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Abstract: The article is a concise compendium of knowledge on the etiology of pathogenic microor-
ganisms of all complexes causing oral diseases. The influence of particular components of the diet
and the role of oxidative stress in periodontal diseases were described. The study investigated the
bacteriostatic effect of the diet of adults in in vivo and in vitro tests on the formation of bacterial
biofilms living in the subgingival plaque, causing diseases called periodontitis. If left untreated,
periodontitis can damage the gums and alveolar bones. Anaerobic bacteria, called periopathogens or
periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important
periopathogens of the oral microbiota are bacteria of all complexes, including the red complex. The
obtained results suggest the possibility of using a specific diet in the prevention and treatment of
periodontal diseases-already treated as a disease of civilization. The quoted article is an innovative
compilation of knowledge on this subject and it can be a valuable source of knowledge for profes-
sional hygienists, dentists, peridontologists, dentistry students and anyone who cares about proper
oral hygiene. The obtained results suggest the possibility of using this type of diet in the prophylaxis
of the oral cavity in order to avoid periodontitis.
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1. Introduction
1.1. Oral Cavity-Its Specificity in Relation to the Human Body

The oral cavity presents a small part of the human body. It is a very special environ-
ment, called the “screen” of the whole organism. A specialist in the subject can anticipate
microorganism-caused health problems by looking at the oral cavity [1]. Despite its small
area, it plays a very important role in the human body complex [2], where it performs
several functions. It is the beginning of the digestive system, the respiratory system, it
participates in the formation of sounds, it has a protective, taste, secretory and sensory
functions, as well as absorption, taking and preparing food for further digestive processes.
Oral health significantly determines the quality of human life, determined by the absence
of pain, presence of teeth, sufficient amount of saliva, chewing ability and comfort, no
symptoms of dysfunction, aesthetic appearance of the face and proper taste sensation [3,4].
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1.2. Aim of the Work

The goals of our work were:

(1) estimation of the influence of food on the induction of inflammation of the soft tissues
in the oral cavity in the presence of residual biofilm

(2) estimation of the influence of food on the inflammation of soft tissues in the oral
cavity in the absence of residual biofilm

(3) to estimate the effect of food on supra- and subgingival biofilm: is it the same
or different?

(4) to analyze the types of food in terms of the possibility of slowing down the develop-
ment of inflammation in the oral cavity or rejecting the above possibility

(5) to estimate which products cause the greatest oxidative stress in the oral cavity
of humans.

This article is an attempt to answer all these questions. The oral cavity is the place
where a person’s outer world meets his inner world. It has very diverse microbiological
conditions that are constantly changing. If we do not take care of proper hygiene of this site,
lesions can appear in the oral cavity, which over time contribute to pathological phenomena
throughout the body-systemic diseases, and vice versa-all general diseases are reflected
in the oral cavity. Physical, chemical and immunohistochemical factors also influence the
bacterial environment in the mouth [5]. These are temperature, redox potential (Eh) [6],
concentration of hydrogen ions, availability of nutrients, colonization with microflora, pH
of saliva [7–11], order of oral cavity colonization or resistance to it [12–15], conditions of
bacterial adhesion to plaque [4,12,16–18]. These conditions are constantly changing as
food is introduced into the oral cavity, which lowers the pH, favoring the development of
carious lesions in the tooth tissues.

Contemporary periodontics and implantology pose many therapeutic challenges due
to the multitude of disease processes affecting the structure of periodontal tissues. Bleeding
caused by gentle examination with a periodontal probe is a sign of gingivitis. Additionally,
the high frequency of replacing missing teeth with dental implants necessitates increased
control and periodontal care in both healthy patients and those with reduced periodontium.
At the 2018 annual FDI World Dental Federation Congress organized by the American
Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP)
in San Francisco (CA, USA), a new classification of periodontal diseases and implant-
related diseases was presented to help dentists treat them more effectively [19]. The
principles of dealing not only with inflammatory forms of periodontal diseases but also
with deformations of the gingival mucosa and periodontal diseases are presented. In
addition, the most important disease entities from the surgical point of view, which affect
the achievement of the best and longest therapeutic effect, were analyzed, regardless
of whether in non-surgical or surgical treatment of periodontitis and tissue around the
implant [19]. Periodontal diseases, in the light of the new classification, have been divided
into three general categories: gum disease, periodontitis, and other conditions affecting the
periodontium. The periodontitis category includes:

- periodontitis
- necrotic periodontal diseases
- periodontitis as a symptom of systemic diseases.

Before making a diagnosis, the dentist should consider the patient’s overall health
and some of the risk factors, particularly:

- smoking
- variety of diet
- nutritional deficiencies, e.g., vitamin C deficiency
- hormonal changes such as maturation
- diabetes.

The classification includes new categories based on disease severity, extent, rate of
development, and treatment complexity. Thus, periodontitis as a symptom of systemic
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diseases is divided into four categories taking into account the underlying general disease,
according to the International Statistical Classification of Diseases and Related Health
Problems (ICD) code:

Stage I: Initial periodontitis
Stage II: Moderate periodontitis
Stage III: Severe periodontitis with possible additional tooth loss
Stage IV: Severe periodontitis with possible loss of dentition
There are three grades based on the patient’s overall health, risk factors, indications or

risk of rapid progression, and expected response to treatment:
Grade A: Slow progression
Grade B: Average rate of progression
Grade C: Fast rate of progression
Although the stage of periodontitis will remain unchanged, its severity can be in-

creased after periodontal treatment in combination with reliable patient cooperation and
effective control of risk factors [19].

For the first time, diseases developing around implants (peri-implantitis) were clas-
sified. The importance of examination with a periodontal probe and frequent checkups,
which should be the basic conduct of a doctor after diagnosis, was emphasized [19]. How-
ever, diseases and conditions around the implant are divided into four categories:

- No changes around the implant,
- Inflammation of the mucosa around the implant,
- Peri-implantitis,
- The loss of soft and hard tissues around the implant.

That is why home prophylaxis in the form of prevention and maintenance treatment
is so important [19]. The diagnosis of periodontal disease and its severity is only clinical
and is performed on the basis of periodontal charts [19–197].

1.3. Oral Microflora Colonization

Natural changes in the oral microbiome follow the eruption of deciduous and perma-
nent teeth. Some 1200 bacterial strains have been observed in the oral cavity, but only some
of them have been attributed any responsibility for advanced periodontal disease [1–4]. It
is to clear up that the pathogenic role in periodontology does not correspond to a single
bacterium or a limited number of periodontopathogenic bacteria. The main features of
the ecosystem are that it has very effective mechanical barriers, it is able to carry and dose
nutrients and gas. Moreover, it promotes the exchange of recombinant plasmids. Once
the ecosystem has been structured, it is almost impossible to change or destroy it, except
through professional oral hygiene [20–191].

It is a highly organized ecosystem and pathogenicity rides on the biological and behav-
ioral host’s features. In the oral cavity, bacteria concentrate into specific groups, otherwise
known as complexes, thanks to which they make better use of nutrients and more effec-
tively defend themselves against the defense mechanisms of the macroorganism [20–22].
Periodontal tissues in the oral cavity are destroyed by various factors of bacterial or in-
direct origin as a result of an inflammatory reaction. The cause of direct toxic action are
endotoxins, exotoxins, enzymes and end products of metabolic transformations [23]. The
best-known toxin is the leukotoxin produced by A. actinomycetemcomitans and responsible
for the destruction of neutrophils, monocytes, causing cell lysis (increasing the permeability
of their membranes). The endotoxins of P. gingivalis and A. actinomycetemcomitans cause
the release of substances such as interleukin 1 beta and prostaglandin E2 by monocytes,
fibroblasts and macrophages, which are actively involved in bone resorption [24]. Many
bacterial enzymes destroy intercellular substances (for example, collagen) and the connec-
tive tissue of the macroorganism. The end products of metabolic transformations of the
microorganism (e.g., butyric acid, propionic acid), ammonia, indole, amines, volatile sulfur
compounds produced in large amounts destroy the mucosa permeability and are reducers
of collagen synthesis [23].
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The order of microbial colonization in the oral cavity depends on the availability of
individual nutrients and the crossing of the natural limit of non-specific immunity. The
first class of microorganisms is carried by the macroorganism and is obtained directly
from the environment. It colonizes specific ecological niches and reproduces in real time,
creating ecological communities. The environment in which it lives changes under the
influence of its metabolic activity, which facilitates the penetration of other species of
bacteria into them, starting ecological succession, which leads to the creation of a large
and very diverse environment of settled pathogenic microflora in the oral cavity, which
begins to induce specific pathological changes. Each introduction of a new non-bacterial
element into the oral cavity environment, from the first erupting tooth to the complete
prosthesis, contributes to the creation of new environmental conditions dependent on the
pH of the saliva, physiology of the mucosa and epithelium covering the entire inside of the
cheek. which lowers the oxyreduction potential of a given niche, which creates favorable
conditions for the development of anaerobic bacteria. Thus a new autogenous succession is
formed. For example the cheek epithelium is mainly inhabited by streptococci—the most
common species being S. sangius, S. mitis, S. salivarius, S. vestibularis, S. anginosus. The
bacteria are not regularly present on other surfaces of the oral epithelium. It was determined
that there are 5–25 microorganisms per one cell of the cheek epithelium [6,25,26].

For the life and development of microorganisms living in the oral cavity the amino
acids, proteins, carbohydrates and glycoproteins in saliva are sufficient. Fluids flowing out
of the gingival crevices are a rich source of nutrients for bacteria. Another endogenous
generator of nutrients are substances triggered by decaying diseased periodontal tissues
due to hydrolytic enzymes, i.e., protease, collagenase, hyaluronidase, DNA-ase produced
by bacteria in the oral microflora. A significant source of nutrients for the bacteria living
in the mouth are the ingredients from everyday food, especially carbohydrates. Carbohy-
drates are converted into glucans and fructans, and they also contribute significantly to the
formation of plaque. The bacteria that live in it, i.e., S. mutans, S. gordonii, Lactobacillus, are
responsible for the acidification of the environment, which promotes the demineralization
of enamel and dentin [6–32]. Other substances are, for example, polypeptides that bind
saliva glycoproteins to cells from other bacteria or to calcium ions. Extracellular polypep-
tides, which react with gluconic proteins of other streptococci, behave in a similar way.
Streptococcal cell walls contain lipoteichoic acids that can bind to the acquired salivary
sheath. An important role in the colonization processes is played by polyproteins of the
cytoplasmic membrane, which act as a “transporter” of components, i.e., sugars or pep-
tides related to the acquired salivary sheath or surfaces of other bacterial cells. So-called
ligands-host factors are negatively charged salivary glycoproteins and can be found on
mucosal epithelial cells, the hard tissues of the teeth above and below the gums, and on
prosthetic restorations. These compounds are positively charged through calcium com-
pounds (Ca2+), which bind to negatively charged bacterial adhesins in streptococci like
S. mutans, S. oralis, Actinomyces, Gram-negative bacteria, i.e., P. intermedia, F. nucelatum,
P. gingivitis, E. corrdens [25–34].

