bananas56

and mandarins57), and quality (tomatoes,79 tomato puree,155

peaches,196,197 and apricots198). Some products were analyzed
to determine their shelf life and classify the ripeness levels
(apples,199−202 tomatoes,203−205 peaches,202,206 mandarins,207

and pears202). The electronic nose has also become a useful
tool for discriminating among the varieties of, among others,
apricots,208 mangoes,209 and apples.210,211 Yet another
application of this device was the determination of selected
parameters that influence the quality of fruits and vegetables
such as oranges, apples,212 peaches, nectarines,213 pears,214,215

and onions.216 It has also been confirmed that the e-nose can
be used for monitoring diseases in cucumbers, paprika, and
tomatoes.167

Oils, Sauces, Vinegars, and Spices. Among this group of
products, olive oil is most frequently analyzed because attempts
to adulterate more expensive olive oil with its cheaper
alternative are very common.217 Therefore, the electronic
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Table 1. Examples of the Application of an Electronic Nose to Food Analysis

application sample object of investigation type of e-nose
method of data

analysis ref

food process
monitoring

grape wine discrimination of the sequential stages of
fermentation

AromaScan A32S: 32 CP PCA 47

Australian red wine monitoring of wine spoilage caused by yeasts HP 4440 FOX 3000 PCA, PLS 52, 84
Iberian ham determination of the degree of spoilage in ham tin oxide sensors PCA, PNN 150
milk, cheeses monitoring of the smell intensity during

fermentation
SMart Nose: MS PCA 139, 140

Cencara tomatoes monitoring of the dehydration process Air Sense: 10 MOS PCA 53
grapes monitoring of the dehydration process in

postharvest grapes
8 QMB PCA, ANOVA 194

CA, DA 195
black tea determination of the optimal duration of

fermentation
8 MOS TDNN, SOM, 255

evaluation of
food freshness

cod fillets discrimination of samples based on different
storage times

LibraNose FreshSense PLS 169

smoked Atlantic salmon
(fresh, frozen)

classification of spoilage in samples at different
temperatures

FishNose: 6 MOS PLS, PLSR 49, 54

fresh tilapia fillets discrimination of fillets based on storage times eNose 4000: 12 CP DFA 170
Argentine hake freshness evaluation in samples MOS PCA 171
shrimp, cod roe MOSFET PCR, ANN 62
oysters predictive modeling of smell changes in shells EEV model 4000: 12 CP FDA DFA 172, 173
sardines freshness evaluation in sardines 6 MOS PCA, SVM DFA 164−166
fat-free milk predicting the shelf life of different milk MS PCA 86, 87

detection of bacteria and yeasts causing
spoilage

BH-114: 14 CP DFA, PCA 123

veal, cod discrimination of samples based on storage
time

8 QMB PCA, SOM 155

ground beef/beef/sheep
meat

detection of spoilage and rancidification FOX 3000: 12 MOS PCA, SVM, 151
determination of changes in lipid ground beef 6 tin oxide sensors PLS 152

meat freshness evaluation in meat in relation to
storage time and storage conditions

KAMINA PEN2 FOX
4000

PCA, LDA,
BPNN, CDA

55, 156, 157

turkey meat detection of rancidification in frozen turkey
meat during storage

12 MOS, 10 MOSFET, IR
sensor

PLSR, PCA 153

vacuum-packed beef detection of spoiled meat 4 MOS, 10 MOSFET PLSR 50
meat products used in
pizza preparation

evaluation of product quality in relation to
storage time

e-nose based on ion
mobility

PLSR 158

sausages monitoring of the sausage fermentation
process

4 MOS, 10 MOSFET ANN 61

eggs determination of egg freshness based on
storage time at room temperature

PEN3 4 tin oxide sensors PCA, BPNN,
SOM, ANN

301, 302

apple juice quality evaluation of juices Prometheus: MS-nose QDA 85
apples determination of the optimal harvest time Libra Nose: QMBs PCA, PLS, PCR 78
bananas, mandarin
oranges

discrimination of bananas as dependent on
ripeness level

MOS, PEN2 PCA, LDA 56, 57

apricots use of an e-nose to sort apricots 8 QMB PLS 198
peaches detection of ripeness level in peaches 8 MOS PCA, LDA 196, 197
tomato puree, tomatoes monitoring of the puree spoilage and quality

evaluation of tomatoes
8 QMB PCA, SOM 79, 155

corn determination of aflatoxins in corn PEN2: 10 MOS PCA, LDA 58
oats, rye, barley discrimination of samples in relation to the

presence of fungi and bacteria
NST 3210 ANN 60

bread discrimination of bread spoilage Bloodhound BH-114 PCA, DFA, CA 236
olive oil detection of rancidification 32 CP PCA 224

testing the shelf
life of food

Pink Lady and Jonagold
apples

discrimination of varieties ripeness level, shelf
life and storage conditions

21 MOS, 12 QMB, MS
LibraNose

PCA, ANN, PLS, 199−201

tomatoes (Lycopersicon
esculentum Mill.)

