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Abstract. In the present work, we investigate the stability of turbulence closure predictions from neural
network models and highlight the role of model-data-inconsistency during inference. We quantify this
inconsistency by applying the Mahalanobis distance and demonstrate that the instability of the model
predictions in practical large eddy simulations (LES) correlates with a deviation of the input data be-
tween the training dataset and actual simulation data. Moreover, the method of “stability training”
is applied to increase the robustness of recurrent artificial neural networks (ANN) against small per-
turbations in the input, which are typically unavoidable in any practical scenario. We show that this
method can increase the stability of simulations with ANN-based closure term predictions significantly.
The models also achieve good accuracy on the blind testing set in comparison to the baseline model
trained without stability training. The work presented here can thus be seen as a building block towards
long-term stable data-driven models for dynamical systems and highlights methods to detect and counter
model-data-inconsistencies.

1 INTRODUCTION

Most flows in engineering and nature exhibit turbulent behavior. Accurate predictions of such flows
are crucial in order to increase the reliability of weather forecasts or to reduce fuel consumption in
aircraft transportation. Due to the multiscale character of turbulence, direct numerical simulation (DNS)
is generally intractable for turbulent flows at medium to high Reynolds numbers. Instead, reduced order
models like large eddy simulation (LES) or Reynolds-averaged Navier-Stokes (RANS) methods are used,
which only resolve the largest turbulent scales or the temporal mean quantities, respectively. Due to the
nonlinearity of the governing equations, these approaches introduce additional closure terms into the
surrogate formulations, which describe the imprint of the fine-scale turbulent dynamics on the resolved
scales. These closure terms are generally unknown for practical simulations and are thus approximated
by adequate turbulence models. Despite decades of research, no universally accurate and overall best
closure model has been identified to date.
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Figure 1: Slices of the DHIT test case. The coarse-grid quantities (right) are obtained by applying a Fourier cutoff
filter to the DNS results (left). The filtered flow field thus contains only the first &, = 12 Fourier modes of the
underlying DNS solution.

Machine learning methods have gained significant popularity for turbulence modeling tasks in the last
years since they allow either to recover the closure terms solely from data and without any prior assump-
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terms and the training dataset. Moreover, the stability training method and the employed ANN archi-
tecture are discussed here. Results of a priori and a posteriori analysis of the trained ANN are given
in Section 3. Section 4 concludes the paper.

2 METHODS
2.1 The machine learning framework

In order to derive data-driven LES closure prediction models with supervised learning, the exact closure
terms have to be defined first. To this end, we use the framework of optimal LES by Langford and
Moser [8] to derive the exact LES closure terms in a consistent manner. The governing Navier-Stokes
equations can be written in short notation as

U +R(F(U))=0, (1
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Figure 2: Architecture of the used ANN with batch normalization (BN) [4] before the gated recurrent
unit (GRU) [3]. All other layers are fully connected layers with rectified linear units (ReLU) as the activation
functions. The number of neurons in each layer is specified below the respective layer. The layers before the GRU
are executed individually for each of the 21 time instants in the input sequence of a training sample X. The GRU
works in a many-to-one prediction mode yielding only a single prediction in the last time step of the sequence.
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in this work, we use the dataset obtained 1n | i, /] as training set for the ANIN. This dataset 1s based on
the decaying homogeneous isotropic turbulence (DHIT) test case and consists of the DNS solutions for
several different flow realizations of the same turbulent statistics. A subset of 10 flow realizations is used
in this work. Performing a Fourier transform of the DNS and applying a cutoff filter with k,,,,, = 12 then
yields the filtered LES velocity field v;—; >3 and the corresponding unknown part of the closure terms
mi:l » 3> as shown in Figure 1. The dataset contains almost 30 million training samples and a single
run is ke’pvt hidden for blind testing of the trained ANN. The reader is referred to [7] for a more detailed
discussion of the training data. The ANN is then trained to recover the unknown closure terms from a
time series of the filtered velocity field and thus to approximate the functional relationship

RWU)izip3 % f(Vj=123) - 4
In this work, we use a recurrent neural network architecture with gated recurrent units (GRU) [3] as

shown in Figure 2. This ANN is comprised of 31,669 trainable parameters in total. Each training sam-
ple X consists of the pointwise coarse-scale velocity vectors V-3 at 21 time instants with a constant



Marius Kurz and Andrea D. Beck

time step of Az = 1 - 10~* with respect to unit length and velocity. The GRU is used in a many-to-one
prediction mode and gives only a single prediction in the last time step of the sequence. The dimensions
of the input and output quantities are thus X € R**?! and Y € R?, respectively.

2.2 Model-data-inconsistency

In order to define the issue of model-data-inconsistency in the context of turbulence modeling, we first
establish three different types of uncertainties and errors which are present in machine learning tasks.

e Data uncertainty: This comprises all experimental and numerical errors in the training data,
which are introduced either in the gathering or the processing of the training data. Moreover, the
stochastic nature of the underlying functional relationship between the input and output quantities
is included here. Turbulence modeling is an example for such a stochastic relationship since the
mapping between the coarse-grid flow field and the corresponding closure terms is generally not
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The data uncertainty is inherent in the modeling task and the process of data acquisition. It thus poses
an upper limit to the accuracy with which the ANN can learn the functional relationship in the data. The
interpolation errors determine how well the ANN can generalize to unseen data drawn from the same
distribution. For machine learning tasks, this is typically examined by evaluating the ANN on unseen
validation and test data. Extrapolation errors however can generally not be prevented and typically stem
from the systematic shift in data statistics between training and inference. This inconsistency is inherent
in many supervised machine learning frameworks for turbulence modeling, especially if discretization ef-
fects are not considered during training, e.g. [1, 10]. This is what we refer to as model-data-inconsistency
in this work.