1.4. The Colonization of Microorganisms on the Tooth Surface

The colonization of microorganisms on the tooth surface begins with specific surfaces
and the initiation of the initial stages of microbial adhesion to the surface. This phenomenon
is conditioned by many factors, such as adhesins-specific proteins that bind to carbohy-
drates through structures called fimbria (these are fibers of various lengths and appear on
the cell). Thanks to them, lipophilic surfaces of bacterial cells affect and connect with the
hydrophobic surfaces of epithelial cells. This contact resembles the binding of an enzyme to
a substrate, and receptors on the surface of epithelial cells are recognized by adhesins found
on some microorganisms. Fimbriae were first detected in streptococci such as S. anginosus,
S. salivarius, S. oralis, S. mutans, and then on actinomycetes like A. viscosus, A. naeslundi
and gram-negative bacilli (Prevotella, P. intermedia, P. oralis, P. bucceae, P. melaniogenica, and
Porphyromonas gingivalis species) [25,26,34]. The first pioneering microorganisms appear
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in the mouth of a newborn baby after 12–18 h. These are aerobic and relatively anaerobic
bacteria, the most common ones being: S. oralis, S. salivarius, S. mitis, with time S. gordonii
and S. anginosus join them. Within 1–7 months, the pioneering flora is increasingly diverse,
and especially anaerobic Gram-negative anaerobes appear, such as Fusobacterium, Prevotella,
Veillonella, sometimes Capnocytophaga, Leptotrichia, Campylobacter, Eikenella. There may be 0
to seven species in the mouth. The bacterial flora is enriched with the eruption of primary
teeth (1–3 years). There are also species of the genus Acitinomyces, Neisseria, Lactobacillus,
Porphyromonas, Rothia and Actinobacillus. The oral microflora reaches relative homeostasis as
the body reaches adulthood, but when specific immune disorders, tumors, or chemotherapy
occur, opportunistic microorganisms such as Klebesiella, Candida, Escherichia, Staphylococcus,
Pseudomonas may appear [15–62] (Figure 1).
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Figure 1. The process of periodontal disease formation according to Socransky [179,180].

Another important mechanism of adhesion is bacterial aggregation, based on the
attachment of microorganisms to each other, as well as their attachment to various surfaces.
The main substrates in the oral cavity are a casing acquired on the hard surfaces of the
enamel and root cement (osseous), on the oral mucosa. The sheath covering the surfaces
is approximately 1 micron thick and is specific to each surface. The sheaths on the hard
tissue surfaces are not identical, on the epithelium they are referred to as the mucous
sheath [59,60]. The casing is removed from the abovementioned tissues and regenerated
after 90–120 min. It consists of water, lipids, proteins, glycoproteins, mineral salts, and
also contains acidic, proline-rich proteins and stearin, which facilitate the adhesion of
S. mutans, A. viskosus and anaerobic bacteria with black pigments. The above phenomenon
is related to the occurrence of lectins-carbohydrate-protein compounds showing affinity
for sugar residues in cells of other microorganisms. Gram-positive bacteria gather between
S. sanguis streptococci and C. matruchotii or P. acnes Gram-positive bacilli. The same applies
to Gram-negative rods, i.e., P. gingivalis, F. nucelatum, as well as Gram-positive bacteria
Actinomyces, Staphylococcus and Gram-negative bacteria of the genus Prevotella,
Fusobacterium, Capnocytophaga, Eiconella, Porphyromonas and Veillonella [6,25,26,37–40]. An-
other important phenomenon in the colonization process are extracellular polymers pro-
duced by S. mutans. They are produced only in the presence of sucrose and aggregate very
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quickly on smooth enamel surfaces. The same is true for Actiniomyces, but they colonize
the subgingival surfaces of the tooth. These processes initiate the formation of dental
plaque, which results in carious lesions [41–52]. Sometimes the inhibition of colonization
processes may stop. The inhibition of colonization processes occurs due to the possibility
of stabilizing the bacterial flora. Stabilization occurs largely due to the possibility of elimi-
nating niches of opportunistic and exogenous microorganisms (transitional flora). Often
the microorganisms of the transitional flora are pathogenic to the macro organism, and
the inability to colonize them is due to the lack of availability of adhesins-nutrients in a
populated niche. The important thing for sedentary microflora is that it can produce some
antagonists-substances that interfere with the colonization of the niche by strains of exoge-
nous bacteria. It is suspected that this may be due to the hydrogen peroxide produced by
S. mitis or S. salivarius streptococci, which produce salivaricin. They play an important role
by inhibiting the development of pyogenic streptococci such as S. pyogenes [6,15,25,26,36].
Bacteria such as S. mutans, C. martuchotii, A. actinomycetemcomitans additionally produce
enocin (bacteriocin), which is proteinaceous in nature and has the ability to inhibit growth
and even kill related organisms. A very important role for the stability of the flora of the
sedentary ecological niche is played by the non-specific immunity and acquired immune
resistance of the macroorganism, as well as some external factors. Long-term treatment
with antibiotics and cytostatics with a broad spectrum of action, which often eliminate
oral bacteria and Candida yeasts appear in their place. Due to the presence of fibronectrin
in epithelial cells, it is not possible to colonize the oral cavity with P. aeruginosa or other
gram-negative bacteria species [15,36].

1.5. Bacterial Biofilm-Oral Health and Inflammation

Bacterial biofilm or plaque is the cause of most oral health problems. The accumulation
of bacterial biofilm is a basic factor in the pathogenesis of periodontal diseases, which,
together with general factors, affects the defense of the macroorganism and has a significant
impact on the extent and dynamics of inflammatory processes. Bacterial plaque is a soft
mass that fits tightly to the teeth, it is a cluster of bacteria and an intercellular matrix that
forms in the mouth on hard and soft structures. The bacterial plaque adheres tightly to the
surface, it cannot be rinsed, even with preparations under high pressure. It can only be
removed with a toothbrush, with appropriate movements depending on the conditions in
the oral cavity, or with the use of specially designed dental tools [4,43–59]. Clinically, it is
a yellowish, consistent mass, slightly darker than the color of the enamel, and covers the
teeth in inverse proportion to the host’s oral hygiene. Dental plaque develops in several
stages, has no set values, and changes its volume, structure and content if it is not removed.
Its composition depends on the location, thickness, physicochemical properties of saliva,
as well as the diet. The first stage of its formation is the acquired casing called pellicula,
which is formed immediately after cleaning the surface of the teeth and is about 1 micron
thick. The surfaces are covered with saliva glycoproteins, which form a protective layer
on the tooth and at the same time create favorable adhesive conditions for bacteria. A few
hours after brushing your teeth, early plaque forms. After about 3 h, the bacteria colonize
the plaque to form large colonies of aerobic bacteria, such as Streptococcus sanguis (they like
to settle in the organism on valves), Streptococcus mutans, Streptococcus mitis (responsible
for infective endocarditis), etc. Anaerobic bacteria with a unique ability to invade tissue
by the production of enzymes and toxins (responsible for gingivitis) and Porphyromonas
gingivalis contributing to platelet aggregation, which in turn leads to the formation of
blood clots in blood vessels. Ripe plaque—in clinical form—is detectable after 24 h. As
the plaque matures, the number of anaerobic colony-forming bacteria increases sharply.
Not removed for 7–10 days, it is visible on the teeth with the naked eye. It contains 70%
of microorganisms (anaerobic bacteria, fungi, viruses) and 30% of an organic matrix-the
“skeleton” that binds these components together [6–62].

Plaque microorganisms persist on a matrix composed of polysaccharides (elements
of bacterial origin) and organic substances of the host-proteins, carbohydrates, food de-
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bris, dead cells from oral tissue, red and white blood cells, enzymes and toxins (bacterial
products), glycoproteins and saliva antigens, which take part in the so-called early colo-
nization process, occur in the plaque up to day 7, and after 7 days the late colonization and
maturation of plaques begins [6,18,19,25,26,37–40,60–62].

