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DYNAMICS OF STOCHASTIC HEROIN
EPIDEMIC MODEL WITH LÉVY JUMPS∗

Guangjie Li, Qigui Yang† and Yongchang Wei

Abstract People have paid the surge of attention to the prevention and the
control of the heroin epidemic for the number of drug addicts is increasing
dramatically. In the study of the heroin epidemic, modeling is an important
tool. So far many heroin epidemic models are often characterized by ordi-
nary differential equations (ODEs) and many results about them have been
obtained. But unfortunately, there is little literature of stochastic heroin epi-
demic model with jumps. Based on this point, this paper establishes a class of
heroin epidemic models—stochastic heroin epidemic model with Lévy jumps.
Under some given conditions, the existence of the global positive solution of
such model is first obtained. We then study the asymptotic behavior of this
model by applying the Lyapunov technique.
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havior, Lévy noise.
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1. Introduction

In recent years, the number of drug-poisoning deaths involving heroin has increased
dramatically and the use of heroin has become a serious social problem. Burns [5]
indicated that 243 million individuals around the word suffer from drug addic-
tion, which leads to an increase in health care costs, lost productivity and crime.
In [5], the author also gave an estimation that 5% of the world’s population remains
plagued with addiction, and this number is increasing at an alarming rate. Hede-
gaard et al. [13] presented the age-adjusted rate for drug-poisoning deaths involving
heroin increased from 0.7 deaths per 100,000 to 2.7 deaths per 100,000 during 2000–
2013. Wingo et al. [27] showed that global treatment of drug addiction costs society
billions of dollars annually, but current psychopharmacological therapies have not
been successful at desired rates. Though the death rate involving heroin is alarming
and heroin users are at high risk for addiction, it is difficult for us to do experi-
ments on human body to obtain the statistic data to prevent and control the heroin
prevalence. Based on this fact, mathematical modelling provides a useful tool to
investigate the heroin treatment. White and Comiskey [26] first presented an ODE
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model to investigate the heroin epidemic. The authors in [26] identified parameters
of interest in the model with a view to informing and assisting policy-makers in
targeting prevention and treatment resources for maximum effectiveness, and they
also examined the stability of the model by analyzing the basic reproduction num-
ber. Later, Mulone and Straughan [19] revised the ODE model and proved that the
positive equilibrium of the model in [26] is stable. In 2011, Wang et al. [28] studied
the model of the following form:

dS(t)

dt
= Λ− β1S(t)U1(t)− µS(t),

dU1(t)

dt
= β1S(t)U1(t) + β3U1(t)U2(t)− (p+ µ+ δ1)U1(t),

dU2(t)

dt
= pU1(t)− β3U1(t)U2(t)− (µ+ δ2)U2(t).

(1.1)

Here S(t) denotes the number of susceptible individuals at time t in the population.
U1(t) denotes the number of drug users not in treatment: initial and relapsed drug
users. U2(t) denotes the number of drug users in treatment. Λ denotes the number of
individuals in the general population entering the susceptible population. µ denotes
the natural death rate of the general population. p denotes the proportion of drug
users who enter treatment. β1 and β3 represent the probability of becoming a drug
user and the probability of a drug user in treatment relapsing to untreated use,
respectively. δ1 denotes a removal rate that includes drug-related deaths of users
not in treatment and a spontaneous recovery rate: individuals not in treatment
who stop using drugs but are no longer susceptible. δ2 denotes a removal rate that
includes the drug-related deaths of users in treatment and a rate of successful “cure”
that corresponds to recovery to a drug free life and immunity to drug addiction for
the duration of the modelling time period. All parameter values in model (1.1) are
assumed to be nonnegative and the total population N(t) = S(t) + U1(t) + U2(t)
is very according to the time. The authors in [28] obtained that the drug-free
equilibrium is global asymptotically stable under some conditions and the positive
equilibrium is globally asymptotically stable by using the second matrix. The time
delay factor is also considered in the heroin models by some researchers and many
results on such models can be found in [2, 8, 12, 16, 24] and the references therein.
Also, the number of drug users may depend on the age structure (see [9,29] and the
references therein). Recently, Ma et al. [20] investigated the bifurcation of the heroin
model. Yang et al. [30] proposed a heroin epidemic model on complex networks.
The authors in [30] showed that the drug transmission always spreads if the degree
of the network is large enough, and verified that sensitivity analysis of the basic
reproduction number with the various parameters in the model plays an important
role in controlling the drug transmission.