discrimination of ripeness level, shelf life,
varieties, prediction of quality characteristics
of fruit

LibraNose: 5 QMB, MS,
PEN-2: 10 MOS

PCA, LDA, PLS 203−205

peaches, pears, apples classification of fruit samples at ripeness levels
and varieties

PEN-2, tin oxide sensor PCA, LDA, 202, 206

mandarin oranges testing shelf life during storage PEN-2: 10 MOS PCA, LDA 207
Crescenza cheese determination of maximum shelf life at

different temperatures
NST 3320 PCA, CA, LDA 122

milk determining the influence of storage time on
milk

FOX 4000 PCA 124, 125

meat determination of shelf life NST 3210 LDA 154
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Table 1. continued

application sample object of investigation type of e-nose
method of data

analysis ref

extra-virgin olive oil evaluation of oxidation status under different
storage conditions

NST 3320 PCA, LDA 59

authentication of
food

tequila, whiskey, vodka discrimination of four types of beverages FOX 4000 PCA, DFA 268, 269
Chinese spirits discrimination of eight types of spirits PEN3 PCA, CA, LDA 270
Italian wines detection of falsification 4 thin-film MOS PCA, BP/ANN 282
wines classification of wine in relation to the

botanical and geographical origin, aging
process, and method

MOS, SAW MS PCA, PNN
SIMCA, PLS,
LDA

273−281

wines detection of the falsification FOX 4000 PCA 283
beer identification of beer brand lab-made: 12 CP PCA 271
olive oil detection of falsification FOX 3000: 12 MOS LDA, QDA, ANN 217
extra-virgin olive oil discrimination of geographical varieties NST 3320 PCA, CP-ANN 219,
plant oils classification of plant oils 6 MOS LDA 225

quality discrimination zNose PCA 226
balsamic vinegar of
Modena

authentication MS PCA, SIMCA 230

soy sauce discrimination between soy sauces 31 CP CA 227
sesame seed oil detection of corn oil in adulterated sesame

seed oil
10 MOS PCA, LDA, PNN 231

Chinese vinegar identification of some commercial vinegars 9 MOS BPANN, kNN,
PCA

228

spices discrimination of different spices 9 MOS PCA, ANN 229
orange juices discrimination of geographical varieties FOX 3000 PCA, FDA 264

FOX 4000 PCA, DFA 265
citrus juices discrimination of citrus juices FOX 3000: 12 MOS LDA 266
cola drinks comparison of different brands FOX 2000: 6 MOS CA 256
commercial beverages discrimination of beverages colorimetric sensors HCA, PCA 80
cheese discrimination of geographical varieties and

age in cheese
MGD-1 eNose 5000 MS,
FOX 2000, CP

ANOVA, PCA,
CA

132−136, 138,
139

Pecorino cheese discrimination of cheese at different
maturation stages

AromaScan: 32 PC PCA 137

milk discrimination between milk brands 7 MOS PCA 127
18 MOS 128

dried sausages, cured ham discrimination of dried sausages in relation to
their origin

FOX 2000: 6 MOS FDA 162

ham discrimination of different types of ham tin oxide sensors PCA, PNN 161
products made of Iberian
pigs

discrimination between products made from
Iberian pigs and from other pigs

QCM, MOS LDA 160

llama and alpaca meat discrimination of meat from llama and alpaca BH114 LDA 159
apricots discrimination of varieties FOX 4000 PCA 269
mango discrimination of fruit varieties and ripeness FOX 4000 DFA 209
apples discrimination of apple varieties and types tin oxide gas sensors PCA, PLS, BP-