If it is not removed, the plaque mass begins to mature, sticking to the clean surface of
the tooth. If the oral cavity is not properly cleaned or not cleaned at all due to its specific
environment, it provides the microorganisms living in it with excellent conditions for
growth. There are approximately 2 × 1011 microorganisms in one gram of plaque. In
addition, there are many factors in the oral cavity that contribute to the retention of plaque
while preventing its effective removal. It is favored by large or uneven fillings, bridges,
prosthetic crowns, implants, removable dentures, orthodontic appliances, gingival pockets,
tooth crowding, malocclusion, fixed or removable dental splints. Bacterial plaque covers
the hard structures above and below the gums in the mouth, so it is divided into plaque
and subgingival plaque. This division is justified because these structures are inhabited
by various microorganisms and differ in their surroundings, which is favored by the
appropriate pH [10,46,47,58,63,64]. A supragingival plate is placed over the tooth crowns
at the gingival margin and forms a soft, yellow-white mass. It mainly inhabits the edges
of the gums, the area of suspended fillings, prosthetic works, furrows, etc.-places that are
difficult to clean. The speed of its formation is very individual and depends on parameters
such as diet, salivation and oral hygiene. Small amounts are usually invisible to the naked
eye but can be detected with a probe or a preparation that stains the bacterial biofilm.
In the supragingival plaque, the matrix constitutes 50% of its mass, and the bacterial
flora is mixed with the majority of aerobic bacteria. The metabolism of the supragingival
plaque results from carbohydrate metabolism [10,46,47,58,63,64]. The subgingival plate
is located in the gingival groove or in the periodontal pocket (less than 3 mm of the
gingival margin). If not removed from the tooth surface, it develops towards the gingival
groove. Its presence can be detected with an instrument or, if possible, by removing the
gingival margin. The composition of the supra- and subgingival plaque is not the same
due to the condition in the gingival sulcus. Anaerobic bacteria grow rapidly and colonize
such as Porphyromonas gingivalis, Gram-negative rods and spirochetes. In the gingival
groove, the effectiveness of the cleansing mechanisms is limited, there is a different redox
potential, and the gingival groove facilitates the inflow of nutrients for the bacteria. It
contains mainly (over 90%) of anaerobic bacteria (there are many of them), and also mobile
bacteria [18,19,37–40,60–62]. Unfortunately, the bacterial plaque is not removed under the
calcification process and then it can no longer be removed with a toothbrush, but only with
manual and mechanical tools in the dentist’s office. The mineralization process takes place
with the participation of calcium and phosphorus ions present in the saliva. The calcium
phosphate crystals grow in the plaque matrix and enlarge until the plaque is mineralized.
Over time, the stone ages as a result of unlimited crystals mixing-first the brusite is formed,
then the eight-calcium phosphate, and the mature stone is composed of hydroxyapatite
and tricalcium phosphate crystals. The stone crystals grow in close contact with the tooth
surface and the stone obtains mechanical retention due to the irregularity of the surface.
On the outside, tartar is covered with non-mineralized bacterial plaque and, like dental
plaque, it is divided into supra- and subgingival [45,65–73]. The supragingival stone is
yellow-white in color. It can be the color of the teeth and its smaller deposits are visible
after drying the surface in the light of the reflector, the stone differs from the tooth surface
by the lack of gloss-a matte structure. On the gingival margin and on the crown, it is
often discolored as a result of smoking, consumed food and drinks with strong dyes. The
formation of calculus is influenced by the concentration of calcium and phosphorus ions in
saliva and the secretion of saliva from the salivary glands, hence it is most often formed at
their outlet [7–11]. The subgingival calculus is formed apex to the gingival margin. Most
often it is dark because it becomes stained with erythrocytes. It is visible after drying the
gingival margin, it shines through the soft tissues, you can gently lift the gingival margin
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and see it, and also during periodontal surgery. To detect it in deeper layers, you can use a
periodontal probe, take an X-ray, use laser equipment [69–71], (Figure 2).
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It is the bacterial flora that is largely responsible for the formation of plaque, periodon-
tal disease, the occurrence of halitosis (unpleasant odor emanating from the mouth), and in
the later stages of macro-organism health problems [48,74,75].

1.6. Inflammation in the Oral Cavity

Inflammation is one of the body’s main defenses to noxious agents-physical, chemical,
or biological (immune and non-immune). They are a complex process of the body’s
response to external or internal damaging (pathogenic) factors. The inflammatory process
by damaging tissues and organs can get out of hand, leading to undesirable outcomes.
Inflammation is a process that occurs at certain stages. The role of the body’s defenses is
primarily to remove the inflammatory factor, repair damaged tissues, and protect against
the development of the disease-that is, the protective function. Chronic inflammation can
evolve into acute inflammation, becoming a pathogen that leads to autoimmune diseases
and cancer. The inflammatory reaction activates the immune system to fight pathogens
(e.g., viruses, bacteria), without it we would not be able to survive even the smallest
infection. In the event of an inflammatory reaction, changes in the blood vessels always
appear. The blood vessels widen and their permeability increases, leading to mediators
and inflammatory cells entering the surrounding tissues [76–82].

Symptoms of inflammation include pain, redness, swelling, warmth, loss of func-
tion, and tissue damage, meaning the organ is no longer functioning as it should. The
inflammatory response is closely related to the body’s immune response. It begins with
the contact of the pathogen with specialized cells of the immune system-antigens. The
stimulated antigens produce and release inflammatory mediators that initiate and main-
tain the inflammatory process. Mediators exert pro-inflammatory and anti-inflammatory
effects on target cells by modulating the course of inflammation. Over time, the adaptive
immune system (specific response) is also involved in destroying tissue damaging factors.
This system works extremely precisely-it cooperates with T and B lymphocytes, leading
to the production of specific antibodies that selectively neutralize the pathogen [76–82].
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The inflammatory reaction in the body has three phases-pathogen recognition, pathogen
elimination and extinction of the immune response. It should be mentioned that a properly
functioning immune system effectively recognizes pathogens and effectively removes them
without damaging its own cells and tissues, but in some situations the immune mechanisms
may malfunction and an inflammatory reaction to its own antigens occurs. This situation
occurs in many autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, celiac
disease, lupus erythematosus, Hashimoto’s disease, etc., [19,83].

In the body’s response to inflammation, in the first phase, in response to the intrusion
of microbes into the body’s tissues, many soluble chemicals are produced that kill invading
microbes. These substances are lysosomes, interferons, interleukins, other cytokines, acute
phase proteins and the complement system. In the next stage, there are cells involved in the
phagocytosis, digestion and destruction of foreign particles, i.e., macrophages, neutrophils,
eosinophils, monocytes. Additionally, basophils, mast cells, platelets and natural killer
(NK) cells are involved in the non-specific immune response. The nature of the infiltration
of inflammation depends on the type of microbes that cause it. The inflammatory reaction
facilitates the induction of an immune response as a result of the influx of lymphocytes
into the inflammatory focus. Certain products of microbial metabolism (for example,
endotoxins) may have an adjuvant effect [21,84].

Human mouth infections may affect the gums, alveolar bones, periodontitis, root
inflammation (periodontitis) and soft tissues of the tooth. Inflammation appear as a conse-
quence of subsequent phenomena caused by the imbalance of the oral cavity bacterial flora.
They are initiated by the remaining plaque. The pathogenesis of gingivitis and periodon-
titis is similar, but the two entities are described separately. In the case of gingivitis, the
bacterial plaque accumulates on the gingival margin, and its bacterial products-metabolic
by products, i.e., proteases, H2S, endotoxins penetrate the epithelium and initiate gingivitis.
The answer to the above situation is increased permeability and dilatation of blood vessels,
and leakage of fluid into the tissues and the gingival groove [76–82]. Neurophiles from
the gingival groove and blood vessels begin to migrate. As a result, the collagen fibers
surrounding the blood vessels break down towards the apex. After a few days, lympho-
cytes (especially T-type) and macrophages begin to accumulate, and fibroblasts, due to
morphological changes, have a lower ability to produce collagen. As a result, plasma cells
(so-called inflammatory cells) begin to dominate. Collagen and the expanded connective
epithelium are still destroyed. Inflammatory (chronic) gingivitis is confined to adjacent
tissues with the connecting epithelium and the gingival groove epithelium. Gingivitis is
defined as baseline, early and established. Initial inflammatory changes develop within
0–4 days with plaque build-up and are characterized by vascular permeability, migration of
neurophiles out of the vessels into the tissues, and damage to the collagen fibers surround-
ing the blood vessels. Early inflammatory lesions will develop 4 to 7 days after plaque
build-up. It leads to further processes that started in the initial changes, moreover, during
this period, lymphocytes (especially T-type) and macrophages begin to accumulate, the
cytotoxicity of fibroblasts changes, which is manifested by a decrease in collagen produc-
tion and proliferation of epithelial cells. The so-called fixed inflammatory lesion becomes
apparent from about 14–21 days without disturbing the plaque growth. This coincides
with the clinical diagnosis of chronic gingivitis. In the previous steps, further changes
that cause the erythematous gingiva to dark blue and become the dominant inflammatory
cells were discussed. Inflammatory lesions are confined to the gums, not to the alveolar
bone. They can be modified by general factors: those related to the endocrine system
(gingivitis, inflammation related to the menstrual cycle, pregnancy gingivitis, gum disease
in the course of diabetes), blood diseases (gum leukemia), drug-modified (anticonvulsants,
immunosuppressants, channel blockers) and even contraceptives) and modified by an
eating disorder [3,6,36].

It should be noted that there are gum diseases that are not associated with plaque.
These include diseases related to infections (bacterial, viral, fungal), genetic conditions
(gingival fibromatosis), the course of systemic diseases (desquamative gingivitis, e.g., with
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lichen planus, pemphigus, bullous dermatosis, erythema multiforme) and traumatic origin
(as a result of own actions, by a doctor, erosions, ulcers or recession). In a situation where
the above changes spread and begin to affect bone tissues, they will coincide with the
clinical diagnosis-periodontitis. However, chronic inflammation can last a long time. It is
suspected that there is an important balance between the microbes and the host response
in this situation. Reducing the host’s immunity or increasing pathogenic flora can tip
the scales in favor of periodontitis, and the inflammatory lesions then spread to the bone
tissue, i.e., alveolar bone, periodontitis, and root cementum. Inflammatory lesions are
characterized by dilatation and proliferation of blood vessels, plasma cells and B lympho-
cytes in connective tissue, the pocket epithelium becomes thinner, it is often ulcerated
and leaks bacterial products, inflammatory mediators of defense cells. The degradation of
connective tissue is evidenced by visible necrotic foci. Connective epithelium proliferates
in the apical direction [76–82]. Cement is exposed, absorbing bacterial products, it becomes
soft and necrotic. Bone resorbs prostaglandin endotoxins, interlequins and tumor necrotic
factors (TNF). Periodontitis manifests itself as chronic inflammation of the alveolar bone
of the tooth suspension apparatus [85–87]. Responsible for specific bacteria or groups of
bacteria. As a result of their activity, the fibers of the alveolar and periodontium bones are
destroyed, which results in the formation of periodontal pockets and gingival recessions
(often occurring simultaneously), tooth mobility, changes in the consistency and shape of
the gums and bleeding during probe examination. Frequent bleeding during examination
indicates the presence of inflammation and loss of connective tissue attachment, which
may be continuous or episodic [76–87].

There have been several classifications of periodontal diseases in recent years and
the current one is quite simplified. It begins with gum disease (already outlined briefly),
through chronic periodontitis, aggressive periodontitis, periodontitis in the course of
general diseases, acute periodontitis, to congenital or acquired defects [88].