As a matter of fact, epidemic models are inevitably affected by the environmental
noise. Therefore, it is important to study the effect of random disturbance on
epidemic models. Britton [6] presented a survey on stochastic epidemic models in
a closed community. He pointed out that deterministic models may not be suitable
in some cases and the related stochastic epidemic models need to be considered.
So far, stochastic epidemic models with white noise are investigated by more and
more researchers and many results on such stochastic epidemic models have been
established (see [7, 10, 14, 15, 17, 18, 25, 31] and the references therein). However,
ODE models and stochastic epidemic models only with white noise can not describe
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the massive diseases like avian influenza and SARS for these diseases may break
the continuous of solutions. In order to explain these phenomena, introducing a
jump process into the epidemic models provides a feasible and more realistic model.
Therefore, it is interesting and beneficial to study the stochastic epidemic models
with Lévy noise. Zhang and Wang [33] established a stochastic SIR model with
jumps to describe such massive diseases and took the lead in using the stochastic
differential equation with jumps to study the asymptotic behavior of such model.
Later, they also established a stochastic SEIR model with jumps and proved that
the positive solution of the model is stochastically asymptotically stable by applying
Lyapunov method in [34]. Since then, many results on the epidemic models with
jumps have been reported (e.g. [3, 11, 32,35]).

Due to the decline in the immunity of the drug addicts, the number of drug
users will change suddenly when encountered with toxic pollutants, SARS, avian
influenza, etc. Moreover, when the drug is suddenly reduced as a result of earth-
quakes, hurricanes, flood, drought and some human factors, the number of drug
users will also suddenly fluctuate greatly. How can we describe such phenomena?
Motivated by the epidemic models with jumps mentioned above, we hence consider
the heroin epidemic model (1.1) with jumps to describe these phenomena. More-
over, as far as we know, many scholars have adopted an approach to introduce
stochasticity, that is they assumed that environmental white noise and jumps are
directly proportional to the solution of epidemic models, and many literature re-
lated to this approach have been obtained (see [14, 15, 23, 33–35]). Based on these
points, model (1.1) changes into the following model, which is the model that we
consider in this paper:

dS(t) =(Λ− β1S(t)U1(t)− µS(t))dt

+ b1S(t)dB1(t) +

∫
Z

C1(z)S(t−)Ñ(dt, dz),

dU1(t) =(β1S(t)U1(t) + β3U1(t)U2(t)− (p+ µ+ δ1)U1(t))dt

+ b2U1(t)dB2(t) +

∫
Z

C2(z)U1(t−)Ñ(dt, dz),

dU2(t) =(pU1(t)− β3U1(t)U2(t)− (µ+ δ2)U2(t))dt

+ b3U2(t)dB3(t) +

∫
Z

C3(z)U3(t−)Ñ(dt, dz),

(1.2)

where X(t−) means the left limit of X(t), Ci(z) > −1(i = 1, 2, 3). Throughout
this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e. its right continuous and F0 contains
all P-null sets). Let B(t) = (B1(t), B2(t), B3(t))

T be a three-dimensional stan-
dard Brownian motion defined on the complete probability space with its intensity
bi > 0(i = 1, 2, 3). N is a Poisson random measure defined on R+×Z with the com-
pensator Ñ and intensity measure ν. We assume that N is independent of B and
ν is a Lévy measure such that Ñ(dt, dz) = N(dt, dz) − ν(dz)dt, where ν(dz) < ∞
and

