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Abstract 

Photoactivities at inorganic/Organic/Interfaces (IOI) consisting of Zn-doped WO3 (Zn-WO3) /Poly 
4-(Thiophen-3-yl) aniline (P3ThA) assemblies were investigated in nanoparticle suspensions and in thin solid 
film forms. The effects of P3ThA modifier on the photoelectrochemical behavior of the IOI were investigated 
using [Fe(CN)6]

4- as a photoactive donor of hydrated electrons. Results show that the adsorption process of 
[Fe(CN)6]

3- (photolysis product) controls the photoactivity outcomes of the IOI assemblies. P3ThA shows a 
greater heterogeneous photochemical response than native Zn-WO3. The band alignment between Zn-WO3 and 
P3ThA is of a p-p junction straddling gap type, where the charge transfer process is achieved through a hole 
transfer mechanism. The interface activities were explained by analyzing the IOI junction characteristics such as 
electron affinity, work function and hole/electron barrier heights. The creation of hybrid sub-band states close to 
the Fermi energy level at the interface was suggested. The aqueous nano-systems retained moderate stability as 
indicated by the reproducibility of their photocatalytic activities. Both [Fe(CN)6]

4- and P3ThA contributed to the 
stability of the native Zn-WO3 surfaces. 

Keywords: photoelectrochemistry, semiconductors, solar energy, heterojunctions 

1. Introduction  

The quest for improving the solar to electrical energy conversion efficiencies in photovoltaic assemblies 
involved many techniques including the creation of the hybrid Inorganic/Organic interfaces or [IOI] (Wang Y. et 
al 2011, Kasem K. et al, 2008, Thomas K.G. et al 2003). The hetero-junction at the IOI assembly can affect its 
chemical, electrochemical, optical, magnetic and mechanical properties. Creating effective IOI requires energy 
coordination between the organic and inorganic interfaces for efficient charge transfer and separation as in 
heterojunction-type assemblies. Information about physical quantities such as electronegativity [ϰ ], Electron 
affinity [EA] , work function [Ф], barrier height [φ] and band gap [Eg] for components of the IOI will help 
understanding how the heterojunction assemblies work.  

Surface modification caused by formation of IOIs, can be a very effective way to create or eliminate defects and 
alter the energy band at inorganic /organic interfaces. This will also alter the donor /acceptor character of the IOI 
assemblies. Recent studies show that binary oxides can provide more efficient charge separation, increased 
lifetime of charge carriers and enhanced interfacial charge transfer to absorbed substrates (Wang C. et al, 2002, 
Liao D.L. et al, 2008, Wang Y. et al, 2011, Kasem K. et al, 2008, Thomas K.G. et al, 2003, Kasem K. et al, 2009, 
Zhang, Qichun et al, 2008 ). Some metal chalcogenides modified with poly-aniline, poly-pyrrole, or other organic 
semiconductors were studied (Wang Y. et al, 2011, Kasem K. et al, 2008, Thomas K.G. et al, 2003, Kasem K. et al, 
2009, Zhang, Qichun et al, 2008). Special assemblies of narrow band gap semiconductor nanostructures can be 
convenient systems for capturing visible light energy. Metal/ chalcogenides/ oxide semiconductors absorb only 
solar radiation that matches their band gaps. However, the spectral range can be widened if the metal sulfides 
surfaces are modified with agent/s that can absorb or become excited by greater radiation energies, such as UV. 
Some conjugated organic semiconductors absorb UV radiation and then re-emit radiation at longer wavelengths. 

Several studies have been carried out in searching for organic semiconductors that can act as a modifier in IOI 
assemblies. Copolymers consisting of 2,1,3-benzoselenadiazole and carbazole derivatives with thiophene were 
found to generate low-band gap materials (Kim, Ji-Hoon et al, 2014). Opto-electrochemical properties of 
selenopheno [3,2-c]thiophene as a low band gap conjugated polymer has been investigated (Jo, Yu-Ra et al, 
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2011). Furthermore, electrochemical copolymerizations of thiophene derivatives were used in building 
photovoltaic devices (Kumar, Prajwal et al, 2011), or Ion selective sensors (Pengchao Si, et al 2007) . Synthesis, 
thermal and optoelectrochemical properties of symmetrical conjugated thiophene and tri-phenylamine have been 
investigated (Vacareanu, Loredana et al, 2012). A study (Bondock, Samir et al, 2010) shows that the title 
compound is related to category of compounds that has a proven antimicrobial activity. 

