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Abstract

With compositional data, ordinary covariation indices, designed for real random vari-
ables, fail to describe dependence. There is a need for compositional alternatives to covari-
ance and correlation. Based on the Euclidean structure of the simplex, called Aitchison
geometry, compositional association is identified to a linear restriction of the sample space
when a log-contrast is constant. In order to simplify interpretation, a sparse and simple
version of compositional association is defined in terms of balances which are constant
across the sample. It is called b-association. This kind of association of compositional
variables is extended to association between groups of compositional variables. In practice,
exact b-association seldom occurs, and measures of degree of b-association are reviewed
based on those previously proposed. Also, some techniques for testing b-association are
studied. These techniques are applied to available oral microbiome data to illustrate both
their advantages and difficulties. Both testing and measurements of b-association appear
to be quite sensitive to heterogeneities in the studied populations and to outliers.

Keywords: Aitchison geometry, balances, CoDa-dendrogram, CoDa-biplot, hypothesis testing,
log-ratio, log-contrast, simplex, oral microbiome.

1. Introduction

Measures of statistical dependence—association, concordance, covariation or correlation—
have been important since the beginning of modern statistics. The introduction of the corre-
lation coefficient by Galton (for historical details, see Stigler (1989)), nowadays known as the
Pearson correlation coefficient, was a milestone in the development of multivariate statistics,
though its value was discussed in varied frameworks. The controversy on the measure of as-
sociation proposed by G. U. Yule (Pearson and Heron 1912) revealed both the importance of
measures of association and the need of a clear comprehension on the assumptions underlay-
ing the use of correlation-association indices. For instance, the Yule association coefficients,
specially developed in the context of two way contingency tables (Yule 1903), were criticized
from the point of view of the Pearson correlation coefficient, mainly designed for continuous
quantitative variables. Throughout the 20th century, and up to now, alternatives to Pearson
correlation have been introduced, such as the Spearman and Kendall correlation coefficients
(Spearman 1904; Kendall 1938), or the recently developed distance correlation (Székely, Rizzo,
and Barikov 2007, 2009). Also, there were attempts of formalising these concepts and their
respective indices (e.g. Schweizer and Wolff (1981); Scarsini (1984)). These indices are mainly
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used to look for independence of random variables. However, the Pearson correlation coeffi-
cient is also commonly involved in modelling (linear) relationships between variables in the
omnipresent linear regression. The extreme values (±1) imply some restriction on the data,
i.e. that the sample points are on a straight line or, in general, on a linear manifold of the
sample space. This is also clear for distance correlation: a value of 1 implies that the sample
is constant, thus lying on a single point of the sample space. Other cases are more involved,
as the restrictions are not well defined, and they may depend on the underlying distribution
of the data. For instance, both Spearman and Kendall coefficients of ±1 imply a monotonic
functional restriction between the sample points, but the precise relationship requires further
exploration. The diversity of alternatives presented arise from the lack of specifications on
the hypothesis and applicability of each method.

When multiple variables are at play, correlation coefficients describe bivariate relationships
between pairs of variables. Correlation matrices can be difficult to interpret, and data sim-
plifications are often needed to attain further insight. Principal component analysis and
subsequent simplifications provide powerful interpretative tools. They consist in looking for
linear combinations of the original variables so that the resulting correlations satisfy certain
conditions on simplicity, sparsity or geometric orthogonality (Chipman and Gu 2005; Enki,
Trendafilov, and Jolliffe 2013). These kind of approaches are of primary importance when
dealing with a large number of variables (hundreds or thousands) and dimension reduction is
usually required to gain insights into the phenomenon under study.

Compositional data demand careful handling of correlation-association. Pearson (1897) first
observed that correlations between ratios with a common denominator were unreliable and
coined the term spurious correlation. The problem remained at this level, ignored—or even
denied (Fisher 1947)—until the sixties. At that time, problems of statistical analysis in Ge-
ology (Chayes 1960, 1962, 1971) and in Biology (Mosimann 1962; Connor and Mosimann
1969), motivated research on how to deal with spurious correlation in the analysis of compo-
sitional data. However, the discussion remained stuck at how to separate the true correlation
part from the spurious one, something that we now realize makes no sense in view of the
sample space of, and the information carried by, compositional data. No discussion on the
concept of association was brought up. It was not until the eighties that J. Aitchison situated
compositional data analysis on a premise (Aitchison 1982, 1986) by introducing the log-ratio
approach, as summarized in Aitchison and Egozcue (2005).

With respect to association between compositional components or parts, Aitchison introduced
the variation matrix, the matrix of sample variances of simple log-ratios between parts of a
composition. These quantities

Var

(
ln
xi
xj

)
, i, j = 1, 2, . . . , D ,

where xi, xj denote parts of a D-part composition, are in fact measures of lack of asso-
ciation between compositional variables. When the variance is null, xi and xj are strictly
proportional; when it is large, proportionality is lost or it is too noisy to be considered. How-
ever, this simple measure lacks a meaningful scale; it lacks statistical techniques for testing;
and is missing even a geometrical background that justifies the term measures of (lack of)
association.

The publication of the Euclidean structure of the simplex as sample space of compositional
data (Billheimer, Guttorp, and Fagan 2001; Pawlowsky-Glahn and Egozcue 2001) set the
premises for further developments on association of parts of a composition. The goal of the
present contribution is to give, within this framework, scale invariant measures of association
for compositional parts or groups of parts. The main thesis is that proportionality between
the samples of two compositional parts, or groups of parts, is an appropriate criterion of
compositional association (Egozcue, Lovell, and Pawlowsky-Glahn 2013; Lovell, Pawlowsky-
Glahn, Egozcue, Marguerat, and Bähler 2015).
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Section 2 summarizes some main lines of the algebraic-geometric structure of the simplex as
sample space of compositional data. Section 3 discusses details on geometric restrictions of
the sample space when the association is exact. They inspire the measures of association
proposed in Section 4 and testing techniques associated with them (Section 5). Section 6
presents some examples in the context of an omics-science using a well-known 16S rRNA tag
sequencing data set.

2. Sample space for compositional data

The definition of compositional data has progressively evolved from vectors of positive compo-
nents adding to a given constant (e.g. Aitchison (1982)), to more recent and general definitions
based on equivalence classes (Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn 2001).
Here, a composition is defined as a D-component vector, all components being strictly pos-
itive, where the ratios between different components contain the relevant information. The
components do not necessarily add up to a constant. The key concept is the relative character
of the information of interest, as multiplication of the composition by any positive constant
does not change the information contained in the ratios between components. This was stated
as the principle of scale invariance by (Aitchison 1986). A direct consequence is that relevant
features (distances, coordinates, sizes, relationships, . . . ) must be invariant under changes
of scale of the compositions. The evolution of the concept of scale invariance lead to the
definition of an equivalence relation between vectors of RD+ (real vectors with D positive
components): two vectors, x = (x1, x2, . . . , xD) and y = (y1, y2, . . . , yD), are compositionally
equivalent, or c-equivalent, if there exists a positive constant α such that

xi = α yi , i = 1, 2, . . . , D .

The equivalence classes of this relation are called compositions. This definition was implicit
in Aitchison (1986), but recognized explicitly only much later (see e.g. Aitchison (1997);
Barceló-Vidal et al. (2001); Mart́ın-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003);
Barceló-Vidal and Mart́ın-Fernández (2016)).

Equivalence classes are usually identified by choosing a representative of each class on which
operations and reasoning can then be performed. A representative composition can be se-
lected in many possible ways; one approach is to select the representative belonging to the
simplex so that all the components add to a positive constant. In this representation compo-
sitions appear expressed in proportions. In some applications, compositions are represented
in alternative ways that may not sum to a known constant: for instance, chemical concentra-
tions are frequently expressed in mols per liter; or air pollutant composition is given in µg per
m3. However, the corresponding composition can always be represented on the simplex by a
simple change of units. For a discussion of these issues, see Buccianti and Pawlowsky-Glahn
(2005). That any composition can be represented on the simplex in a one-to-one way makes
the simplex an appropriate representation of the sample space of compositional data. How-
ever, the simplex is not the only possible representation; for instance, a positive orthant of a
hypersphere can also be used to represent a composition (Aitchison 1986; Wang, Liu, Mok,
Fu, and Tse 2007). The advantage of the simplex representation is that it is mathematically
easier to handle and has a simpler to interpret algebraic structure.