∫
Z
(|z|2 ∧ 1)ν(dz) < ∞. Usually, the pair (B,N) is called a Lévy noise. While,

if Ci = 0 and biS(t)dBi(t) = bidBi(t)(i = 1, 2, 3), model (1.2) will change into the
system (4.2) in [28], but the authors didn’t investigate the asymptotical behavior
of the solutions to such model around the drug-free and endemic equilibrium of the
corresponding determined model. It is also easy to see that model (1.2) is the de-
termined model (1.1) when bi = 0 and Ci = 0(i = 1, 2, 3). This is the first paper to
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establish the stochastic heroin epidemic model with Lévy jumps, and to investigate
the asymptotical behavior of the solutions to model (1.2) around the drug-free and
endemic equilibrium of model (1.1).

The organization of this paper is as follows. Section 2 proves that model (1.2)
has a unique global positive solution. Section 3 studies the asymptotical behavior
of the solutions to model (1.2) around the drug-free equilibrium E0 of model (1.1).
Section 4 analyzes the asymptotical behavior of the solutions to model (1.2) near
the endemic equilibrium of model (1.1) by the obtained Lyapunov function. Finally,
a brief conclusion is drawn in the last section.

2. Existence and uniqueness of positive solution

In order to investigate the dynamical behavior of model (1.2), we first need to know
whether the solution is global. In this section, we show model (1.2) has a unique
global (i.e. no explosion in finite time) positive solution for any given positive initial
value by using the Lyapunov technique [4, 21, 33].

It follows from [22] that if the coefficients of the stochastic differential equa-
tion satisfy the local Lipschitz condition and the linear growth condition, then the
stochastic differential equation admits a unique global solution for any given initial
value. However, the coefficients of model (1.2) only satisfy the local Lipschitz condi-
tion but do not meet the linear growth condition, hence the solution of model (1.2)
may explode at a finite time. Because S(t), U1(t) and U2(t) represent the size of
susceptible individuals in the population, the size of drug users not in treatment and
the size of drug users in treatment at time t in model (1.2), we are only interested
in the case that they are positive. Next, we will prove that model (1.2) admits a
unique global positive solution for any given positive initial value.

Through out this paper, we assume that for each N > 0, there exists LN > 0
such that jump diffusion coefficient satisfies

(A1)
∫
Z
|Hi(x, z) − Hi(y, z)| ≤ LN |x − y|2, i = 1, 2, 3, where H1(x, z) =

C1(z)S(t−), H2(x, z) = C2(z)U1(t−), H3(x, z) = C3(z)U2(t−) with |x| ∨ |y| ≤ N .

(A2) | ln(1 + Ci(z))| ≤ M1, for Ci(z) > −1, i = 1, 2, 3, where M1 is a positive
constant.

Theorem 2.1. Let Assumptions (A1) and (A2) hold, then for any given value
(S(0), U1(0), U2(0)) ∈ R3

+ and t ≥ 0, model (1.2) has a unique global solution
(S(t), U1(t), U2(t)) ∈ R3

+ almost surely.

Proof. Since (A1) and the coefficients of model (1.2) satisfy the local Lipschitz
condition, for any given (S(0), U1(0), U2(0)) ∈ R3

+, there is a unique local solution
(S(t), U1(t), U2(t)) on t ∈ [0, τe), where τe is the explosion time [1, 22]. In order to
show this solution is global, we need to prove τe = ∞ a.s. Assume that k0(k0 > 0)
is sufficiently large and S(0),U1(0) and U2(0) all lie within the interval [1/k0, k0].
Define the stopping time

τk = inf{t ∈ [0, τe) : min{S(t), U1(t), U2(t)} ≤ 1/k ormax{S(t), U1(t), U2(t)} ≥ k},

for each integer k ≥ k0. We set inf ∅ = ∞(as usual ∅ denotes the empty set). It is
clear that τk is increasing as k ↑ ∞. Denote τ∞ = lim

k→∞
τk. Obviously, τ∞ ≤ τe a.s.