ANN
211

8 SAW 210
honey discrimination of honey in relation to its

geographical and botanical origin
MOS-AOS system, SMart
Nose

PCA, DFA 305, 307

mushrooms discrimination of lyophilized mushroom AromaScan A20S PCA 306
coffee discrimination of coffee brands, different

quality criteria, and bean ripening time
FOX 4000 lab-made FOX
3000, EOS835

PCA, ANN 45, 220, 240,
241, 243

green tea discrimination of the quality classes in
Longjing tea

PEN-2: 10 MOS LDA, PCA, 245
ANOVA, ANN 244

identification of coumarin-enriched green tea FF-2A: 10 MOS PCA, CA 253
discrimination of the green tea brands 8 MOS PCA, ANN 316

tea classification of teas characterized by varying
quality, regions, and brands

MOS PCA, SOM, RBF,
LDA, PNN

246, 248, 251

rice identification of rice varieties Cyranose-320 PCA, CDA 235
grains discrimination of different samples and smell-

based classification of grains
NST 3210 FOX 3000 ANN 233, 234

other
applications

olive oil discrimination of quality classes based on
qualitative and quantitative information

8 CP SOM, 221,
MS SIMCA, PLS 222,
FOX 3000 PCA 223

Cabernet red wine monitoring of changes in wine aroma after
bottle opening

8 QMB PCA, SOM 154
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tongue and nose were both used to discriminate among olive
oils on the basis of oil geographic origin218−220 and type and
quality.59,221−223 In the case of olive oil, the conducted studies
were also aimed at determining rancidity224 and the relation-
ship between storage time and oil quality.59 Also, other plant
oils were analyzed via an electronic tongue89,219 and an
electronic nose,225,226 whereas soy sauces,227 Chinese vine-
gars,228 and selected spices229 were analyzed by using an e-nose.
As mentioned before, in the case of luxury and traditional
products, it is of utmost importance to authenticate such
merchandise to protect the consumer from purchasing
substandard goods. The electronic nose was used to
authenticate the balsamic vinegar of Modena230 and sesame
seed oil.231

Grains and Grain Products. In the case of grains and grain
products, quality evaluation and authentication are important
(wheat,64,232−234 rice,235 barley and oats,233,234 and corn186);
however, the critical issue for consumers is the evaluation of
possible health risks of such products by means of electronic
senses. Possible health risks are related to grain diseases, which
often go unnoticed due to the fact that they are not visible to
the naked eye. Mycotoxin contamination of grain, which also
includes contamination with aflatoxins, and various diseases
caused by fungi and bacteria are such risks. Studies on the
subject of disease detection were performed on samples of
corn58 and oats, rye, and barley.60 The electronic nose was used
on samples of bread,236 whereas an electronic eye was used on
samples of rice237 and corn.238,239 The artificial senses allowed
exclusion of samples that could have caused the development of
a disease in consumers.
Teas, Coffees, and Herbal Infusions. Coffees, teas, and

herbal infusions are mainly analyzed to distinguish among
specific types, quality levels, and brands. This is due to the fact
that these products are highly variable. Products of low and
high quality are frequently mixed together to lower the overall
production costs and then sold as top-quality merchandise.
Coffees were discriminated on the basis of the quality,220

brand,45,177,240−242 and ripening period,243 whereas teas were
evaluated in relation to quality,244−247 brand,248−250 geo-
graphical origin,251,252 and content of flavoring substances
such as coumarin253 and theaflavin.254 Moreover, the electronic
nose was used to monitor the fermentation process in black tea
and to determine the optimal time for producing tea with the
best flavor.255

Nonalcoholic Beverages. The analysis of alcohol-free
beverages is among many applications of electronic senses.
Until now, studies aimed at identifying brands and quality of
such beverages were conducted in, for example, cola type
drinks,256 other commercial beverages,80 mineral water,257−260

and fruit juices and fruit juice-based drinks.66,130,240,257,261,262

The beverages were analyzed by means of an electronic eye to
determine the quality of orange juice on the basis of its color
and color saturation.263 Another example of the application of
electronic senses is the identification of geographical origin in

juices263−265 as well as discrimination of juices on the basis of
fruit type.266

Alcoholic Beverages. Alcoholic beverages are among the
products that have been most frequently analyzed by means of
electronic senses. Process monitoring in alcohol production
requires fast analytical tools that can detect substandard
products, discriminate among products, and authenticate
products in real time. Wine and beer are mostly subjected to
such type of monitoring because both beverages undergo
fermentation that results in a release of specific compounds
influencing the taste and aroma of the final product. The
artificial senses monitored the processes of fermentation,68

brewing,74 and aging90 in beer. In the case of wine, these
devices were employed to control the aging process, to
determine the influence of wooden barrels on aging and
maceration,67,73,267 and to monitor grape fermentation.47