It is obvious that the sample space of a dataset needs a structure that is appropriate for its
proper analysis. In the case of compositional data, the simplex, here denoted as SD, should
be equipped with both internal operations and metrics. For instance, SD needs to have an
associated σ-field to handle random compositions and allow the assignment of probabilities
to events that respects the constant sum (or closed representation) of the data. Moreover, to
operate with compositions in some way, the required operation needs to be defined and closed
in the sample space. The most common transformation of a composition is perturbation,
i.e., componentwise multiplication. For instance, when some market shares, concentrations of
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chemicals, or abundances of microbial species change, it is said that they increased, e.g. 3%,
1%, or −2%, meaning that previous shares, concentrations or abundances were multiplied
by 1.03, 1.01, or 0.98. If the considered compositions are probabilities of a collection of
incompatible events, perturbation is identified as Bayes’ formula. Even a change of units of
only some components of the composition can be viewed as a perturbation.

Perturbation of two compositions x,y ∈ SD, is defined as

x⊕ y = C(x1y1, x2y2, . . . , xDyD) ,

where C is the closure operator which selects the representative on the simplex; that is, C
divides each component by the sum of all of them. Repetition of a perturbation, or multipli-
cation by a real scalar α ∈ R, called powering, is

α� x = C(xα1 , xα2 , . . . , xαD) .

These two operations in SD, introduced in Aitchison (1982), configure SD as a (D − 1)-
dimensional vector space (Aitchison, Barceló-Vidal, Egozcue, and Pawlowsky-Glahn 2002).
This means that it is natural to determine a basis of the space, to choose coordinates, to
perform linear combinations or any of all those computations which are allowed and usual in
a finite dimensional vector space and do not require a metric.

But compositional analysis also requires distances between compositions and projections of
those distances. These requirements complete the structure of the simplex with metric con-
cepts. The Aitchison distance in the simplex (Aitchison, Barceló-Vidal, Mart́ın-Fernández,
and Pawlowsky-Glahn 2000) is generated by an inner product given by

〈x,y〉a =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj

, (1)

as d2
a(x,y) = 〈x 	 y,x 	 y〉a, and the corresponding norm ‖x‖2a = 〈x,x〉a. The subscripts

a in the inner product, distance and norm, indicate that these expressions correspond to the
Aitchison geometry of the simplex. The symbol 	 denotes perturbation-difference and can
be defined as x	y = x⊕ ((−1)�y). The simplex SD, endowed with perturbation, powering,
and with the inner product defined above (Eq. 1) is a (D − 1)-dimensional Euclidean space
(Pawlowsky-Glahn and Egozcue 2001; Billheimer et al. 2001). For more details see Pawlowsky-
Glahn, Egozcue, and Tolosana-Delgado (2015).

Expressions of metric concepts in the Aitchison geometry can be simplified using the centered
log-ratio (clr) transformation of a composition (Aitchison 1982). It is defined as

clr(x) =

(
ln

x1
gm(x)

, ln
x2

gm(x)
, . . . , ln

xD
gm(x)

)
,

where gm(·) is the geometric mean of the components of its argument. The components of
clr(x) add to zero by construction, that is

∑D
i=1 clri(x) = 0. The inverse transform is readily

identified with x = C exp(clr(x)), where the function exp operates componentwise on its
arguments. The Aitchison inner product (Eq. 1) is then reduced to 〈x,y〉a = 〈clr(x), clr(y)〉,
where 〈·, ·〉 denotes the ordinary inner product in RD. From this property, the Aitchison
distance and Aitchison norm can be expressed in terms of clr values as the ordinary Euclidean
distance and norm of the respective clr values. Note that this expression only holds if the whole
clr-vector is considered, as it changes when a reduced number of components are considered.
It is said that the clr-vector is not subcompositionally coherent, as discussed below.

A crucial point in compositional data analysis is that subsets of compositional components
are frequently analyzed, and the results of these analyses are to be taken as representative of
what would be found with the complete set of variables. For instance, the chemical analysis of
a drinking water is done using the dissolved matter after drying the sample; or a microbiome
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sample is unlikely to contain proportions of all taxa present in the environment; or an RNA-
seq experiment will exclude, by default, ribosomal RNA which forms the majority of the RNA
in a cell; or a joint analysis of financial indices does not include all existing indices. As a
consequence, a degree of coherence is required when comparing analyses of a composition and
a subcomposition, the second being a strict subset of the first (Aitchison 1986; Egozcue 2009;
Pawlowsky-Glahn et al. 2015). A reasonable required condition is that of subcompositional
dominance: the distance between compositions must be greater than, or equal to, the distances
between the respective subcompositions. It can be shown that taking a subcomposition in SD
is equivalent to an orthogonal projection in the Aitchison geometry of the simplex (Egozcue
and Pawlowsky-Glahn 2005) and, therefore, within this geometry the required dominance of
distances is automatically fulfilled.

In any Euclidean space, Cartesian coordinates and their corresponding orthonormal bases can
be built, and the D-part simplex SD endowed with the Aitchison geometry is not an exception.
There are infinitely many orthonormal bases. Those made of balancing elements are nowadays
of particular interest due to their easy interpretation in practical applications. A balancing
element (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal 2003; Egozcue and
Pawlowsky-Glahn 2005) is a unitary composition e, which clr(e) contains coefficients with only
two non-null values. Up to permutation of components, the form of the clr of a balancing
element is

clr(e) = (a+, a+, . . . , a+, a−, a−, . . . , a−, 0, 0, . . . , 0) ,

with n+ and n− components with values a+ and a− , respectively. As the components of
clr(e) add to zero, n+a+ + n−a− = 0, and we can assume, without loss of generality, that
a+ > 0 and a− < 0. Moreover, as e is unitary, the sum of squares of the components is 1.
This implies that

a+ =
1

n+

√
n+n−
n+ + n−

, a− = − 1

n−

√
n+n−
n+ + n−

.

The orthogonal projection of a composition x onto e is b� e, where

b = 〈x, e〉a =

√
n+n−
n+ + n−

ln
gm(x+)

gm(x−)
, (2)

and gm(x+), gm(x−) are the geometric means of those components of x which correspond
to positions of e with positive and negative components, respectively. In Equation (2), b is
called balance between the groups of parts x+, x−.

An orthonormal basis of SD made of balancing elements can be build using the sequential
binary partition (SBP) procedure (Egozcue and Pawlowsky-Glahn 2005, 2006b, 2011). The
assignment of balance-coordinates to a composition x, corresponding to such a basis, is carried
out using the isometric log-ratio transformation (ilr)

ilr(x) = V >clr(x) , x = C exp(V ilr(x)),

where the contrast (D,D − 1)-matrix V has the clr values of (D − 1) orthonormal balancing
elements as columns and clr(x), ilr(x) are considered as column matrices with D and D −
1 components, respectively. For further mathematical details see Egozcue, Barceló-Vidal,
Mart́ın-Fernández, Jarauta-Bragulat, Dı́az-Barrero, and Mateu-Figueras (2011).

3. Linear restrictions as exact association of variables

In multivariate real analysis, a group of g variables, with indices in G, is exactly correlated
with another group of h variables, with indices in H, when the sample points are restricted
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to lay on a hyperplane or straight-line (linear manifold) of the real space. The analytical
equation for this restriction contains one or more (affine) linear relations like∑

i∈G
αixi = β0 +

∑
j∈H

βjxj .

The particular case in which g = 1 and h = 1 is readily written as the simple linear model
x1 = (β0/α1) + (β1/α1)x2. Exact correlation introduces linear constraints on the data points
so that they are restricted to a linear manifold of the whole space. This idea can be translated
to a compositional framework. These concepts on correlation can be formulated in two ways:
a sample version in which it is assumed that a sample has been observed; and a random
variable version in which all the sample space values with their respective probabilities are
taken into account. In what follows, the sample version is used in the explanations, but all
definitions and properties can be extended to the random variable version. A compositional
n-sample is arranged in a (n,D)-matrix X which rows xi are D-part compositions, possibly
non-closed. The variables or parts are denoted Xj , j = 1, 2, . . . , D, thus Xj denotes the
columns of X, while xij stands for the i, j-entry of X.