Chronic periodontitis is the most common disease found in adults, but it also occurs
in children and adolescents. The main cause of it is a bacterial infection, most often pro-
voked by Porphyromonas gingivalis, Bacteroideforsythus, Tremponema denticola, Actinobacillus
actinomycetemcomitans, or less frequently by Prevotella intermedia, Camphylobacter rectus, Pep-
tostreptococcus micros, Fusobacterium nucleatum and Eikenella corrodens [18,19,32,37–40,60–62].

The criteria for diagnosing aggressive periodontitis include the analysis of clinical,
radiological, histological, laboratory tests and, in cases of doubt, microbiological and
immunological tests. It is a specific type of periodontitis and concerns the suspension
apparatus of the tooth. They are distinguished by characteristic features that can be
clearly identified clinically and in a laboratory, and they are characterized by rapid tissue
destruction. It occurs in patients with a disturbed immune system. The disease occurs in
their families and is much more likely to be caused by Actinobacillus actinomycetemcomitans
(up to 90%), Porphyromonas gingivalis, Fusobacterium nucleatum, Camphylobacter rectus and
others. It can occur in a localized and generalized form [18,19,34,37–40,60–62].

Periodontitis in the course of general diseases, apart from bacterial plaque, is asso-
ciated with the host response. General factors are responsible for modifying all forms of
periodontal disease, as they affect the immune system and also the inflammatory response.
The changes in the tissues in the oral cavity are influenced by many diseases and medica-
tions, and the diseases affecting the course of periodontitis include: hematological diseases
(acquired neutropenia, leukemia and other blood diseases), genetic diseases or syndromes
(familial and cyclic neutropenia, Down syndrome), leukocyte adhesion deficiency Syn-
drome, Papillon-Lefevre syndrome, Chediak-Higashi syndrome, histocytosis, glycogen
storage disorders, childhood congenital agranulocytosis, Ehlers-Danlos syndrome, hy-
pophosphatasia) and other systemic diseases (osteoporosis, sex hormones, diabetes and
human immunodeficiency virus (HIV) syndrome immunodeficiency, immunosuppression
and steroids) [85,89–91]. Acute periodontal conditions are characterized by a rapid onset,
acute course, severe pain and involve the tissues surrounding the tooth. They can be local
or general, with possible systemic symptoms. These include necrotic-ulcerative periodon-
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tal diseases (abscesses: gingival, periodontal, acute, chronic periodontal and pericoronal
abscesses), endo-periodontal changes, etc., [89,90].

Congenital or acquired defects do not cause the disease but may predispose to gin-
givitis and periodontitis in the presence of plaque. These include: local odontogenic
factors (anatomical structure, tooth positioning, orthodontic appliances, fillings, prosthetic
restorations, root fractures, root resorption and hypercementosis), mucogingival deformi-
ties within the dental arches (gingival and soft tissue recessions, reduced vestibule depth,
abnormal frenulum attachment, gingival overgrowth) and occlusal trauma (primary and
secondary) [89–101] (Figure 1).

1.7. Oxidative Stress—A Stimulator of Inflammation in Oral Cavity

Stress is a state of acute tension in the body forced to react and defend against any
kind of threat or aggression (infectious, psychological, traumatic, toxic, etc.). Rushing,
increased heart rate, muscle contractions are just some of the body’s reactions in a stressful
situation. The problem begins when stress becomes chronic, and not reacting to it for too
long has a direct impact on health, work, relationships with family and the environment.
Psychological stress is associated with the occurrence and progression of periodontal
disease. People with high levels of stress and poor coping skills have twice as many
periodontal diseases as people with minimal stress and good coping skills. It is known
from the literature data that there is a relationship between cortisol values and the degree
of periodontal disease. Increased cortisol levels due to stress can affect the immune system
and increase the susceptibility of a person suffering from periodontal disease. Excessive
stress is often negatively correlated with changes in hygiene and eating habits, increased
alcohol consumption, and smoking, which increases the risk of periodontal disease. For
these reasons, it can be concluded that, of course, the presence of periodontal pathogens
remains an important etiological factor in periodontal disease, although stress control and
control will be the key to gingival reduction [102–106].

More studies suggest that maintaining oxidative stress at an appropriate level has a
significant impact on the treatment of many inflammatory diseases. It has been studied
that the loss of control over oxidative stress blocks the cell cycle, induces cell death and
neoplase, causes allergic and autoimmune disorders related to excessive stimulation of the
immune system cells and disruption of the immune system’s immune tolerance [22,80,84].
It is already known that oxidative stress is an important etiopathological factor in many sys-
temic diseases and contributes to the faster aging of the body. The list of diseases in which
oxidative stress plays a role now includes more than fifty items and is not yet closed. These
diseases include: cardiovascular diseases (atherosclerosis, arterial hypertension), neurode-
generative system diseases (multiple sclerosis, Parkinson’s disease), metabolic diseases
(obesity, diabetes), neoplastic diseases, eye diseases (glaucoma, cataracts), atopic diseases
(rhinitis, asthma), bacterial infections, septic shock, inflammatory diseases (periodontitis,
esophagitis, pancreatitis, liver inflammation) [23,82,101].

1.8. Oxidative Stress and Periodontitis

Scientific research on oxygen—which we need to live—has shown that it has a dis-
astrous effect on the cells of the body, but its unfavorable effect depend on its availability
in the mouth. Thanks to its presence, the following bacteria multiply faster: caprophilic,
microaerophilic, obligate anaerobes, and relative anaerobes [15,24,25,33–35,59–61]. When
homeostasis in the oral cavity is disturbed, inflammation appears, the occurrence of which
is undoubtedly influenced by oxidative stress. Oxidative stress plays a twofold role, it
can be one of the defense mechanisms, but it can also initiate many different pathological
changes. Smoking is still not uncommon among people, which leads to the formation of
huge amounts of free radicals. There are approximately 1015/35 mL in cigarette smoke
(1 puff) and the concentration in cigarette tar is approximately 1017/g. Smoking cigarettes
causes an imbalance between proteinases and antiproteinases. It intensifies lipid peroxida-
tion, damages DNA in lymphocytes, lowers the level of some antioxidants in the blood
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serum, accelerating the process of atherosclerotic plaque formation. As a result, nicotine
increases the clinical course of periodontal diseases. On the one hand, the knowledge
of the biological properties of reactive oxygen and nitrogen species helps to predict po-
tential dangers in certain disease states. On the other hand, the knowledge of natural
antioxidant mechanisms and their use, as well as their support by pharmacological sub-
stances neutralizing their negative derivatives, as well as the ability to cope with everyday
stress, can be an effective support in the treatment of periodontal diseases in disease
states [14–16,29,33,36,56,63,78,81,93,97,99,102–112].

The pathognomonic lesion of the periodontium is the periodontal pocket and the
modulation of inflammation in the periodontal pocket itself. The modern pathogenetic
model of genes, proteins and metabolites in dynamic biological processes is based on a
multi-level structure that includes disease initiation and eradication mechanisms, regulated
by innate and environmental factors [102–192]. Polymorphisms in inflammatory genes
such as interleukins 17A and 17F, 1, 1B and rs1143634 and MMPs genes are associated with
the risk of development of periodontitis [193–196].

2. Diet—The Basis of Human Health and Inflammation
2.1. Diet

The world is so organized that every micro- or macroorganism needs food to live.
Food is needed for development and growth, it is a source of energy for life, and the
nutrients it contains are needed to regulate the processes taking place in the body. In the
oral cavity, the role of food does not end there. In addition to the fact that it determines
the correct structure of the teeth, the entire stomatognathic system, strengthens the resis-
tance of the tissues in the oral cavity, it can protect against caries, erosion, periodontal
disease, but it can also contribute to the formation of caries, erosion and diseases also
periodontitis [23,37,48,50,67,75,89–100] (Figure 3).
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The sources of energy in food are carbohydrates, fats and protein. For the growth and
development of tissues, macro- and micronutrients, proteins and vitamins are needed. You
need protein, vitamins and, of course, water to regulate your metabolism. Mammalian
organisms (including humans) need: water, carbohydrates, fiber, fats, proteins, vitamins,
minerals and fiber to function effectively [113,114].

It should be emphasized that vitamins such as vitamin, A, E, C, several B vitamins,
flavonoids, coenzyme Q10 are strong antioxidants that protect the gums and periodontium
against free radicals that cause cell damage. Coenzyme Q10 is additionally necessary for the
production of cellular energy in the mitochondria-it is a component of the respiratory chain
in the cellular mitochondria. Its deficiency adversely affects the energy processes in the
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cell. It has been known for many years to improve the health of the tissues in the mouth. It
is a catalyst for metabolic processes that provide the body with energy for repair processes
and eliminates free radicals in cells thanks to its strong antioxidant properties [113–117].

Minerals are also essential for life. Like most vitamins, the body cannot produce
them itself, so they must be supplied with food [118]. They are absorbed directly from
food and are present in food in minimal amounts. There are micro- and macroelements.
Micronutrients are those whose daily requirement is less than 100 mg, and macronutrients
are elements that the body needs more than 100 mg a day. Some of these minerals are
needed for efficient functioning in functional regulatory systems that influence each other,
e.g., participate in the transmission of nerve signals. Others act and are part of hormones,
others act as electrolytes and maintain adequate osmotic pressure in the blood. Contrary to
vitamins, most of them are not sensitive to food processing methods, they are not damaged
by heat and air. When cooking with large amounts of water for a long time, some of the
water is rinsed out and if the water is poured out, these minerals are lost [113–118].

The abovementioned division is important if the proper diet is used, which helps to
improve the immune system and defend against pathogenic bacteria causing gingivitis,
which can turn into periodontitis. The proper components of the diet are listed below.

2.1.1. Collagen

Plaque, which is the leading cause of gum disease, builds up daily on the surface of
your teeth. If we do not remove it regularly during brushing, pathogenic bacteria attack the
gums in which the inflammatory process is triggered, and then further, deeper periodontal
tissues are destroyed [119]. The process of degradation of collagen fibers takes place in
parallel, which are like scaffolding for the gums and constitute up to 65 percent their
volumes [119]. This is due to the release of collagenases, a group of enzymes that break
down the natural collagen in the gum. Loss of collagen is characteristic of the early stage of
inflammation, the gums become less resistant to infection and damaged tissues regenerate
less [120]. That is why collagen-containing foods are so important. Sources of collagen
necessary for the health of the gums, but also joints, cartilage and intestines, are, among
others, bone broth cooked with chicken, beef or pork bones. Likewise, fish or pork jelly
and offal [120].