If we can prove that τ∞ = ∞ is true, then τe = ∞ and (S(t), U1(t), U2(t)) ∈ R3
+
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a.s. for all t ≥ 0. In other words, we need to show τ∞ = ∞ a.s. If τ∞ = ∞ is false,
then there exists a pair of constants T > 0 and ε ∈ (0, 1) satisfying

P{τ∞ ≤ T} ≥ ε.

Therefore, there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε, for all k ≥ k1. (2.1)

Choose a C2-function

V (S,U1, U2) =

(
S − a− a log

S

a

)
+(U1−1− logU1)+

(
U2 − b− b log

U2

b

)
, (2.2)

where a and b are two positive constants to be determined later. It is easy to see
that this function is nonnegative for u − 1 − log u > 0(u ≥ 0). By employing the
Itô formula, one obtains

dV (S(t), U1(t), U2(t)) =LV (S(t), U1(t), U2(t)) + b1(S(t)− a)dB1(t)

+ b2(U1(t)− 1)dB2(t) + b3(U2(t)− b)dB3(t)

+

∫
Z

[C1(z)S(t−)− a log(1 + C1(z)) + C2(z)U1(t−)

− log(1+C2(z))+C3(z)U2(t−)−b log(1+C3(z))]Ñ(dt, dz)
(2.3)

where

LV (S,U1, U2) =

(
Λ + µ(a+ 1) + p+ δ1 + b(µ+ δ2) +

1

2
ab21 +

1

2
b22 +

1

2
bb23

)
+[aβ1−(µ+δ1)+bβ3]U1−(µ+β1)S−(µ+δ2 + β3)U2−

a

S
Λ−bp

U1

U2

+

∫
Z

[aC1(z)− a log(1 + C1(z)) + C2(z)− log(1 + C2(z)) + bC3(z)

− b log(1 + C3(z))]ν(dz). (2.4)

Let a = µ+δ1
2β1

and b = µ+δ1
2β3

. By (A2) and x− log(x+ 1) ≥ 0(x > −1), then

LV (S,U1, U2) =

(
Λ + µ(a+ 1) + p+ δ1 + b(µ+ δ2) +

1

2
ab21 +

1

2
b22 +

1

2
bb23

)
− (µ+ β1)S − (µ+ δ2 + β3)U2 −

a

S
Λ− bp

U1

U2

+

∫
Z

[aC1(z)− a log(1 + C1(z)) + C2(z)− log(1 + C2(z)) + bC3(z)

−b log(1 + C3(z))] ν(dz).

≤Λ+µ(a+1)+p+δ1+b(µ+δ2)+
1

2
ab21+

1

2
b22+

1

2
bb23+3M2=: M

(2.5)
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whereM2 = max{
∫
Z
[aC1(z)−a log(1+C1(z))]ν(dz),

∫
Z
[C2(z)−log(1+C2(z))]ν(dz),∫

Z
[bC3(z)− b log(1 + C3(z))]ν(dz}. It follows that∫ τk∧T

0

dV (S(t), U1(t), U2(t))

≤
∫ τk∧T

0

Mdt+

∫ τk∧T

0

b1(S(t)− a)dB1(t)

+

∫ τk∧T

0

b2(U1(t)− 1)dB2(t) +

∫ τk∧T

0

b3(U2(t)− b)dB3(t)

+

∫ τk∧T

0

∫
Z

[C1(z)S(t−)− a log(1 + C1(z))

+ C2(z)U1(t−)− log(1 + C2(z)) + C3(z)U2(t−)− b log(1 + C3(z))]Ñ(dt, dz).
(2.6)

Hence, one yields

EV (S(τk ∧ T ), U1(τk ∧ T ), U2(τk ∧ T )) ≤ V (S(0), U1(0), U2(0)) +MT. (2.7)