The general expression of a one-dimensional linear restriction in the Aitchison geometry of
the simplex (Pawlowsky-Glahn and Egozcue 2001) is that there is a log-contrast which is
constant (k) across the sample data-points, that is

D∑
i=1

αi lnXi = k ,
D∑
i=1

αi = 0 , (3)

where the condition on the α values assures that the log-contrast is invariant under scaling
of the D-part composition (X1, X2, . . . , XD). When a number d < D− 1 of independent one-
dimensional restrictions are satisfied by the sample, the sample-points are confined within an
affine subspace of dimension D − 1 − d. When Equation (3) holds, it is said that the group
of parts with positive α are compositionally associated with the group of parts with negative
α, which is called c-association for simplicity.

In compositional data analysis, this kind of general exact c-association, although important
for dimension reduction, is not very useful for interpretation. Association, as a concept,
tries to facilitate interpretation and this is commonly attained when statements can be easily
formulated in terms of the original parts of the composition. Imagine a researcher deals with
a composition with some hundreds of parts and he/she attains the result that there is a set of
α values (some hundreds of them) satisfying Equation (3). The interpretation of such a log-
contrast is cumbersome and the researcher possibly starts trying to find out which α values
have large absolute values, identifying in this way which parts play an important role in the
log-contrast. This is a typical situation in principal component analysis of high-dimensional
multivariate samples or in factor analysis. At least two characteristics may be desirable for
interpretation of such log-contrasts: sparsity and simplicity (Chipman and Gu 2005). Sparsity
looks for a number of α values, as large as possible, that are equal to zero, so that a reduced
number of parts participate in the association. When the number of α-values is restricted, the
log-contrast is then simple in a given sense. The problem becomes more complicated when
the analyst looks for low variability log-contrasts, since the simple selection of important
contributions does not guarantee low variability of the simplified log-contrast.

The complexity of c-association, i.e. of the log-contrast in Equation (3), suggests a more re-
strictive concept of compositional association fulfilling requirements of sparsity and simplicity.
Some log-contrasts are remarkably easier to interpret than the general version in Equation
(3). They are the so called balances described in Section 2. When a balance is constant
across a sample there is c-association in the sense of Equation (3), since a balance is a log-
contrast. That the log contrast is a balance can be shown by defining balance association, or
b-association for short.

For a more detailed definition of b-association, let us consider an n-sample D-part composition
in X. The parts of X ∈ SD can be classified in three disjoint groups of parts denoted G, H,
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R; when in lower case, these letters denote the number of parts in each group. Without loss of
generality, the first group G is placed in the first indices as G = {X1, X2, . . . , Xg} of the com-
position, and the second one, made of the following h parts, is H = {Xg+1, Xg+2, . . . , Xg+h}.
The remaining parts constitute a third group of parts R = {Xg+h+1, . . . , XD} and contains
r = D − g − h parts. Consider the (non-normalized) balance

B(G/H) = ln
gm(G)

gm(H)
, (4)

where gm(·) denotes the geometric mean of its arguments. The balance B(G/H) is a log-
contrast for which the α-coefficients only take three different values: 1/g for group G, 1/h for
H and 0 for group R, fulfilling simplicity requirements and sparsity when R is large compared
to G and H. The groups of parts G and H are b-associated across a given sample, when
the balance B(G/H) is constant across that sample. This can be reformulated as G, H are
b-associated when Var[B(G/H)] = 0. Here, Var[·] denotes the sample variance across the
sample.

The particular case in which G = {X1} and H = {X2} reduces the balance to a simple log-
ratio. This means that b-association in this case is expressed as any of the following equivalent
conditions

B({X1}/{X2}) = ln
X1

X2
= k , Var[B({X1}/{X2})] = 0 . (5)

The b-association of the groups G, H is easily interpreted in terms of proportionality of
the geometric means of the parts in each group. When the balance in (4) is constant, then
ln gm(G) = k1 + ln gm(H), for some real constant k1; taking exponentials it yields gm(G) =
k2 gm(H), where k2 = exp(k1) is a positive constant. This motivates the statement that
b-association can also be called group-proportionality.

More than one b-association of groups of parts is possible, even involving overlapping groups.
Each b-association implies a reduction of one unit in the total dimension D−1 of the simplex
SD whenever the restrictions are linearly independent in the Aitchison geometry of the simplex
(Egozcue et al. 2011).

3.1. Synthetic example of b-association

In order to illustrate exact b-associations between groups, a synthetic case study of 5-part
compositions has been conducted. One hundred compositions, xi, i = 1, 2, . . . , 100, have been
generated as follows:

xi = (xi1, xi2, xi3, xi4, xi5)

=
(
0.25 · i, 0.7 · xi1, (xi1)

1.3, (xi1)
−1.3, 2(xi1 · xi4)1/2

)
.

These compositional samples are reduced to proportions taking closure and are plotted in
Figure 1. The clr components of these proportions are shown in Figure 2, where the first
component clr1(xi) is taken on the x-axis and each of the other components on the y-axis. In
Figure 2 all four dotted lines are straight-lines but only the line (clr1(xi), clr2(xi)) (blue) has
slope equal to 1, as the parts xi1, xi2 are proportional. Note that the power relations between
xi1 and xi3 (green) (or xi4, red) appear as straight lines with slopes different from 1. This tells
us that X1 is exactly b-associated with X2 but not with X3 and X4. The variable X5 also
appears as a straight line (non-unitary slope, brown). Therefore, X5 is not b-associated with
X1. However, X5 was constructed so that X5 = 2 gm(X1, X4) and B({X5}/{X1, X4}) = ln 2.
Thus, there is an exact b-association between the groups G = {X5} and H = {X1, X4},
despite the fact that neither X1 nor X4 are separately associated with X5. Consequently,
an exact b-association between G and H does not imply b-association between the parts in
these two groups. The correlation matrix of the clr-variables has all the entries equal to ±1
in this case. For this example, the dimension of the sample space is D − 1 = 4, but it
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Figure 1: Proportions of one hundred compositions ordered by the subscript i as described in
the text. Black, blue, green, red and brown lines correspond to (xi1, xi2, xi3, xi4, xi5) respec-
tively, for i = 1, 2, . . . , 100.

was constructed so that two exact b-associations take place. However, there is another exact
b-association, namely B({X1, X3, X4}/{X2}), which is also constant along the sample, since
xi3xi4 = 1. As each constant log-contrast reduces the dimension of the sample space in one
unit, sample compositions are in a 1-dimensional subspace. This is easily shown centering
the data matrix and performing the singular value decomposition (SVD): there is only one
non-null singular value.