2.1.2. Coenzyme Q10

This powerful antioxidant is found throughout the body and is a key ingredient for
the proper functioning of every cell in the body [121].-People with adequate levels of
CoQ10 are less likely to develop gingivitis and periodontitis. In turn, its deficiencies are
found in 60–90 percent. patients with periodontal disease [121]. This compound reduces
gingivitis, slows down its progression and stimulates repair processes. Therefore, it is
worth supplementing it or eating foods containing it, the source of which is chicken meat,
e.g., legs-necessarily with the skin, which is rich in collagen. The vegetable with the highest
content of coenzyme Q10 is fresh spinach [121].

2.1.3. Catechins

These chemical compounds from the group of polyphenols have become one of the
most powerful antioxidants with anti-caries, anti-inflammatory and antibacterial proper-
ties. The studies were performed on rats [122,123]. We can find catechins, among others in
legumes such as broad beans, beans, lentils, cocoa, but their main source is unfermented
teas. Research shows that green tea has a positive effect on overall oral health, while reduc-
ing the risk of gum disease because it contains as many as four catechins—epicatechin (EC),
epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG)—
which all inhibit the growth of bacteria responsible not only for caries but also periodontal
disease, including P. gingivalis, A. actinomycetemcomitans and P. intermedia [124,125].
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2.1.4. Vitamin C

The link between bleeding gums and vitamin C levels was noticed over 30 years ago.
This ingredient affects the process of collagen and connective tissue biosynthesis, it also
supports the immune system in the fight against bacteria responsible for the development of
periodontitis and improves the regeneration of the gums. Vitamin C deficiency, on the other
hand, may increase the risk of gingival bleeding and promote inflammation [126]. Recent
research from The University of Birmingham Periodontal Research Group (Birmingham,
UK) confirms that gum bleeding tendency is associated with low plasma vitamin C levels.
What’s more, scientists have found that increasing its daily intake helps reduce these
symptoms. In this case, it is worth following a varied diet or considering vitamin C
supplementation at a dose of about 100–200 mg per day [126]. The greatest amount of
vitamin C is found in unprocessed products such as kale, kiwi, broccoli, parsley, red
and green peppers-a glass of the former contains over 300 percent. recommended daily
consumption, and another 200 percent. People who are on a specialized diet, e.g., paleo, in
which products with vitamin C but containing sugar (e.g., kiwi, oranges) should also be
careful about the deficiency [127].

2.1.5. β-Carotene

β-Carotene, or vitamin A provitamin, is another essential nutrient supporting the
health of our gums. Studies have shown that eating foods containing β-carotene helps re-
duce inflammation and aid in treating gum disease [127]. The greatest amount of β-carotene
is found not in carrots, as commonly believed, but rather in sweet potatoes. Sweet potatoes
also contain large amounts of vitamin C, vitamin B6, and manganese.

2.1.6. Omega-3

Omega-3 fatty acids are known for their anti-inflammatory properties and they are
also a way to improve immunity and strengthen the body in general. Based on available
studies, it appears that higher docosahexaenoic acid (DHA) intake has a protective role,
reducing the risk of periodontal disease [128,129]. Their sources are fatty fish such as
salmon, mackerel, herring, as well as macadamia nuts, pistachios and sesame.

2.1.7. Fungotherapy Beneficial for Periodontium

It is also worth paying attention to the inconspicuous shiitake mushrooms, com-
monly used in the kitchen, but also in Far East medicine, because they contain lentinate,
a polysaccharide that has antibacterial properties, and also increases the production of
antibodies, interferon and interleukins that stimulate the immune system to defend itself
against infections. The research showed their anti-inflammatory properties and reduction
of inflammatory markers. Shiitake mushrooms are a natural source of B vitamins that
contribute to overall oral health [129–133]. Although it is difficult to talk about a diet
against periodontitis-the most chronic gum disease, the mechanism of which is much more
complex, dentists increasingly sensitize patients to the beneficial effects of a balanced menu
that supports patients. Vitamin and mineral deficiency significantly increases the risk of
periodontal disease [132,133]. Therefore, regardless of whether we are already under the
care of a periodontist and we are struggling with gum disease, or we want to prevent such
problems in the future, by including products rich in these nutrients in our diet, we support
the health of our gums [132]. To reduce the growth of pathogenic bacteria, it is also worth
eliminating sugar from your diet, which is a nutrient for them, and refined carbohydrates,
such as white bread, rice or pasta. Let’s also take care of the correct oral microbiome by
introducing probiotics into the diet that support the balance of the natural bacterial flora,
inhibit the development of gingivitis and the accumulation of dental plaque. A natural
source of probiotic bacteria is, for example, kefir, kimchi, silage, e.g., cucumbers or cabbage,
popularly known as superfoods [132].
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2.2. Diet and Oral Health

The outside world with its flora and fauna is essential to human life. It is used to
obtain food that provides many stimuli to enjoy, and it is also the fuel needed to live/be-for
the development of the physical side of a person-his body, metabolic processes and life
energy. The oral cavity is a special place in the human body. It is there that you can taste
the food that you can enjoy more or less, it is where the first digestive processes take place,
which give rise to further processes necessary for the functioning of the macroorganism.
It is there that pathological conditions arise, which in many situations generate systemic
health problems. Pathological conditions in the oral cavity are the result of ineffective
removal of food residues after meals and the active activity of the bacterial microflora
inhabiting there. All living micro- and macro-organisms need food to survive, and the oral
micro-world needs food scraps to thrive. Its development is unfortunately unfavorable for
the macroorganism—its host. It damages the dental apparatus, as a result of which the host
cannot use it effectively, which causes a cascade of adverse events. First, food that is not
“worked out” properly in the mouth will not be able to be fully used by the body as it passes
through the gastrointestinal tract [15]. Each section of the digestive tract has its own tasks.
In the mouth, food is broken down by the teeth, softened by saliva, and thanks to amylase
(an enzyme contained in saliva) it starts the process of digesting sugars. Amylase breaks
down starch and other polysaccharides into simple sugars. The next stage of digestion
takes place in the stomach and further in the subsequent sections of the digestive tract,
until it is saturated with what the body will be able to obtain from it, and its remnants will
be excreted outside. The human body is an very specific organism, equipped with defense
mechanisms (specific and non-specific) that are triggered in emergency situations. These
mechanisms work effectively when the macro-organism is healthy, nourishes properly and
regularly uses proper oral hygiene. The antibodies make it difficult for bacteria to colonize
the tissues and block their metabolism, but there are microbes that can destroy them. Other
defense mechanisms are the continuity of the enamel and mucosa (constituting a natural
barrier and protection of tissues against the penetration of microorganisms), exfoliation of
the epithelium and bacteria deposited on them, the presence of bacterial flora (preventing
the deposition of bacteria), movements of the tongue, cheeks and saliva (cleaning the
surface of the teeth). As we know, saliva hinders the colonization of microorganisms and
contains bactericidal substances (lysozyme, lactoferrin, histatin, staterin, apolactoferrin,
bacteriocins and the sialoperoxidase system). In a situation where the body is subjected to
ultraviolet radiation, ionizing radiation, ultrasonic waves, xenobiotics (along with food),
oxygen consumption (which in 5% undergoes an unfavorable transformation, resulting
in free radicals), oxidative stress will arise [119–152]. Oxidative stress is the result of
disturbed homeostasis in the body, which can lead to irreversible changes. Low and
high levels of oxidative stress mobilize cellular antioxidant mechanisms and stimulate the
inflammatory response of cells, but very high levels of oxidative stress contribute to cell
death (apoptosis and necrosis). A positive thing in this situation is the fact that maintaining
an appropriate level of oxidative stress significantly influences the treatment of many
inflammatory diseases [82–152].

We propose the use of “protocols” of four diets containing individual nutrients that
should reduce inflammation and the formation of pathogenic bacteria in the mouth:

• Diet F including meals, containing proteins, carbohydrates-sugars, fats, vegetables.
• Diet B. Mainly targeted at protein products. You can eat other foods as well, but end

each meal with a sugar-free protein product such as kefir, yoghurt, cheese, etc.
• Diet W. Mainly oriented towards vegetables and other foods can also be eaten, but

each meal should end with vegetables, such as radish, watercress, kale, broccoli,
kohlrabi, etc.

• Diet T. Mainly targeted at foods containing Omega-3 fatty acids, can also eat other
foods, but each meal should be finished with food containing Omega-3 fats, e.g., fish-
especially salmon, herring, mackerel, sardines, seafood, sushi, rapeseed oil, linseed,
soybean oil, soy products, nuts, almonds, pumpkin seeds.
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One should eat meals consisting mainly of products from the recommended diet (diet
types F, B, W, T), and at least finish each meal with a product from the recommended diet
(own research).

Due to the fact that one of the non-specific defense mechanisms is the continuity of
the enamel, it is necessary to look at the phenomenon that leads to its destruction. This
process is called caries. Dental caries is a disease manifested by the demineralization of the
hard tissues of the tooth-enamel and dentin (its inorganic part) and then by the proteolytic
decay of the pulp (organic part), if left untreated, it usually leads to the death of the tooth
and, unfortunately, quite often to its loss [49–52]. For this process to occur, four basic
factors are needed, i.e., acid-forming bacteria that inhabit the bacterial plaque, the substrate,
i.e., mainly disaccharides transformed by bacteria into acids, time and susceptibility of
tooth tissues (genetic and environmental conditions). Given these factors, bacteria, mainly
Streptoccocus mutans and Streptococcus sobrinus, need carbohydrates. These bacteria metabo-
lize carbohydrates to produce acids that dissolve the hard tissues of the tooth. In the carious
process, the amount of saliva produced in the oral cavity is important, with its deficiency,
caries progresses very quickly. The acid formed as a result of carbohydrate metabolism
works for half an hour, then saliva neutralizes it, then the enamel is remineralized with
calcium and phosphorus, which are released from saliva (in such a situation, caries may
develop for years or not at all) [129–137].

