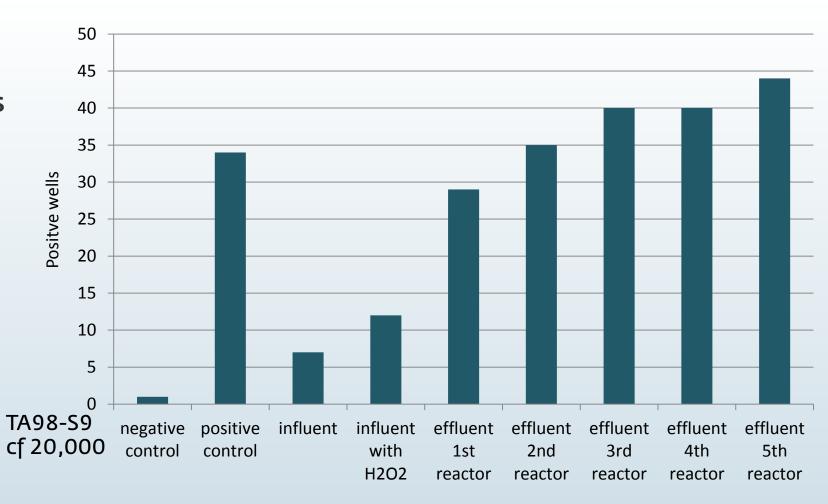


Application of Effect Directed Analysis to
Identify Mutagenic Nitrogenous Disinfection
Byproducts of Advanced Oxidation Drinking
Water Treatment

Annemieke Kolkman, Dennis Vughs, Kirsten Baken, Bram Martijn, Annemarie van Wezel and Pim de Voogt

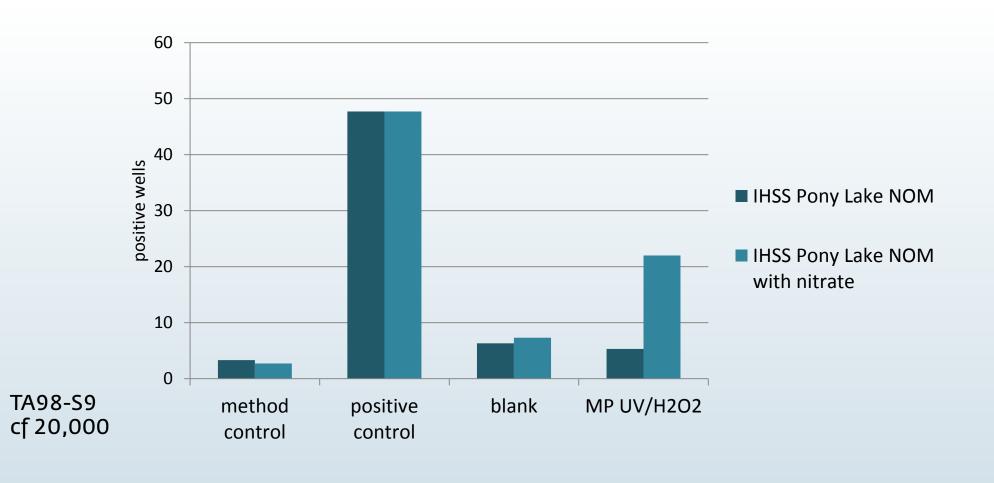
Water treatment formation by-products


- Water treatment of surface water
 - Disinfection (chlorination, ozonation, UV radiation)
 - Removal of micro pollutants (adsorption/GAC, RO membrane, advanced oxidation (UV, ozone))
- Water treatment may cause by-products
 - THM's, HAA's (chlorination)
 - Bromate (ozone)
 - Nitrite (MP UV)

MP UV water treatment

Ames test response after MP UV/H₂O₂ treatment at wtp Heemskerk

- Increased AMES test response observed
- Is an indication of genotoxic compounds
- What is the cause?
- probably caused by the formation of by-products