Set Ωk = {τk ≤ T} for k ≥ k0 and it is easy to see from (2.1) that P (Ωk) ≥ ε. Note
that for every ω ∈ Ωk, S(τk, ω) or U1(τk, ω) or U2(τk, ω) equals either k or 1

k . Then
by (2.2) and (2.7), one obtains

V (S(0), U1(0), U2(0)) +MT ≥E[IΩk
(ω)V (S(τk), U1(τk), U2(τk))]

≥ε

{(
k − a− a log

k

a

)
∧
(
1

k
− a− a log

1

ak

)
∧ (k − 1− log k) ∧

(
1

k
− 1− log

1

k

)
∧
(
k − b− b log

k

b

)
∧
(
1

k
− b− b log

1

bk

)}
(2.8)

where IΩk
is the indicator function of Ωk. It is easy to see that (2.8) implies the

contradiction

∞ > V (S(0), U1(0), U2(0)) +MT = ∞, as k → ∞.

Therefore, τ∞ = ∞ must hold, which implies (S(t), U1(t), U2(t)) ∈ R3
+ almost

surely. The proof is complete.

3. Asymptotic behavior around the drug-free equi-
librium of the deterministic model

In this section, we will study the asymptotical behavior of the solutions to model
(1.2) around the drug-free equilibrium E0(S0, 0, 0) = (Λµ , 0, 0) of model (1.1). If

R0 = β1S0/(µ+ p+ δ1) < 1, E0 is globally asymptotically stable. While for model
(1.2), E0 is no longer the drug-free equilibrium and the solution of model (1.2) does
not converge to E0. In the following, we present the result.
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Theorem 3.1. Let assumptions (A1) and (A2) hold. If R0 < 1 and the following
conditions are satisfied

µ > b21 + 3

∫
Z

C2
1 (z)ν(dz),

µ+ δ1 >
1

2
b22 +

3

2

∫
Z

C2
2 (z)ν(dz),

µ+ δ2 >
1

2
b23 +

3

2

∫
Z

C2
3 (z)ν(dz). (3.1)

Then the solution (S(t), U1(t), U2(t)) of model (1.2) with any initial value
(S(0), U1(0), U2(0)) ∈ R3

+ satisfies

lim sup
t→∞

1

t
E

∫ t

0

[(S(r)− S0)
2 + U1(t)

2 + U2
2 (t)]dr ≤ S2

0

K

(
b21 + 3

∫
Z

C2
1 (z)ν(dz)

)
,

(3.2)
where

K = min

{
µ− b21 − 3

∫
Z

C2
1 (z)ν(dz), µ+ δ1 −

1

2
b22 −

3

2

∫
Z

C2
2 (z)ν(dz),

µ+ δ2 −
1

2
b23 −

3

2

∫
Z

C2
3 (z)ν(dz)

}
.

Proof. Set u = S − S0, v = U1, w = U2, then model (1.2) can be rewritten as

du(t) =[−β1(u(t) + S0)v(t)− µu(t)]dt

+ b1(u(t) + S0)dB1(t) +

∫
Z

C1(z)(u(t−) + S0)Ñ(dt, dz),

dv(t) =[β1(u(t) + S0)v(t) + β3v(t)w(t)− (p+ µ+ δ1)v(t))dt

+ b2v(t)dB2(t) +

∫
Z

C2(z)v(t−)Ñ(dt, dz),

dw(t) =[pv(t)− β3v(t)w(t)− (µ+ δ2)w(t)]dt

+ b3w(t)dB3(t) +

∫
Z

C3(z)w(t−)Ñ(dt, dz).