The process of restoring damaged tooth tissues only takes place when the pH in the
oral cavity is maintained at <5.5 for a long time. Unfortunately, carbohydrates rapidly
lower the saliva pH below 5.5 and initiate tissue demineralization. As the frequency of
carbohydrate consumption increases, the time the pH remains below the critical level
increases, and the lower the higher the sugar concentration [125,137–143].

Not all carbohydrates work the same way. The most dangerous are simple sugars
(glucose and fructose) and disaccharides (sucrose and maltose). They convert into harmful
acids the fastest. Galactose and maltose show less cariogenic properties. In addition, dairy
products containing these sugars, rich in calcium, phosphorus and protein-neutralize the
resulting acids and contribute to the restoration of enamel. Complex carbohydrates, i.e.,
starch (rice, potatoes, flour), are less cariogenic, but they can also initiate the cariogenic
process. It has been tested and proven that products containing sucrose and starch (e.g.,
sweet rolls) are much more cariogenic than those containing only sucrose. In addition to
products containing acidic sugars (e.g., sweetened carbonated drinks or fruit juices), the
pH value of many fruit juices and sweetened carbonated drinks is in the range of 2.1–4.46,
and in the etiopathogenesis of caries it is important how often we eat caries (caries), what
is the consistency of the food we eat [125,137–143]. The time of neutralization of the acidic
environment by saliva after consuming sucrose is about 40 min, and in the case of starch
products with the addition of sucrose-up to 2 h. Foods with a sticky texture stay on the
tooth surface for a long time. Frequent consumption of sugar-containing foods, especially
soft and sticky ones, helps to maintain the acidity of the plaque and to the demineralization
of the enamel, i.e., the loss of minerals. Unfortunately, it is also favored by eating foods or
liquids containing sugars immediately before bedtime, as the amount of saliva produced
during sleep is significantly reduced. Eating sugar-containing products with the main meal
is less harmful than between meals [144,145].

In some situations, carbohydrates can be replaced with sweeteners, the so-called sweet-
eners. Sweeteners are a good alternative to sugar, which, apart from empty calories, does
not add any nutritional value to the body. Sweeteners have different properties [144,145].

Sweeteners are divided into three groups of compounds: natural sugars, polyols
(so-called semi-synthetic fillers) and intense sweeteners (their small amount multiplies the
sweetness of sucrose). Natural sugars are mono and disaccharides, i.e., glucose, fructose,
sucrose and sugar syrups. The second group includes sorbitol, lactitol, xylitol-they affect
the texture and, for example, maintain moisture and are less sweet than sucrose (40% less
calories). The third includes: acesulfame K, aspartame, saccharin, cyclamates, sucralose,
steviol glycosides. Substitutes are agents belonging to the second and third groups. In-
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tensive sweeteners in the body are not metabolized, they are weaker than sucrose and are
treated as so-called sweeteners. non-nutrients-they do not provide energy (i.e., calories).
Their big advantage is the fact that they do not ferment in the mouth and therefore do not
cause tooth decay. For this reason, polyols are used in the production of mouthwashes,
toothpastes and chewing gums. Polyols used in larger amounts may have a laxative effect.
Agents that have been approved for use in food have been thoroughly tested in terms of
their impact on human health. In the European Union countries, sweeteners are approved
for use: acesulfame K, aspartame, cyclamic acid, isomalt, sorbitol, mannitol, maltitol, thau-
matin, neohesperidin, lactitol and xylitol. In Poland, aspartame and acesulfame K have
been approved for use. Intensive sweeteners, weaker than sucrose, should meet certain
conditions, i.e., have sweetness such as sucrose, be safe for health, be cheap and functional,
demonstrate resistance to digestive processes in the digestive tract, not they should provide
energy and cause tooth decay, allergies and diarrhea. Intensive sweeteners are divided into
natural (stevidosis, glycyrhizin, thaumatin, monellin, pentadine, curculin-in Poland only
thaumatin is approved for use in food) and artificial (saccharin, aspartame, acesulfame K,
cyclamates, alitama, sucralose) [125,144–180].

The fourth factor complementing the possibility of the formation and development
of caries is the individual tooth susceptibility. When speaking of susceptibility, we take
into account the hardness, anatomical structure of the teeth, their location in the arch,
their quantitative composition and the degree of enamel and dentin mineralization-they
determine the strength of the tooth exposed to harmful factors-mainly acids. Many people
believe that we are born with sensitivity and we have no control over it, but it can be
influenced by the mother who feeds the baby during pregnancy [85–87,98].

In the prenatal period, the susceptibility of human teeth is formed. The baby’s
mother’s nutrition and oral health are very important. It would be great if a woman
planning pregnancy prepared herself properly for this process, i.e., had clean teeth, healthy
periodontium, properly maintained oral hygiene and properly nourished herself. During
pregnancy and lactation, the woman’s body needs not only energy, but also nutrients-
minerals, i.e., calcium, phosphorus, magnesium, iron, zinc, copper, iodine, selenium and
vitamins: A, B1, B2, niacin, choline, pantothenic acid. B6, B12, C, E, and folic acid. A
balanced diet of the future mother determines the proper formation and mineralization
of tooth tissues. In the embryonic period, tooth buds begin to form, and their further
development and the beginning of mineralization continue throughout pregnancy. Milk
teeth begin to form around 6 weeks after conception from the cells of the fetal mouth. The
process of tooth mineralization begins in the bell phase of tooth development, or around the
4th month of pregnancy, during the formation of dentine on which the enamel is deposited,
and continues until puberty. Insufficient degree of tooth mineralization (enamel and dentin)
is a risk factor for the development of early childhood caries [113–118]. Proper mineraliza-
tion of the tooth tissues in this period determines the resistance to caries, depends mainly
on the supply of mineral salts-calcium, phosphorus, fluorine, magnesium, molybdenum,
manganese and vitamins, especially A, C and D. The influence of these components is
also of great importance for the health of the cavity. Oral during the development of tooth
buds. Vitamin A and D deficiencies as well as protein and energy deficiencies during
pregnancy are a risk factor for the development of enamel hypoplasia-enamel underde-
velopment in the form of hypoplastic defects, tooth morphogenesis disorders, delayed
eruption, disorders of differentiation and odontogenic functions, which may be manifested
by atypical dentin formation and disorders of mineralization of the teeth and the loss of
salivary glands in the child, which in turn can lead to a reduction in the buffering capacity
of saliva and thus make the teeth more susceptible to decay [113–118]. Vitamin deficiency
occurs in the case of malnutrition caused by a lack of fats, carotenes, elimination of dairy
products, fresh fruit and vegetables, in the case of digestive disorders and fat absorption,
and liver failure. Lack of adequate vitamin A also causes early tooth decay. Keep in mind
that retinoids (vitamin A derivatives) are teratogenic, while carotene—a form of vitamin
A found in fruits and vegetables—is not harmful. Vitamin D3 is an essential catalyst for
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calcium and phosphate metabolism. Together with parathyroid hormone and calcitonin, it
is responsible for the mineralization and resorption of bone tissue, as well as the absorption,
use and regulation of phosphate and calcium levels in the body. Its deficiency in the oral
cavity is manifested by a reduction in the size of the dental arches, deformation of the
jaw bone, alveolar process (which contributes to the formation of occlusive disorders),
abnormalities in tooth eruption, and even tooth retention [113–118]. Another consequence
of its absence may be disorders in the functioning of ameloblasts with insufficient miner-
alization of enamel, dentin and root cement, delayed eruption and reduction in the size
of molars. Primary teeth hypomineralization can occur not only as a result of vitamin D
deficiency, but also calcium and phosphate deficiency (which also increases the risk of
caries in early childhood). It is also not recommended to use an excess of vitamin D, it may
lead to changes in the structure of the tooth, e.g., creating a thinner enamel layer. This can
be manifested by a violation of the integrity of the tooth tissues and a delayed eruption
time. The abnormalities in the formation of tooth tissue in the case of calcium, phosphate
and vitamin D deficiency during pregnancy are irreversible and can affect both deciduous
and permanent teeth. Vitamin C has a significant impact on the development of dentin,
it is necessary for the proper integrity and functioning of odontoblasts, fibroblasts and
chondroblasts, it is a substance necessary in the process of collagen synthesis. Collagen
is the backbone of the organic matrix in the deposition of phosphate and calcium crystals
and bone mineralization [85,113–118] (Figure 4).
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Vitamin C deficiency during odontogenesis causes odontoblast atrophy, irregular,
reduced dentin deposition, and disrupts tooth growth. It causes fragility of the vessels in
the pulp, it also leads to a disturbed function of odontoblasts, which results in underdevel-
opment of the dentin. Long-term deficiency of this vitamin causes scurvy, which causes
swelling, bleeding gums and loss of teeth. Vitamin C works in concert with vitamin A to
promote tooth development and mineralization. It should be noted that, according to some
authors, in the 4th month of pregnancy (according to others, already by the 8th week),
the fetal taste receptors begin to develop. A mother’s consumption of large amounts of
sweets, occuring during this period, may increase the child’s tendency to sweet foods in
the future. Tooth compliance is of particular importance in children with tooth growth
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and mineralization, but also in the elderly whose teeth have already undergone some
damage [85,113–118].