In the previous example, it is surprising that all correlations between clr-components are ±1,
that is, all the points in Figure 2 are aligned, yet only the case with slope equal to 1 is
considered as b-association. To clarify this example it is convenient to think on the columns
of X, denoted Xj , as compositions that can be represented in Sn. When two of these columns,
say Xi, Xj , are proportional, the compositional equivalence indicates that they are equal as
compositions, and the Aitchison distance in Sn is 0. One could also say that both parts are
represented in equal proportions along the sample. For instance, this is the case of the first
(black) and second (blue) parts of the example shown in Figure 1. This is related to the fact
that Var(ln(Xi/Xj)) = 0, as this sample variance is proportional to d2

a(Xi, Xj) (see appendix
A). This can be seen in clr(X), which contains the clr values of the rows xi, i = 1, 2, . . . , n (see
Figure 2, blue points). This clr-matrix can be centered by columns, which is equivalent to a
shift of the origin of the simplex SD to the center of the composition. The resulting matrix
contains clr values both by rows for compositions in SD and by columns for compositions in
Sn and its expression is

clr(Xc) = clr(X)− 1

n
clr(X)1D1>n ,

where 1k is a k-column vector with unitary entries. The interdistances da(Xi, Xj) can be
computed as Euclidean distances between columns of clr(Xc), as they are not affected by
the centering shift. The Euclidean inner product of the columns clr(Xc) is equal to the
sample covariances of clri(X) and clrj(X) which are the columns of clr(Xc) up to an additive
constant. Therefore, if the square distance d2

a(Xi, Xj) = 0, then Cov(clri(X), clrj(X)) = 0.
But the reciprocal is not true. Intuitively, in Rn−1 the fact that the angle, centered at the
origin, between two points is zero does not imply that the distance between these two points
is zero; it can be as large as desired. Proportionality of Xi, Xj is equivalent to da(Xi, Xj) = 0.
However, Cov(clri(X), clrj(X)) = 0 alone is not sufficient for b-association.
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Figure 2: Components of clr of one hundred compositions of proportions shown in Figure 1.
Components clr2(xi) (blue), clr3(xi) (green), clr4(xi) (red) and clr5(xi) (brown) are plotted
against clr1(xi). The black line has slope equal to 1 and passes through the mean value of
(clr1(xi), clr2(xi))

3.2. Hardy-Weinberg law as a case of b-association

The Hardy-Weinberg (HW) law (Hardy 1908; Weinberg 1908) establishes that, under random
mating conditions in an isolated population in which the alleles A and B present frequencies
fA, fB, the genotype frequencies are fAA = f2A, fBB = f2B (homozygote) and fAB = 2fAfB
(heterozygote). This equilibrium is attained in one generation if there is parental genetic
symmetry (Graffelman and Weir 2016). The allelic frequencies are arbitrary across a sample
of populations in HW-equilibrium. However, the corresponding genotype frequencies satisfy

B({AA,BB}/{AB}) = ln
(fAA · fBB)1/2

fAB
= − ln 2 ,

which implies an exact b-association involving the three parts. If balance-coordinates of the
simplex S3 for genotype frequencies are defined as

b1 =

√
2

3
B({AA,BB}/{AB}) , b2 =

√
1

2
B({AA}/{BB}) ,

HW-equilibrium implies b1 is constant across populations, but b2 is not constant and can
take any real value depending on the allelic frequencies in a population. This shows that if
a balance involving several parts of a composition is constant, it does not imply that subsets
of the parts are b-associated.

4. Approximate group-proportionality

Exact c-association seldom occurs in practice. A random composition with any exact compo-
sitional association between its parts has a degenerate probability distribution corresponding
to the restriction imposed in Equation (3). Both for random compositions or sample com-
positions, interest is focussed in restrictions like those found in Equations (3) or (5) which
only hold approximately. As a consequence, a measurement of the degree of association or
proportionality is required for a consistent use in compositional analysis.
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4.1. Aitchison’s first approach

Aitchison (1986) introduced the first measure of (lack of) b-association when proposing the
variation matrix as an exploratory tool. The entries of such a matrix are the sample variances
Var[ln(Xi/Xj)] for i, j = 1, 2, . . . , D. The sum of all these entries, over 2D, has been identified
with the (sample) total variance or metric variance (Pawlowsky-Glahn and Egozcue 2001),
that is

totVar[X] =
1

2D

D∑
i=1

D∑
j=1

Var

[
ln
Xi

Xj

]
,

taking into account that Var[ln(Xi/Xi)] = 0. A large value for an entry of the variation matrix
indicates a large contribution of the involved two parts to the total variance. Conversely,
small values, close to zero, suggest that the two parts are nearly proportional. Therefore,
Var[ln(Xi/Xj)] is a measure of (lack of) b-association between Xi and Xj . However, the lack
of a scale in Var[ln(Xi/Xj)] makes its rigorous use difficult. There are different attempts to
normalize the entries of a variation matrix.

A first approach reflects the proportion of total variance explained by a single log-ratio; these
proportions are Var[ln(Xi/Xj)]/(2D · totVar[X]). Although this normalization is sound, it
strongly depends on the number of parts in the composition. A further advance consists of
comparing the entries of the variation matrix with those obtained when the total variance
is uniformly spread over all entries, a kind of maximal dissociation, which assigns to each
non-null entry a value of 2D · totVar[X]/(D(D − 1)). In this case, a possible normalization
(Egozcue et al. 2013; Pawlowsky-Glahn et al. 2015) is

Tij =
D(D − 1)Var[ln(Xi/Xj)]

2D · totVar[X]
=

(D − 1)Var[ln(Xi/Xj)]

2 · totVar[X]
. (6)

Then, Tij < 1 suggests association between the parts Xi and Xj . But experience points out
that only values under 0.2 or even less can be considered candidates of effective b-association.
Consequently, values larger then 0.2 can be rejected.

The mentioned lack of scale in the variances of simple log-ratios is moderated with this
normalization by introducing a reference composition, X, which includes all the parts involved
in the association study. Changes of this reference composition by adding or removing parts
will introduce changes in the scale.

4.2. Association between groups of parts

Recently, some additional measures of association between two parts have been introduced.
For instance the φ-statistic (Lovell et al. 2015) and a modification of it (Erb and Notredame
2015). These measures of association are related to the approximate proportionality of single
parts, but they can be generalised to association between groups of parts. In general, b-
association is based on the proportionality of geometric means of groups of parts, that is
gm(G) ' k · gm(H) or, taking logarithms,

ln gm(G) ' k1 + β1 ln gm(H) , k1 = ln k , β1 = 1 . (7)

For measuring b-association, interest is focussed on the slope β1, which for b-association of
G and H should be approximately 1. Equation (7) relates quantities such as ln gm(G) and
ln gm(H), which are not scale invariant and, consequently, they are inappropriate for a com-
positional analysis, since the result would depend on the normalisation of the compositions.
There are some options to transform Equation (7) into a scale invariant model preserving
the value of β1. A first choice is to subtract, from each term, ln gm(G ∪H ∪ R), that is the
logarithm of the geometric mean of all parts in the original composition; in the case that G
and H reduce to a single part the equation would be clr1(x) ' k2+β1clr2(x). A second choice,
which will be followed from now on, is to subtract ln gm(R) in Equation (7), thus yielding the
linear model

B(G/R) = β0 + β1B(H/R) + ε , (8)
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where ε denotes residuals, and β1 and the variability of the residuals are to be fitted to the
available data. When β1 ' 1, approximate proportionality holds for small residuals. The size
of ε is relative to the balances B(G/R) and B(H/R). These balances depend on the original
or reference composition which parts are included in the three groups G, H, R. Therefore,
the scale of residuals are always relative to the reference composition.

4.3. Measuring b-association through a linear model

The next decision is how to fit the linear model (8) to available data. Both sides of the linear
model play a symmetric role and are affected by variability. In such circumstances, ordinary
least squares (OLS) regression is not an appropriate method. Following Warton, Wright,
Falster, and Westoby (2006), and references therein, regression on the major axis (MA), also
known as total least squares, and standardized major axis (SMA) (adopted in Lovell et al.
(2015)) have been chosen for fitting the model (8). These approaches differ on the residual
scores used to minimize their sum of squares. In OLS regression, the residual scores are equal
to the ε values, that is the distance of data points to the fitted line in the direction of B(G/R)
(y-axis). In MA fitting, residual scores are chosen to be orthogonal to the fitted line. The
SMA fitting procedure minimizes the sum of triangular areas comprising the data point and
the fitted line limited by the projections of the data point on the fitted line following the
response and explanatory axes. Figure 3 shows how residual scores are computed in OLS,
MA and SMA regression. Note that, in these regression models, both axes have been taken
as being orthogonal in the plane of Figure 3, a common practice in regression under the
assumption that the sample space is the real space. However, when viewed in the Aitchison
geometry of the simplex, these axes correspond to coordinates B(G/R), B(H/R) which are
not orthogonal. Fortunately, this does not change the estimated model (i.e. estimation of
β0 and β1), but it can slightly change the computation of residual scores and their sum of
squares. Some tests associated with the sum of squares may be affected, but this details fall
out of the scope of this contribution.