The compound 4-[thiophen-3-yl] aniline [3ThA] consists of thiophene and aniline that can be polymerized by 
chemical, photo-, and electro-chemical methods. The proposed structure of P3ThA is illustrated in Figure 1 inset 
C. Both polymer based aniline and polymer based thiophene have moderate to low band gap characters. No 
previous studies are made on the photoelectrochemical behavior of 3ThA. In the present work we report some of 
the photoelectrochemical behavior of 3ThA as the organic part of IOI assembly consists of Zn-doped WO3 

/P3ThA nanoparticles. Furthermore, the effectiveness of this assembly in hydrogen production during the 
photolysis of aqueous suspensions of nanoparticles of this assembly containing [Fe[CN]6]

4- is explored. Results 
correlate of the information about electronegativity [EA], Electron affinity [ ϰ ] , work function [Ф], barrier 
height [φ] band gap [Eg] and energy band alignments for components of the IOI .  

2. Experimental 

2.1 Reagents 

All the reagents were of analytical grade. All of the solutions were prepared using deionized water, unless 
otherwise stated. Zn-WO3 / P3ThA were either in nanoparticles form or thin solid films.  

2.2 Preparations  

P3ThA: This polymer was prepared by both electrochemical and photochemical techniques: 

A- Electropolymerization of P3ThA. 

Polymer thin films were generated electrochemically using cyclic voltammetry (CV) by repetitive cycling of the 
FTO electrode potential at a scan rate 0.10V/s between -1.0 and 2.0 V vs Ag/AgCl in acetonitrile of 1 mM of 
3ThA and 0.5M LiClO4.  

B- (Occlusion Method): Thin films of Zn-WO3 / (P3ThA) were generated electrochemically using cyclic 
voltammetry (CV) by repetitive cycling of the FTO electrode between -1.0 and 2.0 V vs Ag/AgCl in acetonitrile 
suspension of Zn-WO3, 1 mM of the monomer and 0.5M LiClO4 .  

C- Preparation of Zn-Doped WO3 / P3ThA / Interface:  

Colloidal suspensions of Zn-doped WO3 / P3ThA interface were prepared as follows: 0.05 g of Zn-doped WO3 
nanoparticles prepared as reported previously (Kalyanasundaram K. et al 1998) were suspended in the solution 
of 3-ThA in acetonitrile. The mixture was subjected to a 10 minute sonication followed by stirring for 1.0 hour to 
allow maximum adsorption of P3ThA on the Zn-doped WO3 nanoparticles. The excess P3ThA was removed by 
centrifugation. Zn-doped WO3 with adsorbed P3ThA was re-suspended in deionized water containing few drops 
of H2O2 and subjected to UV radiation under constant stirring for 3 hours. The resultant Zn-Doped WO3 / P3ThA 
was rinsed with deionized water several times and allowed to dry at 120 oC for 2 hours. 

D- Deposition of Zn-Doped WO3 / P3ThA Thin Solid Films: 

Thin solid films of Zn-Doped WO3 particles, modified with P3ThA (prepared as described in C) were suspended 
in acetonitrile solution of poly vinyl pyridine (PVP). The suspension was evenly spread over fluorine doped Tin 
Oxide (FTO) slides (12.5 x75 mm) and dried at 120 oC for 2 hours. The assembled electrode was transferred to a 
three-electrode cell containing the chosen buffer as the electrolyte and a Ag/AgCl and Pt electrode as reference 
and counter electrode, respectively.  

2.3 Instrumentation 

All electrochemical experiments were carried out using a conventional three-electrode cell consisting of a Pt 
wire as a counter electrode, Ag/AgCl as a reference electrode, and Pt gauze as an electron collector. A BAS 
100W electrochemical analyzer (Bioanalytical Co.) was used to perform the electrochemical studies. Steady state 
reflectance spectra were performed using Shimadzu UV-2101 PC. Irradiation was performed with a solar 
simulator 300-watt xenon lamp (Newport) with an IR filter. Photoelectrochemical studies on thin solid films 
were performed on an experimental set as illustrated in Diagram 1A).  
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