In the following, we present a simple approach to check for model-data-consistency and discuss a general
method of lessening its effects. Inspired by [9], the Mahalanobis distance measure is used to quantify the
inconsistency between the training dataset and inference data. Moreover, the stability training approach
by Zheng et al. [14] is used to stabilize the model against small perturbations in the input data. While
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Figure 3: In the stability training method, the ANN is evaluated in each training step on the training sample X as
well as the noisy sample X’ = X +¢(c?). The distance between the predictions HY -Y' H is then a measure of the
ANN’s sensibility to input perturbations and is used as an additional optimization constraint during training.
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In the following, we compute the Mahalanobis distance during inference for the input features, based on
the statistics u and X collected during the training phase. For simplicity, we neglect the time dimension
and compute the distribution quantities solely based on the last timestep of each input sequence X. The
distribution parameters thus have the dimension u € R? and £ € R**3.

2.4 Stability training

The stability training method was originally proposed by Zheng et al. [14] in the context of image recog-
nition to increase the robustness of the trained ANN against noisy input data and adversarial attacks.
This method asserts that small perturbations in the input training data induce only small perturbations in
the ANN prediction. To this end, an additional penalty term (stability loss) is added to the standard loss
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c=0.01 c=0.02
Standard a=0.2 a=04 aoa=1.0 a=0.2 a=04 aoa=1.0
MSE 9.7-1073 1.2-107" 3.5.107! 1.2-10° 1.8-107" 5.1-107! 1.6-10°
ccC 0.9993 0.9990 0.9983  0.9943 0.9990 0.9981  0.9926

Table 1: Accuracy of the standard and the stabilized models on the test set given as the mean-squared-error (MSE)
and cross-correlation CC.

function, which yields

L= |V -Y| +a|y —¥'| with ¥ =ANN(X+e(c?)) . (6)
—— N——
standard loss stability loss

The standard loss corresponds to the loss function in a standard training procedure. For this, the ANN is
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In the following section, the accuracy of the trained ANN is assessed in an a priori analyis on the testing
data in Section 3.1. In Section 3.2, the a posteriori performance of the ANN is investigated in practical
simulations. The ANN was trained with different hyperparameter configurations (o € {0.2,0.4,1.0} and
6 € {0.01,0.02}) to highlight the qualitative influences of the individual hyperparameters on the results.

3.1 A priori analysis

The performance of the trained ANN is first assessed on the unseen testing run (see Section 2.1). The
mean-squared-error (MSE) and the cross-correlation (CC) are used as performance metrics and are
shown for all trained ANN in Table 1. The predictions of all trained networks achieve very high cross-
correlation CC > 0.99 with the exact closure terms. However, the MSE increases for all ANN with
stability training by an order of magnitude in comparison to the baseline ANN. The results in Figure 4
indicate that the predictions become increasingly “washed out” with higher weighting factors .. The
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For the a posteriori assessment of the model performance, the trained ANN are used as predictions for
the closure terms during actual LES. To this end, the filtered flow state of the blind test run at ¢ = 1.402
is used as initial state for an LES with the discontinuous Galerkin flow solver FLEXI [6]. The solution
is advanced in time by integrating Eq. (3) with a third-order Adams-Bashforth scheme and a time step of
At =1-107%, which corresponds to the time step of the training data. It proved sufficient to evaluate the
ANN and to thus update the prediction of the closure terms only in every tenth time step. Thereby, the
solution at the last time steps is stored and every evaluation of the network is independent of the previous
ones. The flow states 7 € [1.4,1.402] are used to initialize the ANN for the first 20 time steps.

The key task of a turbulence model is to mimic the energy transfer from the resolved scales to the non-
resolved ones. This dissipation mechanism is crucial to obtain a stable LES. We thus use the evolution
of the total kinetic energy in the domain to assess the stability of the trained ANN as turbulence models.
The results for the different models are shown in Figure 5 with the filtered DNS results as reference.
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Figure 5: Left: Total kinetic energy in the domain over time for the inference tests with the closure terms predicted
by the trained ANN. The filtered DNS solution is given for reference. Right: Maximum Mahalanobis distance D,
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In this work, we have demonstrated that the instability of machine learning models in simulations can
correlate with the systematic mismatch of the training dataset and the input data during inference by
means of the Mahalanobis distance. To this end, we have applied the method of stability training to
improve the robustness of ANN as closure models for LES. We have shown that this approach can
increase the stability of simulations significantly, while still providing accurate predictions of the closure
terms.

In future work, a fallback mechanism can be implemented based on the Mahalanobis distance, which
showed to be an appropriate extrapolation indicator. While traditional turbulence models can be em-
ployed in regions where the model is assumed to extrapolate, the accurate predictions of the ANN-based
model can still be leveraged in the remaining domain, where the input data complies with the statistics of
the training data. Such a classifier could obviously also be based on an ANN, which is trained to blend
the model prediction with a traditional turbulence model based on the expected reliability of the former.
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