Both MA, SMA approaches coincide when the fitted line has slope equal to 1, as demanded
for b-association. The estimation of slope in the SMA fit has a simpler expression than in
the MA case. The SMA approach provides estimates of the slope slightly biased towards the
unitary slope. In general, both approaches may be useful to evaluate b-association.

Our present goal is to discuss measures of (lack of) b-association as related to the model (8).
The first one is the φ-statistic (Lovell et al. 2015) applied to balances appearing in the model
given by Equation (8). That is

φ(B(G/R), B(H/R)) =
Var(B(G/R)−B(H/R))

Var(B(G/R))
= 1 + β̂1

2
− 2β̂1|r̂gh| , (9)

where β̂1 is the SMA-estimate of β1 and r̂gh is the estimated correlation coefficient between
B(G/R) and B(H/R).

It is obvious that φ(B(G/R), B(H/R)) is equal to 0 when exact proportionality is attained
with β̂1 = 1 and r̂gh = 1; any departure from these values produces a positive increment of
φ(B(G/R), B(H/R)). Therefore, φ(B(G/R), B(H/R)) can be taken as a measure of (lack of)
b-association between G and H.

A second option measuring association (Erb and Notredame 2015), can be adapted to b-
association between groups as

ρ(B(G/R), B(H/R)) =
2 Cov(B(G/R), B(H/R))

Var(B(G/R)) + Var(B(H/R))
=

2r̂gh

β̂1 + 1

β̂1

, (10)

where β̂1 and r̂gh are the estimates appearing in Eq. (9). The statistic ρ is also a measure of
b-association and satisfies −1 ≤ ρ(B(G/R), B(H/R)) ≤ 1, the latter value 1 corresponding
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Figure 3: Visualization of residual scores for OLS, MA and SMA. Two artificial fitted lines
(black full lines) with slopes 1 (thick line) and 0.3 (thin line). Two data points are shown
(red marker): for each of them the OLS residual score (ε) is represented by a (vertical) black
dashed segment to one of the fitted lines. Red lines are the residual scores used in MA, they
are orthogonal to the respective fitted lines. The residual score for SMA for the fitted line
with slope 0.3 is the blue segment. The SMA residual score coincides with the MA score (red)
when the fitted line has slope equal to 1. The blue segment representing the SMA score is the
half-diagonal of the rectangle when the triangle with vertical and horizontal sides is reflected
by the fitted line; the square of this half-diagonal (blue) is proportional to the area of the
triangle.

to exact b-association. Note again that the presence of the group R in both Eq. (9) and Eq.
(10) and recall that these measures are defined with respect to a reference composition.

4.4. A generalisation of the variation matrix

A third possibility of measuring b-association is related to the generalisation of the entries of
the variation matrix to the variances of log-ratios between the geometric means of components
within each of the groups of parts considered. These variances correspond to the orthogonal
projection of x ∈ SD, D = g + h + r, such that all variance within the groups G, H, R are
filtered out and the between-group variances are retained. The projected composition, up to
a closure, is (Egozcue and Pawlowsky-Glahn 2005)

xb = (gm(G), . . . , gm(G)︸ ︷︷ ︸
g components

, gm(H), . . . , gm(H)︸ ︷︷ ︸
h components

, gm(R), . . . , gm(R)︸ ︷︷ ︸
r components

) (11)

Consider the projected variation matrix

Tb =

 0 ghVar(B(G/H)) grVar(B(G/R))
hgVar(B(H/G)) 0 hrVar(B(H/R))
rgVar(B(R/G)) rhVar(B(R/H)) 0

 ,

which entries add to 2D totVar(xb). Inspired by the normalisation in Eq. (6), several nor-
malisations can be proposed for the entries in Tb. Here, the scaling

Tb

12 D totVar(xb)
,
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is proposed, and the entry

TGH =
ghVar(B(G/H))

12(g + h+ r) totVar(xb)
,

is considered as a measure of (lack of) b-association between the groups G and H. Note that
the constant 12 is twice the number of non-null entries of Tb.

4.5. Comparison of measures of b-association

To compare the three measures of b-association, φ(B(G/R), B(H/R)), ρ(B(G/R),B(H/R))
and TGH , an experiment has been conducted. A set of 100 pairs (B(G/R), B(H/R)) has
been simulated for different slopes and different orthogonal residuals as follows. First, one
bivariate normal 100-sample has been simulated with mean at (0, 0), with null covariance and
standard deviations σx = 5 and σy = 1. These data points approximately fill an ellipse with
principal axis on the x-axis. The y-axis values are then multiplied by values ranging from 0
to 5, and then rotated to attain different slopes between −3 and 3. This means that, when
the standard deviation of the y-axis values of the original data is near to zero and the x-axis
is rotated to slope 1, the b-association must be almost perfect. To compute TGH , the number
of parts grouped in G, H and R are assumed to be one, g = h = r = 1, and the standard
deviation of ln gm(R) = 1; this is needed to compute totVar(xb).

Figure 4 shows the results of the experiment. In the upper-left panel the values of TGH are
shown: exact association corresponds to slope equal 1 and standard deviation equal 0. The
smaller values of TGH correspond to better associations, which are illustrated by the white con-
tour lines. The upper-right panel shows the values obtained for φ(B(G/R), B(H/R)). Again
the white contours are around the exact association point. Compared to TGH , φ(B(G/R), B(H/R))
has low sensitivity to the increase of standard deviation of orthogonal residuals, but both
measures penalize symmetrically around the unitary slope. Contour lines for strong b-
associations are very similar in the two cases. The bottom-left panel shows the results for
ρ(B(G/R), B(H/R)). The main difference with the previous cases is that the values near
to 1 correspond to the stronger b-associations, but changing high values into low values, the
picture appears to be very similar to the one corresponding to TGH (upper-left panel). For
comparison, the correlation Cor(B(G/R), B(H/R)) is presented in the bottom-right panel.
Correlations near 1 include strong b-association, but it cannot be used as measure of asso-
ciation, as it is insensitive to changes of positive slopes. This example shows that the three
measures of b-association are approximately equivalent except for their scale, and that simple
correlation is inappropriate.

Introducing group R in the measures of b-association is important to fix a scale in the mea-
sures. However, there is a counterpart: the measures of b-association depend on the reference
composition G∪H ∪R that is considered. Further comments on the subcompositional coher-
ence of b-association are given in the next section on testing b-association.

Several reasons can explain a lack of proportionality even when TGH and φ(B(G/R), B(H/R))
are small, or when ρ(B(G/R), B(H/R)) is near to 1. First, these measures are not robust, and
outlying samples can cause serious deviation in the results. Second, the presence of different
populations in the sample may hide both b-association and the lack of it. The use of robust
estimators of the variances in the variation matrix is recommended, but it does not remove
the need to carefully inspect for different populations mixed in the sample. These points
require further development.

5. Testing b-association

Testing b-association has limitations derived from the fact that the null hypothesis

H0 : B(G/H) = k , (12)
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Figure 4: Magnitude of TGH (upper-left), φ(B(G/R), B(H/R)) (upper-right),
ρ(B(G/R), B(H/R)) (bottom-left), and Cor(B(G/R), B(H/R)) (bottom-right), for changing
slope and standard deviation of orthogonal residuals. The scales of the four panels are not
comparable as numbers on the isolines point out; only the shape of the isolines is relevant.
Red and blue colors correspond to high and low values of the measure respectively. White
isolines indicate approximate linear b-association. See text for elaboration.

does not admit variability for natural testing statistics. For instance, if B(G/H) is used as
a test statistic, its variance is null under H0. In these circumstances, any deviation from H0

leads to an immediate rejection of H0 at any positive significance level. This situation is not
unusual; it appears for example if for two real random variables, one tries to test that the
Pearson correlation coefficient is exactly +1 or −1. There are some alternatives to test H0,
either modifying H0, or making some assumption on the source of variability under H0. Both
alternatives are here adopted to propose two tests, one of them changing H0 to H ′0 : β1 = 1,
that is, testing for unitary slope in the model (8). The other alternative consists of considering
a regression model of B(G/H) predicted as a function of all or some balances orthogonal to
B(G/H) within a reference composition.