The eruption of primary teeth begins in the second half of the child’s life. When a
child is fed (naturally or artificially), too often and excessively long, before going to bed
(during the day or at night, when there is less salivation) and if the child’s teeth are not
cleaned, the enamel becomes demineralized and, consequently, caries. After the child
reaches 17 weeks of age (up to 26 weeks of age), it is recommended to introduce into the
daily menu next to dairy foods, gradually supplementary non-dairy foods, and at the
age of 9–24 months-snacks such as vegetables, fruit and bread [153–166]. After the age of
two, it is beneficial for your child to eat 4–5 meals a day, avoid extra snacks, and leave at
least 2 h between meals to allow saliva to neutralize acids and repair enamel. It should be
remembered that the teeth are used to bite and in the first two years of life. Along with the
eruption of subsequent milk teeth, the child should develop this skill, because thanks to this
he will have a chance to develop his stomatognathic system (prevention of malocclusion
and, consequently, periodontal diseases over time) and will gradually reduce the suckling
reflex. Therefore, after the age of 6 months, introduce less crushed foods and do not give
food and liquids through the bottle with a teat [166]. Biting on hard, high-fiber foods also
promotes salivary secretion (stimulated salivary gland function). In the case of protein and
energy malnutrition, iron, zinc and vitamin A deficiency and dehydration, the secretion of
saliva and its composition change, the concentration of total protein, α-amylase, lysozyme
and IgA in saliva decreases. Therefore, it is recommended to eat products containing
fiber, especially hard, raw vegetables and fruits (water contained in fruits and vegetables
and stimulation of saliva secretion reduces the effect of sugars contained in them) and
grains and whole grains rich in potassium, magnesium, selenium, zinc, vitamins. from
group B (B1, B2, B6, PP, folates) and vitamin E [113–118]. Fiber increases the volume of
food, facilitates the removal of food debris and toxins, slows down the absorption of
glucose, and thus reduces a one-time glucose release. As well as dairy products (milk, hard
cheeses, which contain calcium and phosphorus necessary for remineralization), thanks
to which lipids form a protective coating on the surface of the teeth against acids and
stimulate salivation. Consuming cheese (especially hard cheese) should end the meal
as it quickly increases the pH of saliva. Cheese casein phosphopeptide has been shown
to form a complex with calcium phosphate (CPP-CP), increasing the pH of plaque and
acting as an ion reservoir for enamel remineralization. In addition, products rich in protein
(meat, poultry, fish, eggs), phosphorus and proteins containing arginine (e.g., sunflower
seeds, pumpkin seeds, squash, nuts, coconut, beans, soybean, watermelon and tuna) are
recommended-they have the ability to quickly increase pH. A significant reduction in the
supply of sugar was recommended [114,132,144].

Due to the cellular structure of food and lower availability of bacteria, internal sugars
(e.g., sugars contained in apple eaten raw, are less cariogenic than sugars in apple juice
or baked apple) and external milk sugars (accessible to bacteria, non-cariogenic thanks to
protective ingredients found in milk). In the first two years of life, it is not recommended
to add sugar to meals and snacks (including natural sugars in the form of fruit syrups or
honey) and salt. This has a positive effect on general health and dentition and enables
the development of taste preferences that are beneficial to health. The World Health
Organization (WHO) recommends limiting the consumption of free sugars to less than
10% E (with an energy consumption of 1900 kcal, this corresponds to about 48 g, i.e.,
about 10 teaspoons per day). According to the latest reports, it is beneficial for general
health and dentition to reduce sugars to <5% E. When choosing food products, one should
take into account the sugar content and the probable food retention time on the tooth
surface (consistency and stickiness). Take cocoa for example-it has anti-cariogenic potential,
but chocolate consumption lowers the pH to a level critical for enamel. Dark chocolate
is less cariogenic than milk chocolate, but the cariogenicity of chocolate is increased by
the addition of raisins and fruit. The duration of action of acids is longer after eating
foods containing sucrose and sticky starch, causing prolonged contact with the tooth
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surface (eating lollipops and lozenges has a similar effect). Acidic products, sweetened
and carbonated drinks should be avoided-they have a particularly detrimental effect on
the condition of the teeth. For example, orangeade and cola drinks contain about 10 g
of sugar per 100 mL of drink, lemonade about 6 g. This means that one glass of this
type of drink is the dose corresponding to 3–5 teaspoons of sugar. A 355 mL can of
sweetened soda contains up to 40 g (about 8 teaspoons) of sugar (WHO) [181]. Carbonated
drinks additionally contain acids—mainly citric, apple, carbonic, orthophosphoric acid,
and as an antioxidant-ascorbic acid—contributing additionally to the erosion of the enamel.
Enamel demineralization begins when the pH is lowered to 5.5. It is recommended to
drink low-mineralized, low-sodium, low-sulfate water in order to limit the drinking of
juices and sweetened beverages as well as flavored waters [166]. In the current situation
of the global COVID-19 pandemic, maintaining the principles of a proper diet with the
above ingredients described above is essential for our overall health, including periodontal
diseases which, if left untreated, can lead to periodontitis. The literature data based
on the meta-analysis shows that patients with periodontitis diagnosed with COVID-19
were found to have over nine times higher risk of death than those without advanced
periodontal disease [182]. Moreover, the risk of hospitalization in the intensive care unit
is 3.5 times higher for them and 4.5 times the risk of having to use a respirator than for
people with healthy gums [182]. A large-scale case-control study has been conducted
around the world that used electronic medical records, including dental panoramic data.
Measurement of inflammatory markers turned out to be higher in people undergoing
COVID-19 and diagnosed with periodontal disease, which is associated with a higher risk
of complications during the inflammatory process. The results of the study indicate that
inflammation in the mouth paves the way for the coronavirus to attack more aggressively.
Therefore, dental care should be part of recommendations that reduce the risk of severe
COVID-19 [183]. The study included 568 patients who were diagnosed with COVID-19
between February and July 2020. Of these patients, 40 had complications that resulted
in their admission to the intensive care unit, necessity to use a ventilator, and some of
them died. The second study group-nearly as numerous-consisted of 528 people who
had COVID-19 more mildly at home. Information has been gathered on gum disease and
other factors that may be associated with complications of COVID-19, including body mass
index (BMI), smoking, asthma, heart disease, diabetes and high blood pressure. Data on
blood levels of chemicals related to inflammation in the body were also obtained. In the
first group of COVID-9 patients, as many as 258 patients (45%) had gum disease. After
taking into account age, sex, BMI, smoking and other conditions, it was calculated that
the risk of complications of COVID-19 in people with periodontitis is 3.67 times higher,
the risk of admission to the ICU is higher 3.54 times, the need to use a respirator may
occur 4.57 more often and 8.81 times more often death is compared with people without
periodontal disease [182,183]. Researchers found that if a causal relationship between
periodontal disease and a higher risk of complications in people with COVID-19 can
be established, gum treatment could become an important part of COVID-19 therapy
in periodontal patients [182,183]. In addition, oral bacteria in parodontosis patients can
infect the lungs, especially in ventilator users [184,185]. This may aggravate COVID-19
patients and increase the risk of death. Therefore, hospital staff should identify COVID-19
patients with periodontal disease and use oral antiseptics to limit the transmission of
bacteria. All the more so as the relationship between periodontitis and lung diseases-
asthma, pneumonia and chronic obstructive pulmonary disease-is well known [186–188].
Periodontal tissue inflammation is modulated by the host’s response to plaque build-up in
the gingival fissure or pocket and destroys the tooth suspension. The gingival pocket, also
known as the tooth pocket, is a gingival groove located near the neck of the tooth, between
the gingival margin and its epithelial attachment. Its depth is determined by a special
periodontal probe. It should not exceed 2–3 mm. If it becomes larger, it is considered a
pathological phenomenon and indicates an ongoing lesion [186–199]. Then it begins to
be accompanied by persistent, unbearable pain discomfort. The most common reasons
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leading to the formation of a gingival pocket at the tooth are, first of all, improper oral
hygiene [200]. It leads to the development of a number of periodontal diseases (both
aggressive and chronic) that significantly affect the condition of the gums [200–202]. The
relationship between the systemic analysis of oxidative stress and the pathogenesis of the
periodontal pocket, which is a pathognomonic change in periodontal disease, should also
be emphasized. The control of the inflammatory network of the pockets, the analysis of
the system for capturing oxidative molecules from the pockets and healthy gums, or at
most gingival-root fluid exudation, (the role of the Human Gingival Crevicular Fluids-GCF
protein) is very important in the pathogenesis and therapy of periodontal diseases (e.g.,
the mechanisms of their formation) [186]. Traditional periodontal diagnostics is based
almost exclusively on clinical and radiological evaluation. It is now suggested that the
local response of the body to periodontal disease could be evaluated by analyzing gingival
pocket fluid (GCF) [186,203,204]. The study of humoral factors present in GCF can be
of great diagnostic value, as GCF is the source of many factors involved in the immune-
inflammatory reaction. The presence and appropriate concentrations of humoral factors in
GCF can be used in the assessment of periodontal disease activity and the results of the
applied therapy [186,198,204]. From a clinical point of view, therapies in periodontology
are aimed at preventing or controlling the development of periodontal pockets. We can
include them among them; -Analysis of the inflammatory proteomic and/or cytokine
network of the periodontal pocket and the role of the GCF protein [186,198] and the
relationship between systemic inflammation and GCF [186,198,203] and the relationship
between GCF and periodontal pocket are extremely important [186,198,203,204]. According
to Armitage [205,206], several dozen components of GCF can be used as potential diagnostic
markers of periodontitis. They can be divided into three main groups: (1) inflammatory
mediators and factors modulating the immune response, (2) host enzymes. Mediators as
biomarkers and their inhibitors, (3) by-products of tissue destruction. The assessment of
the level of selected cytokines and chemokines in GCF may be of particular importance in
the diagnosis of periodontal diseases. Typical oxidative stress biomarkers-such as: resistins,
adiponectin, TNF-α, leptin, IL-6, IL-8 and IL-1β have been detected in saliva and gingival
fracture fluid (GCF) during chronic periodontitis (CP) progression [207,208]. Based on the
data from the meta-analysis, an association was found between the biomarkers of oxidative
stress and the progression of the gingival fluid [209–214]. It should be emphasized that
macrophages and fibroblasts also accumulate in the inflamed periodontium. These cells
are the source of numerous pro-inflammatory cytokines, mainly Il-1, Il-6 and TNF, as
well as metalloproteinases (MMPs) and proteolytic enzymes [215,216]. However, many
authors indicate that the measurement of the concentration of other humoral factors
involved in regulating the course of immunological and inflammatory processes may also
be extremely useful and helpful in the diagnosis and prognosis of periodontal diseases.
Inhibition of bacterial adhesion and epithelial colonization is important from the point
of view of immune mechanisms and is conditioned by numerous mechanisms, including
primarily the flow of gingival pocket fluid (GCF) and its components (antibodies, proteases,
complement components, antibacterial saliva components) [217]. In the initial phase of
periodontitis, there is an increased flow of GCF and accumulation of neutrophils with
concomitant loss of connective tissue. GCF is the blood plasma filtrate that contains a large
amount of complement proteins. Activation of the complement system in an alternative
way in the gingival pocket leads to the accumulation of the C3a and C5a components. Both
proteins are anaphylatoxins which trigger the release of histamine from tissue-resident mast
cells [218]. Histamine increases vascular permeability and causes swelling of the gums.
At the same time, the components of the filler pathway are activated, as well as factors of
bacterial origin. Developed habits are also important stimulants in the form of compulsive
smoking of tobacco products, as well as an improper diet rich in carbohydrates [218].
There is a clear link between poor oral hygiene and gum health. Neglect of care promotes
the formation of plaque and tartar, which gradually accumulates in the gingival groove.
Then, microorganisms colonize this area in large numbers, which worsens the condition
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of the gums [198]. Pathological tooth pockets can also occur in the event of pulpitis. If
the inflammation affects the periodontal tissues in the immediate vicinity of the affected
tooth, problems may arise related to the deepening of the gingival pocket. At an advanced
stage, bone defects and sometimes also purulent exudate from the dental pocket may
occur. It is best to treat gingival pockets under the supervision of a periodontist who
specializes in the treatment of periodontal diseases [198,199]. Normal proceedings are
multi-stage. It is used to eliminate pain in the gingival pocket and calm the inflammatory
process. The most important element of dealing with the problems of gingival pockets
is, above all, prophylaxis, which includes developing proper hygiene habits. Regular
tooth brushing with the use of appropriately selected accessories-a toothbrush, toothpaste,
mouthwashes and dental floss-increases the chances of maintaining healthy teeth and
periodontal tissues [186,201–218].