Authentication of alcohols is aimed not only at detecting
adulterated products with substandard characteristics but also at
identifying falsified products that can be potentially harmful to
the consumer’s health. Until now, the electronic nose was used
to, among others, discriminate among vodkas,268,269 spirits,270

whiskeys,268,269 wines,268,269 tequilas,268,269 beers,269,271 and
sorghum-based drinks.272 The most widely researched group of
alcoholic beverages is wines, which have been discriminated on
the basis of geographical origin,273,274 grape variety,275 and type
of maturation and aging process276−281 as well as analyzed to
detect cases of product adulteration.282,283 The electronic
tongue was applied to detect falsified vodkas,284 whiskeys,285

and wines; to determine the amount of ethanol in alcohols;286

and to discriminate among beers on the basis of beer
type287−290 and quality.81 Similarly to the electronic nose, the
electronic tongue was used to analyze wines in relation to their
geographical65,259,291−294 and botanical origin,65,71,82,294,295

brand,293 and product adulteration,70 as well as discrimination
based on flavor, for example, bitterness level296−298 and
age.82,295,299 The electronic eye was employed to monitor
aging in wine on the basis of the color analysis.300

Others. Besides the aforementioned applications, the
electronic nose has been used to, amont others, evaluate egg
freshness,301,302 discriminate honey on the basis of botani-
cal303,304 and geographical origin,305 discriminate lyophilized
mushroom species,306 and detect pathogens in food.307 The
electronic tongue has been applied to discriminate honey on
the basis of geographical308 and botanical origin.75,308−311 On
the other hand, the electronic eye has been used to evaluate the
quality of pizza,312 corn tortillas,313 potato fries,314 and popular
potato chips315 on the basis of food appearance.
Examples of the application of e-nose, e-tongue, and

computer image processing in food analysis are presented in
Tables 1, 2, and 3, respectively.

■ SUMMARY
Due to growing consumer awareness, the need for safe and
high-quality food increases. At present, consumers are willing to

Table 1. continued

application sample object of investigation type of e-nose
method of data

analysis ref

oranges, apples, peaches postharvest quality evaluation LibraNose: 7 TSM PCA, PLS, ANN 212, 213
pears indicators for predicting quality 8 MOS MLR, ANN, PLS 214, 215
onions determining the influence of edaphic factors

on bulb quality
AromaScan A32S PCA 216

shrimp discrimination of shrimp 12 CP DFA 178
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pay more for products that, beyond any doubt, have better
quality and are naturally processed. Therefore, the companies
that specialize in the processing, transport, and sale of food are
put under increasing pressure to find new solutions that would
parallel a sensory evaluation of food products. Sensory analysis
is performed by testers; therefore, it is a subjective method that
does not always reflects the true condition of a given product.
Chromatographic techniques such as comprehensive two-
dimensional chromatography coupled with detection by
olfactometry require a long analysis time, and they often yield
unreliable results mainly due to the complexity of the sample
matrix. In the case of companies that process and sort food,
time and reliability are the most significant and most valued
parameters in relation to food quality evaluation. The
equipment used until now is frequently being replaced with
electronic senses, which, despite their many faults (e.g.,
complicated calibration, poor selectivity of sensors, and

complicated data analysis), are promising alternatives. At
present, electronic noses are widely applied to food evaluation
with regard to both liquid and solid phase samples. Sample
preparation is simple, and the analysis is noninvasive; therefore,
different types of meat (e.g., veal, beef, and poultry) as well as
different fruits and vegetables, alcoholic and nonalcoholic
beverages, dairy products, etc., can be evaluated by means of an
electronic nose. The conducted evaluations are also aimed at
authenticating luxury products such as traditional balsamic
vinegar of Modena and extra-virgin olive oil, detecting falsified
wines, and determining the quality, freshness, and shelf life of
food products. An electronic tongue has been used for similar
purposes, although this device is mainly applied to evaluate
liquid samples, for example, alcoholic and nonalcoholic
beverages, oils, vinegars, and milk. It has been mostly used
for product authentication and freshness evaluation. A
computer image analysis system has found wide application