5.1. Test on unitary slope

Consider the linear model of Eq. (8). Exact b-association of the groups of parts G and H,
implies H0 as in Eq. (12). In its place, the hypothesis

H ′0 : β1 = 1 ,

is tested. Note that, in case of approximate b-association, H ′0 does not imply H0, since H ′0
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may hold even with large residuals. This means that H ′0 is weaker than H0.

Testing H ′0 can be performed when model (8) is fitted using either major axis (MA) or
standardized major axis approaches (SMA). The estimates of slope β1 are (Warton et al.
2006)

β̂MA =
(s2yy − s2xx) +

√
(s2yy − s2xx)2 + s2xy

2sxy
, ̂βSMA = sign(sxy)

syy
sxx

, (13)

where subindices x, y denote the x-axis and the y-axis, which in model (8) are B(G/R) and
B(H/R), respectively; the s denotes sample covariance between variables indicated by the
subindices. Both estimates are very similar when the slope is near to one. Also, in both MA
and SMA, the intercept term is estimated as β̂0 = ȳ − β̂1x̄, where x̄, ȳ are the corresponding
sample means.

The test statistic for H ′0 is based on the correlation between fitted values and residuals when
H ′0 is assumed to hold, that is ε′ = y − β̂0 − 1 · x and the fitted values approach the response
as

f ′MA = 1 · (y − β̂0) + x , f ′SMA = (y − β̂0) + 1 · x .

For testing H ′0, the proposed statistic is

F = (n− 2)
r2ε′f ′

1− r2ε′f ′
,

which, under H ′0 and independent normality and homoscedasticity of ε , has an F -distribution
with (1, n− 2) degrees of freedom.

This test has two additional inconveniences. The first, shared by most F-tests, is that the
F-distribution is quite sensitive to departures of normality of residuals; however, even when
the normality assumptions do not hold, the F-statistic is still a measure of departures from
unit slopes although the obtained p-values using the F-distribution may be biased. The
second inconvenience is that this test is actually testing for slope β1 = ±1 , and not simply
for β = +1. When used for a small number of tests, it may be practical to examine by hand
whether non rejections of H ′0 are due to slopes near to −1. However, this strategy may be
very inconvenient when performing some thousands of tests. A solution is to introduce an
immediate rejection of H ′0 whenever the slope estimate β̂1 (see Eq. 13) is negative. The
p-value in this situation is reported as −1.

5.2. Regression test

This testing option requires the establishment of a reference composition including the three
groups of parts G, H and R. An appropriate option is to assume that the concatenation
(G,H,R) is the reference and this is assumed in the discussion below. However, other sub-
compositions or orthogonal projections of the composition may be useful references. Consider
the linear regression model

B(G/H) = γ0 + γ1B(G,H/R) +
r∑
j=2

γjBj + e , (14)

where e represents the residuals, B(G,H/R) is the balance of the concatenated G and H over
R, and Bj are balances, possibly orthogonal, within the subcomposition R. The standard
regression F-test, testing γj = 0 for j = 1, 2, . . . , r, is equivalent to

H ′′0 : B(G/H) = γ0 + e ,

which is not H0 in Eq. (12), but allows variability in H ′′0 subject to the condition that it does
not come from the reference composition. However, H ′′0 is acceptable even with large residuals
e, if they are not predictable from the reference composition. This means that the test will
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be more powerful when a large number of terms are considered in the model (14). When R is
a large composition containing tens or thousands of parts, this testing procedure may be too
strict. This testing procedure was found to be demanding when r = 5 or greater (Egozcue et al.
2013). Here a reduced power test is proposed for its use in large compositions, both reducing
power and computational effort. The approach consists of reducing the model (14) only to
the first explanatory variable, the balance B(G,H/R) and its coefficient γ1, thus reducing the
model to B(G/H) = γ0 + γ1B(G,H/R) + e. Note that using this simplified approach, the
projected composition in Equation (11) substitutes the original reference composition. The
original model in Eq. (14) is only used when a possibly strong association between G and
H is detected, and one wants to be more strict at reducing type II errors (false negatives).
This simplified test gives p-values equal to the slope test whenever the estimated MA-slope is
positive, as both test statistics reduce one to the other. The difference is that the simplified
regression test do not distinguish between positive and negative slopes.

As in the case of testing slope (Section 5.1), the standard F-statistic is an acceptable test
statistic even if the independent and homoscedastic normality of the residuals e fails. As in
a routine exploration of a large composition the F-test will be used without further checking,
intermediate p-values obtained (say 0.005 to 0.1) should be examined critically.

6. Example using an 16S rRNA gene profiling case

In the last decade, the interest in the study of microbial communities has grown spectacularly
(e.g. Gilbert, Quinn, Debelius, Xu, Morton, Garg, Jansson, Dorrestein, and Knight (2016);
Faust and Raes (2012)). In the analysis of a microbiota experiment, e.g. using 16S rRNA
gene variable region sequencing techniques, there are several critical points that require further
research in order to establish reliable inference procedures (Weiss, Van Treuren, Lozupone,
Faust, Friedman, Deng, Xia, Xu, Ursell, Alm, Birmingham, Cram, Fuhrman, Raes, Fengzhu,
Zhou, and Knight 2016). Among these points, association or correlation between taxa is an
important issue. Most techniques compared in Weiss et al. (2016) do not take into account the
compositional character of the data, while others are only partially compositional. Only few
contributions to the field are consistently compositional, for instance, Fernandes, Reid, Mack-
laim, McMurrough, Edgell, and Gloor (2014); Gloor, Wu, Pawlowsky-Glahn, and Egozcue
(2016); Tsilimigras and Fodor (2016); Silverman, Washburne, Mukherjee, and David (2017).
Motivated by this situation, a data set (Human Microbiome Project Consortium 2012) of oral
microbiome has been selected to illustrate the compositional techniques here proposed.

The final OTU table and metadata mapping file from the HMQCP v35 dataset were down-
loaded on Oct 22, 2015 from the base URL
http:\\hmpdacc.org\HMQCP\ site (Gevers, Pop, Schloss, and Huttenhower 2012). Only
visit number one for each person’s sample was used. The OTUs were aggregated to bacterial
genus by name, and there are 229 bacterial genera sampled at 8 different sites in the mouth
of n = 1457 human individuals, constituting the set of samples. For simplicity, only three of
these sites are used: keratinzed gingiva (ak); buccal mucosa (bm); and supragingival plaque
–outside plaque– (op). A common feature of 16S rRNA gene sequencing data sets, is that
they are sparse, i.e., zero counts are extremely abundant in the data matrix. Log-ratio anal-
ysis of compositional data does not allow null proportions as an argument of a logarithm,
thus requiring special treatment of such data (Mart́ın-Fernández, Hron, Templ, Filzmoser,
and Palarea-Albaladejo 2015a; Gloor, Macklaim, Pawlowsky-Glahn, and Egozcue 2017). The
present contribution is not aimed at discussing procedures and methods for treating these
zero count data, although Bayesian estimation methods show some promise (Fernandes et al.
2014). Therefore, the number of genera used in the examples has been reduced to 12 by
removing all genera with a total count across all samples of less than 5000, or that have zero
counts in more than 100 samples. Finally, samples were discarded if the 12 genera presented
with more than 4 zeros. A non-defined (ND) taxon, initially included in the 12 selected ones,
was also removed due to the mixed character of the ND category. The number of genera in
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Table 1: Genera used in the present example. Sample size n and the number of zero counts
are reported. The three last columns show the center (compositional mean) of the three
selected sites attached keratinized gingiva (ak); buccal mucosa (bm); supragingival plaque
–over plaque– (op).

ID genera n n zeros cen-ak cen-bm cen-op

1 Actinomyces 1436 32 0.0013 0.0140 0.2028
2 Fusobacterium 1436 22 0.0033 0.0087 0.0462
3 Gemella 1436 24 0.0314 0.0555 0.0057
4 Granulicatella 1436 26 0.0107 0.0082 0.0070
5 Haemophilus 1436 3 0.2481 0.1393 0.0878
6 Leptotrichia 1436 54 0.0006 0.0060 0.0617
7 Neisseria 1436 33 0.0044 0.0202 0.1072
8 Porphyromonas 1436 47 0.0086 0.0177 0.0280
9 Prevotella 1436 10 0.0229 0.0216 0.0423
10 Streptococcus 1436 0 0.6364 0.6807 0.3532
11 Veillonella 1436 0 0.0325 0.0280 0.0579

the final composition is then D = 11.