(3.3)

Choose the C2-function G(u, v, w) = 1
2 (u+v+w)2. By the Itô formula, one derives

dG(u, v, w)

=LG(u, v, w)dt+ (u+ v + w)(b1(u+ S0)dB1(t) + b2vdB2(t) + b3(t)w(t)dB3(t))

+

∫
Z

{1
2
[C1(z)(u(t−) + S0) + C2(z)v(t−) + C3(z)w(t−)]2

+(u(t−)+v(t−)+w(t−))[C1(z)(u(t−)+S0)+C2(z)v(t−)+C3(z)w(t−)]}Ñ(dt, dz)
(3.4)

where

LG(u, v, w) =(u+ v + w)[−µu− (µ+ δ1)v − (µ+ δ2)w]

+
1

2
b21(u+ S0)

2 +
1

2
b22v

2 +
1

2
b23w

2
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+
1

2

∫
Z

[C1(z)(u(t−) + S0) + C2(z)v(t−) + C3(z)w(t−)]2ν(dz).

(3.5)

Using the basic inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, one yields

LG(u, v, w)

≤−
(
µ− b21 − 3

∫
Z

C2
1 (z)ν(dz)

)
u2 −

(
µ+ δ1 −

1

2
b22 −

3

2

∫
Z

C2
2 (z)ν(dz)

)
v2

−
(
µ+ δ2 −

1

2
b23 −

3

2

∫
Z

C2
3 (z)ν(dz)

)
w2 + b21S

2
0 + 3S2

0

∫
Z

C2
1 (z)ν(dz). (3.6)

Integrating both sides of (3.4) and then taking expectation, one gains

EG(u(t), v(t), ω(t)) = G(u(0), v(0), ω(0)) + E

∫ t

0

LGdr. (3.7)

According to the condition (3.1), it follows (3.7) that

lim sup
t→∞

1

t
E

∫ t

0

[(S(r)− S0)
2 + U2

1 (r) + U2
2 (r)]dr ≤ S2

0

K

(
b21 + 3

∫
Z

C2
1 (z)ν(dz)

)
,

where K is defined as before. The proof is complete.

Remark 3.1. We see from Theorem 3.1 that the solutions of model (1.2) are
stochastic vibration around the drug-free equilibrium E0 of model (1.1), and the
vibration intensity is relevant to the strength of bi and Ci (i=1,2,3). That is, if
the vibration intensity of Lévy noise is smaller, the solutions of model (1.2) and the
drug-free equilibrium E0 of model (1.1) are nearer. In this case, the heroin epidemic
is nearly extinct and will not spread in the society.

In the following, set (S(0), U1(0), U2(0)) = (0.5, 1.5, 1), Λ = 0.2, β1 = 0.004, β3 =
0.003, µ = 0.04, δ1 = 0.05, δ2 = 0.01, p = 0.05, b1 = 0.005, b2 = 0.007, b3 = 0.008,
Ci(z) = −kiz

2/(1 + z2)(i = 1, 2, 3), z ∈ [−1, 1], k1 = 0.1, k2 = 0.2, k3 = 0.3. The
trajectory of the solution to model (1.2) and the corresponding phase portrait are
shown in the left and right of Figure 1, respectively.
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(a) The sample path of solution to model (1.2). (b) Phase portrait.

Figure 1. R0 < 1
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4. Asymptotic behavior around the endemic equi-
librium of the deterministic model

In this section, we assume that R0 = β1S0/(µ + p + δ1) > 1. From [28], let
E∗ = (S∗, U∗

1 , U
∗
2 ) be the positive solution of model (1.1) and satisfy S∗ ≤ p+µ+δ1

β1
,

then the solution E∗ = (S∗, U∗
1 , U

∗
2 ) is unique. However, E∗ is not the endemic

equilibrium of model (1.2), because model (1.2) does not have the endemic equilib-
rium. We also study the asymptotic behavior of the solutions to model (1.2) near
E∗. The result is as follows.