Table 3. Examples of Computer Image Processing in Food Analysis

application sample object of investigation method of data analysis ref

monitoring of raw food grain analysis of morphological features in different grain varieties DA 325
wheat grain analysis of physical properties and identification of varieties 232
rice verification of spoiled grains ANN 237
bananas monitoring of changes during the aging process in bananas L,a,b 192
Golden Delicious apples defect detection based on color image segmentation

algorithms
190

Haunghau pears identification of pear and pear peduncle shapes ANN 119
Iyokan oranges analysis of shape, structure, and surface roughness ANN 184
oranges identification of twigs and leaves thinning algorithms 188
strawberries shape and size analysis CIELAB 38
broccoli evaluation of ripeness level in broccoli flowers DFT algorithms 189
potatoes discrimination between good and bad potatoes by color HSI 193
carrots classification based on structure ANN 187
corncob shape analysis DA 186
mushrooms identification of discoloration caused by aging and damages 191
pistachio nuts classification of pistachio nuts based on the shape and shell opening 326
pork tenderloin quality analysis based on color identification ANN, PLS 141
poultry fillet identification of tumors and bruised skin ANN 146
beef detection of color changes in beef samples CIELAB 142
shrimp visual measurement of shape, color, and size 145

monitoring of
processed food

corn grain quality control of spoiled grains 238
mold identification 239

raisins classification of raisins based on the analysis of shape and surface image analysis algorithms 280
orange juice color analysis, i.e., brightness, color saturation 263
red wine evaluation of color 327

measurement of changes during wine aging process by means of e-nose,
e-tongue, and e-eye

CIELAB 300

potato chips evaluation of color during frying 315
French-fried potatoes evaluation of color and texture algorithms for statistical

analysis
314

pork analysis of changes in color of freezer-stored meat packed in plastic bags CIELAB L,a,b 147
beef steak color, shape, and structure analysis ANN 140
meat evaluation of color and surface in pork and poultry slices CIELAB 144
sturgeon fillets analysis of changes in color during storage L,a,b CIELAB 148
salmon fillets color classification of salmon based on comparison with SalmonFAN

color palette
L,a,b 143

shrimp evaluation of color to determine the water content in dehydrated
shrimp

L,a,b ANN 168

corn tortillas color and shape analysis L,a,b 313
pizza quality control based on color and size image segmentation

algorithms
312

Cheddar and mozzarella
cheese

comparison of cheese properties during cooking and baking image processing
algorithms

39
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in production plants for sorting foods such as fruits, vegetables,
meat, and fish and to discriminate packaging in which food is
packed. The evaluated features are color, shape, size,
morphology, discoloration, and color intensity. These param-
eters allow for excluding faulty or substandard products. It is an
increasing trend to combine all artificial senses into a quality
evaluation system that encompasses the evaluation of
appearance, taste, and smell and most closely simulates the
sensory analysis by testers. At the same time, such a system is
much more sensitive, precise, and reliable. Projects dealing with
the improvement of electronic senses via the search for better
sensors create the opportunity to widen the range of
applications of these devices in food analysis.
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(57) Goḿez, A. H.; Wang, J.; Hu, G.; Pereira, A. G. Electronic nose
technique potential monitoring mandarin maturity. Sens. Actuators, B
2006, 113, 347−353.
(58) Cheli, F.; Campagnoli, A.; Pinotti, L.; Savoini, G.; Dell’Orto, V.
Electronic nose for determination of aflatoxins in maize. Biotechnol.
Agron. Soc. Environ. 2009, 13, 39−43.
(59) Cosio, M. S.; Ballabio, D.; Benedetti, S.; Gigliotti, C. Evaluation
of different storage conditions of extra virgin olive oils with a
innovative recognition tool built by means of electronic nose and
electronic tongue. Food Chem. 2007, 101, 485−491.
(60) Jonsson, A.; Winquist, F.; Schnürer, J.; Sundgren, H.;
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de Saja, J. A.; Rodríguez-Meńdez, M. L. Characterization of wines
through the biogenic amine contents using chromatographic
techniques and chemometric data analysis. Anal. Chim. Acta 2006,
563, 229−237.
(68) Kutyła-Olesiuk, A.; Zaborowski, M.; Prokaryn, P.; Ciosek, P.
Monitoring of beer fermentation based on hybrid electronic tongue.
Bioelectrochemistry 2012, 87, 104−113.
(69) Winquist, F.; Krantz-Rulcker, C.; Wide, P.; Lundström, I.
Monitoring of freshness of milk by an electronic tongue on the basis of
voltammetry. Meas. Sci. Technol. 1998, 9, 1937−1946.
(70) Parra, V.; Arrieta, A. A.; Fernańdez-Escudero, J. A.; Rodríguez-
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