Table 1 shows the genera which are accounted for, the sample size, which is equal for each site,
and the number of zero-counts for each genus. In order to estimate all proportions of taxa,
the method GMB (Mart́ın-Fernández et al. 2015a) has been used. It consists of estimating
proportions as

xij =
nij + αij
ni+ + αi+

, αij = sitij , i = 1, 2, . . . , n , j = 1, 2, . . . , D ,

where nij are the counts, possibly zero, for the i-th sample in the j-th taxon, and a subscript +
indicates sum in the corresponding dimension. This estimation is a Bayesian point estimation
of multinomial probabilities. The values of si (strength) and tij (share) should be assessed
from the characteristics of the problem and the available prior knowledge. In this case,
following the advice in the previous reference, these values are

tij =
n+j − nij
n++ − ni+

, si = exp

(
− 1

D

D∑
k=1

log tik

)
.

Table 1 also reports the compositional means for the genera in the three sites ak, bm and op.
For each site, they are computed as the compositional average (Pawlowsky-Glahn et al. 2015)

Ĉen[X] =
1

n
�

n⊕
i=1

xi = C(gm(X1), gm(X2), . . . , gm(XD)) ,

which reduces to compute the geometric means of the columns of the data matrix. Observing
the values of the proportions in the centres substantial differences between sites are detected.
A compositional MANOVA (Mart́ın-Fernández, i Estadella, and Mateu-Figueras 2015b) based
on the Aitchison distance da could be conducted to find out substantial differences between
centres (not presented here).

Principal component analysis of compositional data (Aitchison 1983) and the corresponding
biplots (Aitchison and Greenacre 2002) are powerful tools for exploring compositional data.
This is also the case in exploring microbiome data (Gloor et al. 2016). They are computed
by taking clr of the data set, centring it, and then carrying out singular value decomposition.
That is

clr(X)− clr(Ĉen[X]) = U Λ V > ,

where Λ is a diagonal matrix containing the singular values λi, i = 1, 2, . . . , D; the (n,D)-
matrix U , called the score matrix, contains standardized coordinates of the compositions;
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Figure 5: Covariance biplot of the data set projected on the first and second principal axes.
Buccal sites: ak, green; bm, red; op, blue. Numbers represent clr-variables of taxa.

and the (D,D)-matrix V (loadings matrix), where the columns are the clr values of the new
orthonormal basis of representation. The last singular value is always zero, as the components
of the clr values add up to zero and clr(X) has, at most, rank D− 1. The matrix UΛ (except
its last column) contains centered ilr-coordinates with respect to the basis associated with V
(except its last column). A biplot consists of a 2-dimensional plot, representing simultaneously
either U and V Λ (covariance biplot) or UΛ and V (form biplot). In a two-dimensional plot of
the first two principal components, the proportion of the total variance represented in the plot
is (λ21 + λ22)/totVar[X] (for more details see e.g. Pawlowsky-Glahn et al. (2015)). Figures 5
and 6 show the covariance and form biplots projected on the first two principal components.
The first observation is that the three sites are quite well separated by the first principal
component (see this in the form biplot), which is roughly similar to the balance between the
groups of parts {X3, X4, X5, X10} and {X1, X6}, as revealed by the covariance biplot. The
first two principal components explain 56.8% of the total variance and all observations made
on the biplots are subject to this limited projection. In a covariance biplot like the one in
Figure 5 the line linking two extremes of lines is, up to the projection, proportional to the
standard deviation of the log-ratio between the corresponding variables. Therefore, rays where
end-points are close suggest pairwise b-association between those variables. In Figure 5 the
end-points of variables 8-Porphyromonas and 9-Prevotella are quite close, thus suggesting b-
association. A similar case is visualised for the variables 5-Haemophilus and 10-Streptococcus.
In both cases, the form biplot (Fig. 6) shows that both pairs of end-points are also close; this
means that, in the projection, the corresponding unitary vectors are approximately equal,
thus supporting the b-association between these couples of taxa. If these b-associations were
confirmed, the result would be regarded as strong evidence for compositional association of
these genera at the three different sites examined.

Biplots may be useful for a visual detection of pairwise b-associations but they need to be
confirmed by examination of the variation matrix and other analyses. Another visual way of
detecting possible b-associations, pairwise or involving larger groups, is the CoDa-dendrogram
(Egozcue and Pawlowsky-Glahn 2006a) as shown in Figure 7. The tree structure indicates the
SBP (sequential binary partition) used for the construction of a basis of balances. The length
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Figure 6: Form biplot of the data set projected on the first and second principal axes. Buccal
sites: ak, green; bm, red; op, blue. Numbers represent clr-variables of taxa.

of the vertical bars illustrate the variance of the corresponding balance, and the length of the
anchoring branch connecting the nodes is proportional to the mean variance of the balance.
Vertical bars in black correspond to the aggregate of all samples at all sites (ak, bm, op),
and the colored bars to individual sample groups. A relatively short vertical bar represents
stronger evidence of b-association, because it represents a small variance of the balance. The
advantage of the CoDa-dendrogram is that it is able to visualize associated groups of parts
and not just pairwise b-associations. The counterpart is that only the balances obtained in the
SBP are checked. Figure 7 shows the CoDa-dendrogram corresponding to an SBP which has
been obtained by hierarchical clustering (Ward’s method) of the genera (Pawlowsky-Glahn,
Egozcue, and Tolosana-Delgado 2011), using as the distance matrix, the square-roots of the
variation matrix of the whole population (sites ak, bm, op), which is actually an Aitchison
distance (Appendix A).

In Figure 7, only the balance between 5-Haemophilus and 10-Streptococcus seems to be ap-
proximately constant, that is, it exhibits a small variance of the log-ratio. The b-association
seems particularly strong in the case of two individual sample groups (ak-green and bm-red).
No b-association of larger groupings of genera is suggested in this dendrogram.

The suggested b-association between 5-Haemophilus and 10-Streptococcus was examined more
closely. Figure 8 shows the fitted line of B(5-Haemophilus/R) and B(10-Streptococcus/R) for
the three sites ak (left), bm (middle), op (right), where the p-values in the slope test are 0.51,
0.07, 0.0001. That is the b-association is not rejected in the ak samples, is near to rejection
in the bm samples and is clearly rejected in op samples.

Similarly, potential b-association between 1-Actinomyces and 6-Leptotrichia is inspected in
Figure 9. In this case, the obtained p-values are 0.82 and 0.11 for samples from ak and bm,
while the slope was negative for the op samples thus producing an automatic rejection. In
samples from the ak site, the slope test (p-value 0.86) did not reject b-association, but the
scatterplot of the points indicates that b-association, if any, is quite noisy and the test is only
driven by the slope, which in this case is approximately equal to 1. In these three cases, the
obtained p-value is largely influenced by the presence of outliers, thus suggesting the future
use of robust estimators for accurate testing.
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Figure 7: CoDa-dendrogram of approximately principal balances. Buccal sites: ak, green;
bm, red; op, blue. Numbers represent clr-variables of taxa.
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Figure 8: Scatterplot and fitted line of B(5−Haemophilus/R) and B(10−Streptococcus/R)
corresponding to buccal sites ak (green), bm (red), op (blue). The null hypothesis corresponds
to the unitary slope line (black).
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Figure 9: Scatterplot and fitted line of B(1-Actinomyces/R) and B(6-Leptotrichia/R) corre-
sponding to buccal sites ak (green), bm (red), op (blue). The null hypothesis corresponds to
the unitary slope line (black).
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Figure 10: Normalized variation matrices for sites ak (left lower triangle), bm (left upper
triangle), op (right lower triangle), for ak, bm, op merged in a single population (right upper
triangle)

Figure 10 shows a summary heat map of pairwise b-association for the 11 genera in samples
from the three selected sites (ak, bm, op). The top row shows the normalized variation
matrices (Eq. 6) for the three sites and of the three sites together (four triangles). The
middle and lower rows show the p-values of the slope test and the multiple regression test
respectively for the genera at the same sites.