Theorem 4.1. Let assumptions (A1) and (A2) hold. If R0 > 1 and the following
conditions are satisfied

µ >
b21
2

+
ϵ

2
(4µ+ δ1 + δ2) +

1

2
(1 + ϵ)2

∫
Z

C2
1 (z)ν(dz),

µ+ δ1 >
1

2
b22 +

ϵ

2
(4µ+ 2δ1 + δ2) +

(1 + ϵ)2

2ϵ

∫
Z

C2
2 (z)ν(dz),

µ+ δ2 >
1

2
b23 +

ϵ

2
(4µ+ δ1 + 2δ2) +

ϵ+ 1

2ϵ

∫
Z

C2
3 (z)ν(dz), (4.1)

where ϵ ∈ (0, 1), then the solution (S(t), U1(t), U2(t)) of model (1.2) with any initial
value (S(0), U1(0), U2(0)) ∈ R3

+ has the property

lim sup
t→∞

1

t
E

∫ t

0

[(
S(r)− µ

a1
S∗
)2

+

(
U1(r)−

µ+δ1
a2

U∗
1

)2

+

(
U2(r)−

µ+δ2
a3

U∗
2

)2
]
dr

≤L1 + L2

a
. (4.2)

where

a1 = µ− b21
2

− ϵ

2
(4µ+ δ1 + δ2)−

1

2
(1 + ϵ)2

∫
Z

C2
1 (z)ν(dz),

a2 = µ+ δ1 −
1

2
b22 −

ϵ

2
(4µ+ 2δ1 + δ2)−

(1 + ϵ)2

2ϵ

∫
Z

C2
2 (z)ν(dz),

a3 = µ+ δ2 −
1

2
b23 −

ϵ

2
(4µ+ δ1 + 2δ2)−

ϵ+ 1

2ϵ

∫
Z

C2
3 (z)ν(dz),

L1 =
1

2ϵ
(4µ+ δ1 + δ2)(S

∗)2 +
1

2ϵ
(4µ+ 2δ1 + δ2)(U

∗
1 )

2 +
1

2ϵ
(4µ+ δ1 + 2δ2)(U

∗
2 )

2,

L2 =
µ2

a1
(S∗)2 +

(µ+ δ1)
2

a2
(U∗

1 )
2 +

(µ+ δ2)
2

a3
(U∗

2 )
2,

and a = min{a1, a2, a3}.

Proof. For E∗ is the solution of model (1.1), thus one can get

Λ = µS∗ + (µ+ δ1)U
∗
1 + (µ+ δ2)U

∗
2 . (4.3)

Define the positive function H(S,U1, U2) = 1
2 (S − S∗ + U1 − U∗

1 + U2 − U∗
2 )

2.
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Employing the Itô formula, one obtains

dH(S(t), U1(t), U2(t))

=LH(S,U1, U2)dt

+ (S−S∗+U1 − U∗
1 + U2 − U∗

2 ) (b1S(t)dB1(t) + b2U1(t)dB2(t) + b3U2(t)dB3(t))

+

∫
Z

{1
2
[C1(z)S(t−) + C2(z)U1(t−) + C3(z)U2(t−)]2

+ (C1(z)S(t−) + C2(z)U1(t−) + C3(z)U2(t−))(S − S∗ + U1 − U∗
1 + U2 − U∗

2 ))}
(4.4)

where

LH(S,U1, U2) =(S−S∗+U1−U∗
1 +U2 − U∗

2 )[Λ− µS − (µ+ δ1)U1 − (µ+ δ2)U2]

+
1

2
b21S

2 +
1

2
b22U

2
1 +

1

2
b23U

2
2

+
1

2

∫
Z

[C1(z)S(t−) + C2(z)U1(t−) + C3(z)U2(t−)]2ν(dz). (4.5)

Together with (4.3), one can obtain

LH(S,U1, U2)

≤−
[
µ− b21

2
− ϵ

2
(4µ+ δ1 + δ2)−

1

2
(1 + ϵ)2

∫
Z

C2
1 (z)ν(dz)

]
S2

−
[
µ+ δ1 −

1

2
b22 −

ϵ

2
(4µ+ 2δ1 + δ2)−

(1 + ϵ)2

2ϵ

∫
Z

C2
2 (z)ν(dz)