An extremely important and important aspect of the theses reported in the work that
should be emphasized are potential clinical applications (implications) trying to answer the
question; how traditional diets can influence oxidative stress and bacterial biofilm-induced
inflammation in COVID19 patients-in relation to inflammation in mast cells. Since MCs are
producers of histamine in inflammatory reactions, this active amine, by increasing the pro-
duction of IL-1, can increase the inflammatory process in the lungs of SARS-CoV-2 infected.
In the work of Conti et al. [219], the role of histamine released by MC was proposed for the
first time, which in combination with IL-1 may increase pneumonia caused by SARS-CoV-2
viral infection. Histamine and IL-1 are involved in the pathogenesis of the lung inflamma-
tory reaction after the activation of immune cells by pathogenic microorganisms belonging
to all known and analyzed bacterial complexes. IL-1 in combination with histamine can
cause a strong increase in IL-1 levels, leading to severe inflammation in the tissue. Further-
more, histamine enhances IL-1 induced IL-6 gene expression and protein synthesis via H 2
receptors in peripheral monocytes. Literature data show that histamine alone has no effect
on the production of IL-1 [219]. Traditional diet rich in nutrients containing lactoferrin and
probiotic strains such as L. salivarius can effectively block the multiplication of SARS-CoV-2
virus by activating innate immune and structural cells of the bronchial epithelium and
endothelial cells, reducing pro-inflammatory cytokines (own research) and inducing differ-
entiation MC mast cells. An important aspect is also the reduction of immunity in patients
undergoing implant placement [220–222]. The study by Torrejon-Moja et al. [220] assessed
the survival of implantoprosthetic rehabilitation in controlled HIV-infected patients with
good oral hygiene. Each patient received at least one dental implant. After 90 days in the
upper jaw and 60 days in the lower jaw, an appropriate prosthesis was made, the primary
endpoint of which was prosthetic failure, implant damage, changes in the marginal bone
level around the implant (MBLC) and biological complications (peri-implantitis, pus, pain,
paresthesia). The study has demonstrated in its limitations that in a well-controlled HIV
patient population, implant rehabilitation may be an appropriate option in developing an
appropriate infection control protocol [220]. An important aspect is also the reduction of
immunity in patients undergoing implant placement [220–222]. HIV-infected patients with
edentulousness who required prosthetic restoration on one or both jaws were also included
in the study. Each patient received at least one permanent full arch prosthesis [221,222].
Marginal bone loss, implant and prosthesis failure, biological and mechanical complica-
tions, and serological levels (Cell differentiation antigen-CD4 cell count, CD4/CD8 ratio
and HIV viral load) were recorded up to 7 years of follow-up. Within the limitations of
this prospective 7-year longitudinal study, HIV infected patients with a stable immune
system may be treated under the “all-four protocol”. Attention should also be paid to
the use of porcine bone biomaterials for transplant to minimize alveolar bone collapse
after tooth extraction by histomorphometric and in vivo osteoblast-specific gene expression
profiling for Runx2, osteopontin, osteoprotegerin, type I collagen and alkaline phosphatase
real-time reverse transcriptase polymerase chain reaction [223]. In this study, histological
examination and biomolecular evaluation confirmed good biocompatibility and high os-
teoconductivity of porcine xenogeneous bone in alveolar bone grafting [223]. Also the use
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of synthetic magnesium enriched hydroxyapatite (MHA) with porcine bone (PB) grafts in
fresh sockets by histological and histomorphometric analyses. Histological examinations
showed the absence of inflammatory cells, bone formation in all treated areas and the
presence of biomaterial and connective tissue particles [223]. Nalzey also mentioned the
technique of sinus lift [224] which may be a complementary test (complementary to the
studies described earlier [221–223]. In the sinus lift technique, an important element is the
evaluation of the clinical results and radiographic data of the percutaneous sinus lift (TSFE)
of the residual alveolar bone ≤3 mm. 46 patients with edentulousness in one or both of the
posterior segments of the jaw were enrolled in the study. The residual ridge of the alveolar
ridge was measured. TSFE was performed without bone graft. Three months after the first
surgery, 66 implants were placed without material for transplantation. The preoperative
distance from the alveolar crest to the bottom of the maxillary sinus and the amount of
new X-rays between the sinus floor and the alveolar crest were measured from the mesial
and distal surfaces of each implant surface. The results of this retrospective clinical trial
confirmed the reliability of the TSFE procedure and the maintenance of bone levels over
time without transplant surgery [224,225]. Also an excellent tool for this type of technique
is the use of an osteotome for vertical bone augmentation and local elevation of the local
sinus floor (LMSF) in fresh molars over a period of 13 years of follow-up, with minimal
surgical trauma, as an appropriate procedure to increase the vertical size of the bone avail-
able for implantation [225]. The results of the conducted studies showed that the LMSF
procedure in fresh molars allowed to increase the dimensions of the resorbed posterior
alveolar bone of the maxilla both vertically and horizontally, with the effectiveness of 100%
osseointegration of the implant over time. Therefore, the ingredients in our diet are very
important, which “support and help” based on the analysis of the above techniques in
maintaining proper homeostasis and oral microbiota.

3. Conclusions

Periodontal diseases are still one of the major health problems in Poland. Statistics
show that out of 10 people, nine have periodontal problems [134]. The development of
the disease is a consequence of an imbalance between the potentially pathological bacteria
found in the oral cavity (supra- and subgingival plaque) and the host’s immune response.
In the oral cavity, homeostasis can be modified by a number of constant (congenital) and
variable (acquired) factors that are risk factors for developing disease. The most important
congenital risk factors include age, genotypes (genetic factors), gender, and race. The
second group includes variable determinants, i.e., improper oral hygiene, local factors of
plaque accumulation (gingival areas, inadequately placed fillings, tooth crowding, cervical
areas of crowns, bridges), unfavorable composition of bacterial biofilm present on the
teeth, use of tobacco (smoking pipes, cigarettes, cigars, the use of non-flammable tobacco-
chewing snuff), nutritional deficiencies (lack of vitamin C, calcium), diseases (e.g., diabetes,
alcoholism, osteoporosis) and long-term exposure to stressors [113–118,153–166],

Considering the cariogenic factor, the diet should be rich in calcium, phosphorus,
fluorine and vitamin D products, as well as nutrients involved in the growth and min-
eralization of teeth. Based on the quoted literature data, recommendations can be made
regarding the change of eating habits in the diet to reduce the risk of oxidative stress and
inflammation that may contribute to the development of pathogenic microflora in the oral
cavity. One should definitely limit the consumption of carbohydrates, especially those with
a viscous consistency, sweetened drinks, sour drinks, carbonated drinks and juices. People
with healthy temporomandibular joints may be advised to chew sugar-free chewing gum
after a meal (but for about 5–10 min) when they cannot brush their teeth. Hygiene that
is appropriate to the age and situation in the mouth is very important. Considering the
erosive factors, in addition to the above, avoid drinking beverages lowering the pH below
4.5, it is recommended to drink them through a straw. It is advisable to end your meals
with foods that neutralize the pH of the oral cavity (e.g., cheese, dairy products, milk).
It is recommended to drink water, and if you drink acidic drinks, you should sweeten
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them a little before drinking (then the pH becomes neutral), do not drink between meals
and in the evening. Allow 1–2 h breaks between meals to facilitate the remineralization
of hard tissues. It is recommended not to brush your teeth immediately after consuming
acidic foods or liquids so as not to exacerbate erosive changes. By following the above
recommendations, we can hope to avoid serious inflammation, even leading to tooth loss,
through chronic inflammation of the tissues of the attachment apparatus. We hope that our
review article will be a compendium of knowledge on the recommendations for choosing
the right diet for daily oral hygiene. This study highlights a different relationship between
gum disease and systemic health, and confirms the need for continuous, systematic dental
care for periodontal-prone people and for strong periodontal prophylaxis for the entire
population. Periodontal diseases affect up to 50 percent of all adults around the world
and they are recognized by various dental associations and federations as a disease of
civilization.
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A. actinomycetemcomitans Aggregatibacter actinomycetemcomitans
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T. forsythia Tannerella forsythia
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F. nucleatum Fusobacterium nucleatum
P. intermedia Prevotella intermedia
L. salivarius Ligilactobacillussalivarius
S. pyogenes Streptococcus pyogenes
S. sanguinis Streptococcus sanguinis
S. mutans Streptococcus mutans
L. delbrueckii Ligilactobacillusdelbrueckii
E. corrodens Eikenella corrodens
C. concisus Campylobacter concisus
V. parvula Veillonella parvula
A. odontolyticus Actinomyces odontolyticus
P. micros Peptostreptococcus micros
E. nodatum Eubacterium nodatum
S. constellatus Streptococcus constellatus
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