The first observation is that the suggestions of pairwise b-association by the three criteria
(normalized variation, and the two p-value based methods) can differ substantially. However,
if attention is paid to the strong b-association between 5-Haemophilus and 10-Streptococcus
in bm site shown in Figure 8 (left panel), both the normalized variation matrix (0.12) and
the slope test (p-value 0.51) suggest b-association. However, the regression test is clearly
significant p-value < 10−4, thus rejecting b-association of this pair by this test. In general, we
observe that the multiple regression test is too strict, but instead suggests that b-association
between larger groups of genera may be present if such groupings are examined. This situation
is frequent, and is explored further below. In the lower panel row, there are only few non-
significant cells and this number tends to decrease when the considered subcomposition is
larger. As a counterpart, a large p-value, say greater than 0.05, in the multiple regression test
often implies non-significant slope test and a small value of the normalized variation. This is
the case in the joint population (ak, bm, op), for the b-association between 2-Fusobacterium
and 9-Prevotella, which has a 0.05 p-value in the regression test, a 0.99 p-value in the slope
test, and a moderate small value of normalized variation (0.49). This may be considered as a
surprising case, as fewer b-associations are expected in the joint population of the three cases.
However, the total variance is larger in the joint population and all tests and measures must
be interpreted relative to the total variance. Together, these results indicate that further
refinements in the tests and measures of b-association, and the use of robust statistics, may
improve this approach.

As commented above, a rejection of b-association in the multiple regression test may suggest a
b-association involving more than two variables. For this example with 11 parts, the number
of non-significant cases (0.05 p-value or larger) in the slope test is large. For instance, in
the ak site, there are 598 cases of G, H containing 2 parts each which give p-values larger
than 0.05. Two of these b-associations, randomly selected, are studied in Figure 12. In the
ak site (left panel), the balance of 10-Streptococcus and 11-Veillonella versus 4-Granulicatella
and 5-Haemophilus is non-significant in the slope-test (p-value 0.409). Although it seems
an acceptable b-association, it is quite noisy. The right panel of Figure 12 shows another
case of b-association in the site bm (slope-test p-value 0.897). It involves 8-Porphyromonas
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Figure 11: p-values for the slope test of association (panels in the upper row) and for the
multiple regression test (panels in the lower row). They correspond to sites ak (left, lower
triangles), bm (left, upper triangles), op (right, lower triangles), merged population ak, bm,
op (right, upper triangles).
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Figure 12: Testing unit slope for group association in two cases for which b-association is
not rejected. Black line, unit slope; colored line, MA fitted line. Left panel: site ak, test-
ing constant B(10, 11/4, 5) in the 11-part simplex. Right panel: site bm, testing constant
B(8, 10/4, 5, 7)
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and 10-Streptococcus versus 4-Granulicatella, 5-Haemophilus and 7-Neisseria. Again the b-
association is noisy. These two examples show that the slope and regression tests are useful
to detect approximate unit slope between B(G/R) and B(H/R). However, the both the slope
and regression tests are quite insensitive to large variability of residuals around the unit slope
line. This is the reason why any of the proposed tests on b-association should be accompanied
by some measurement of b-association as they, directly or indirectly, account for the scatter
of data points around the unit slope line in plots like those shown in Figures 8, 9 and 12.

7. Conclusions and further research

Linear association of parts in a composition has been examined from a theoretical point of
view, beyond the early proposals (Egozcue et al. 2013; Lovell et al. 2015). Proportionality
of two parts in a composition was the idea for introducing b-association which leads to an
approximately constant log-ratio. Maintaining this initial idea, the concept is extended to
proportionality between geometric means of two groups of parts (b-association) which implies
that the corresponding balance is constant. More generally, compositional linear association
can be viewed as an approximately constant log-contrast between pairs or groups of parts.

The b-association, defined as the presence of a constant balance, is a simple generalisation
of the proportionality between two parts, thus providing a way of thinking on groups of
compositional components better than individual ones. That is, it is a way to go from pairwise
relationships like that provided by standard pairwise correlations to more complex, but still
linear in the simplex, relations involving more than two parts. The counterpart is that
procedures to detect such group relations with a reasonable computing effort and their global
interpretation is a pending research task.

Although the concept of linear compositional association is quite simple, its measurement
and testing is more complex and requires further research. An important point is that the
statistics here proposed, both for testing and measuring b-association, depend on the reference
composition. Moreover, both measures of b-association and tests are severely affected by
outliers and contamination in non-homogeneous populations. This strongly suggests the study
of robust statistics both for measuring and testing.

When using b-association in fields like microbiome, or transcriptome, or other ’omic analysis,
the presence of zeroes introduces a new source of contamination for detecting b-associations
efficiently and accurately. This is especially true when such associations involve more than
two parts. It is clear that the number of linear associations (b-associations) is less than pre-
dicted by other association criteria such as Pearson’s correlation on proportions, or when using
Spearman and Kendall correlations which include cases of non-linear associations. Neverthe-
less, the use of b-association provides a needed sanity-check, since the widely used correlation
methods often provide many false positive associations.
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Székely GJ, Rizzo ML, Barikov NK (2007). “Measuring and Testing Dependence by Correla-
tion of Distances.” The Annals of Statistics, 35(6), 2769–2794.
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Weinberg W (1908). “Über den Nachweis der Vererbung beim Menschen.” Jahreshefte d.
Vereins vaterl. Naturkunde in Württemb., 64, 369–382.
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A. Relation of compositional variation with Aitchison distance

A compositional data matrix X is considered. The n rows of X are compositions represented
in SD. Using the notation introduced in Sections 3 and 4, the following theorem holds.

Theorem It holds

n ·Var

(
ln
Xi

Xj

)
= d2

a(Xi, Xj) ,

where Var is the n-sample variance and d2
a(·, ·) is the Aitchison distance in Sn. The follow-

ing proof is similar to that presented in Mart́ın-Fernández, Pawlowsky-Glahn, Egozcue, and
Tolosana-Delgado (2017).

Proof: Denoting gi for the geometric mean of column i, i.e. gi = (
∏n
k=1 xki)

1/n, each entry of
the variation matrix can be written as

Var

(
ln
Xi

Xj

)
=

1

n

n∑
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(
ln
xki
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)2

−
(
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)2
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On the other hand, if we take the transpose of the data matrix X, one can consider each part
of the composition as an observation of a composition with n parts. These n parts correspond
to the n initial samples. The squared Aitchison distance between two of the parts, e.g. Xi

and Xj , is then

d2
a(Xi, Xj)

=
n∑
k=1

[
ln
xki
gi
− ln

xkj
gj

]2
=

n∑
k=1

[
ln
xki
xkj
− ln

gi
gj

]2

=
n∑
k=1

(
ln
xki
xkj

)2

+
n∑
k=1

(
ln
gi
gj

)2

− 2
n∑
k=1

ln
xki
xkj

ln
gi
gj

=
n∑
k=1

(
ln
xki
xkj

)2

+ n

(
ln
gi
gj

)2

− 2n

(
ln
gi
gj

)2

.

Thus, it holds that

n ·Var

(
ln

(
Xi

Xj

))
= d2

a(Xi, Xj) .

As a consequence, we can define a total squared distance as follows

totSDist[X] = totVar[X]

=
1

2D

D∑
i=1

D∑
j=1

Var

[
ln
Xi

Xj

]
(by definition)

=
1

2Dn

D∑
i=1

D∑
j=1

d2
a(Xi, Xj) .

Dividing each d2
a(Xi, Xj) by totSDist[X] we obtain a normalised matrix of inter-distances

between compositional parts. In fact,

1

2Dn

D∑
i=1

D∑
j=1

d2
a(Xi, Xj)

totSDist[X]
= 1 .
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Juan José Egozcue
Dept. of Civil and Environmental Engineering
Universitat Politècnica de Catalunya
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