]
U2
1

−
[
µ+ δ2 −

1

2
b23 −

ϵ

2
(4µ+ δ1 + 2δ2)−

ϵ+ 1

2ϵ

∫
Z

C2
3 (z)ν(dz)

]
U2
2

+ 2µSS∗ + 2(µ+ δ1)U1U
∗
1 + 2(µ+ δ2)U2U

∗
2

+
1

2ϵ
(4µ+ δ1 + δ2)(S

∗)2 +
1

2ϵ
(4µ+ 2δ1 + δ2)(U

∗
1 )

2 +
1

2ϵ
(4µ+ δ1 + 2δ2)(U

∗
2 )

2

=− a1

(
S − µ

a1
S∗

)2

− a2

(
U1 −

µ+ δ1
a2

U∗
1

)2

− a3

(
U2 −

µ+ δ2
a3

U∗
2

)2

+ L1 + L2, (4.6)

where a1, a2, a3, a, L1, L2 are defined as before, and condition (4.1) implies a1, a2, a3>
0. Integrating both sides of (4.4) from 0 to t and then taking expectation, one gains

0 ≤ EH(S(t), U1(t), U2(t)) = H(S(0), U1(0), U2(0))+E

∫ t

0

LH(S(r), U1(r), U2(r))dr

which together with (4.6) that one can get (4.2). The proof is therefore complete.

Remark 4.1. It follows from Theorem 4.1 that the solutions of model (1.2) fluc-
tuate around a certain level which is relevant to ( µ

a1
S∗, µ+δ1

a2
U∗
1 ,

µ+δ2
a3

U∗
2 ), bi and Ci

(i=1,2,3). This theorem reveals that the heroin epidemic is lasting and will spread
in the society.
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In model (1.2), choose the following parameters (S(0), U1(0), U2(0)) = (10, 1, 1),
Λ = 1, β1 = 0.006, β3 = 0.001, µ = 0.01, δ1 = 0.04, δ2 = 0.05, p = 0.03, b1 =
0.005, b2 = 0.007, b3 = 0.008, Ci(z) = −kiz

2/(1 + z2)(i = 1, 2, 3), z ∈ [−1, 1],
k1 = 0.1, k2 = 0.2,k3 = 0.3. Then the trajectory of the solution to model (1.2) and
the corresponding phase portrait are given in (a) and (b) of Figure 2, respectively.

0 100 200 300 400 500
0

5

10

15

20

25

30

Time T

 

 
S(t)
U1(t)
U2(t)

(a) The sample path of the solution to
model (1.2). (b) Phase portrait.

Figure 2. R0 > 1

5. Conclusions

In recent years, people often use ordinary differential equations (ODEs) to charac-
terize the heroin epidemic. However, in some cases which we have stated above,
ODE models are insufficient to characterize these phenomena. Based on this point
and motivated by the results on the stochastic disease epidemic models with jumps,
we establish a stochastic heroin epidemic model with Lévy jumps. Meanwhile, we
investigate the dynamics of the established model. Precisely, first of all it is shown
that the stochastic heroin epidemic model with Lévy jumps admits a unique global
positive solution for any given positive initial value. When R0 < 1, we then inves-
tigate the asymptotical behavior of the solution to the established model around
the drug-free equilibrium E0 of the corresponding deterministic model, and we find
that the solution oscillates around the drug-free equilibrium, which reveals that the
heroin epidemic is nearly extinct and will not spread in the society. When R0 > 1,
we also study the asymptotic behavior of the solution to the established model
around the endemic equilibrium E∗ = (S∗, U∗

1 , U
∗
2 ) of the corresponding determin-

istic model, and we obtain that the solution goes around ( µ
a1
S∗, µ+δ1

a2
U∗
1 ,

µ+δ2
a3

U∗
2 ),

which reveals that the heroin epidemic is lasting in the society. Our results in this
paper can identify parameters in the study of the heroin epidemic, which will be a
help for informing and assisting policy-makers in targeting prevention and treatment
resources for maximum effectiveness.
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