Source: PWN technologies

Watercycle Research Institute

Introduction

Ames response after MP UV/H₂O₂ treatment in artificial water

Example of humic acid

Source: PWN technologies

Watercycle Research Institute

Introduction

MP UV treatment and Ames test

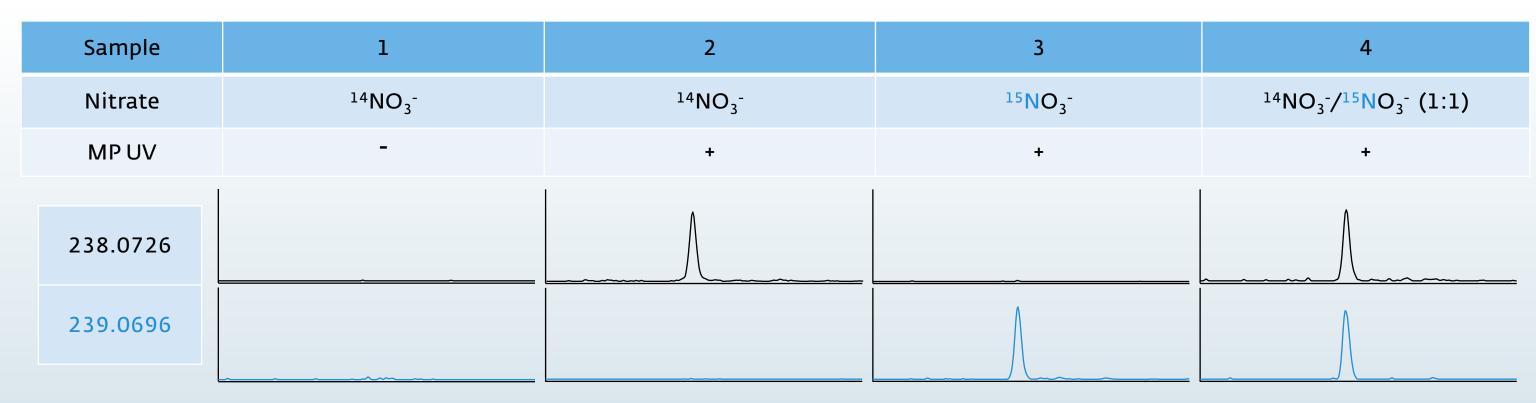
- MP UV involves nitrate photolysis -> nitro radicals are formed
- May form nitro(so) organic compounds when both nitrate and NOM are present
- Effect measured
 - no compound(s) identified
 - no concentration established
- The identification is essential for risk assessment
- Development of a tool for the detection of by-products formed by MP UV treatment

Introduction

Nitrogen labeling principle

NOM + nitrate (NO₃-) + MP UV \rightarrow nitrogen containing by-products

NOM + ¹⁴NO₃⁻ + MP UV → nitrogen containing by-products


NOM + ¹⁵NO₃ + MP UV → nitrogen containing by-products

Isotope tagging in the mass spectrometer $\Delta m/z = 0.99704$

KWR

Results

Chromatograms (EIC) unknown compound m/z 238.0726

- 84 detected byproducts
- 14 compounds with 2x ¹⁵N label
- Total concentration ≈1300 ng/L (ISTD eq.)

¹⁴N = 14.00307 m/z ¹⁵N = 15.00011 m/z Difference = 0.99704 m/z

Results

Identified N-DBPs - level 1, according to Schymansky

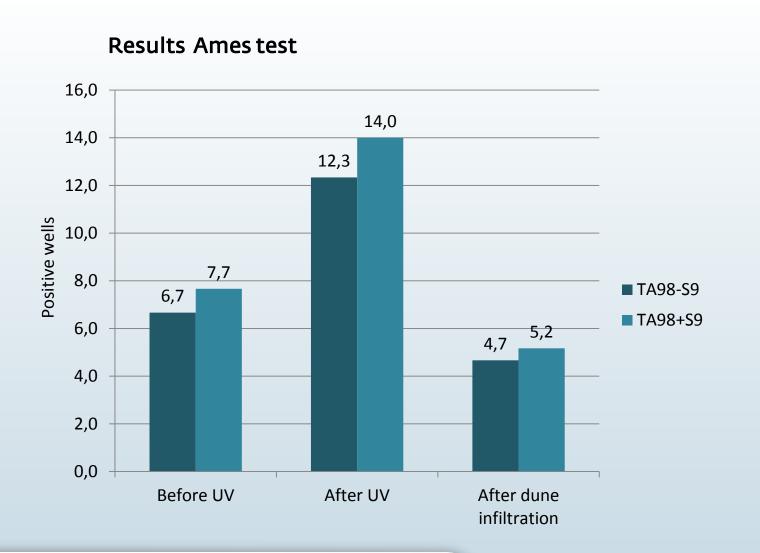
Compound	CAS nr	Formula	
4-nitrophenol	100-02-7	$C_6H_5NO_3$	
4-nitrocatechol	3316-09-4	$C_6H_5NO_4$	
4-nitro-1,3-benzenediol	3163-07-3	$C_6H_5NO_4$	
2-nitrohydroquinone	16090-33-8	$C_6H_5NO_4$	
2-hydroxy-5-nitrobenzoic acid	96-97-9	C ₇ H ₅ NO ₅	
4-hydroxy-3-nitrobenzoic acid	616-82-0	$C_7H_5NO_5$	
2-hydroxy-3-nitrobenzoic acid	85-38-1	C ₇ H ₅ NO ₅	
2,4-dinitrophenol	51-28-5	$C_6H_4N_2O_5$	
5-nitrovanillin	6635-20-7	C ₈ H ₇ NO ₅	
4-nitrobenzenesulfonic acid	138-42-1	$C_6H_5NO_5S$	
4-nitrophthalic acid	610-27-5	C ₈ H ₅ NO ₆	
2-methoxy-4,6-dinitrophenol	4097-63-6	$C_7H_6N_2O_6$	
3,5-dinitrosalicylic acid	609-99-4	$C_7H_4N_2O_7$	
dinoterb	1420-07-1	$C_{10}H_{12}O_5N_2$	

2-methoxy-4,6-dinitrophenol

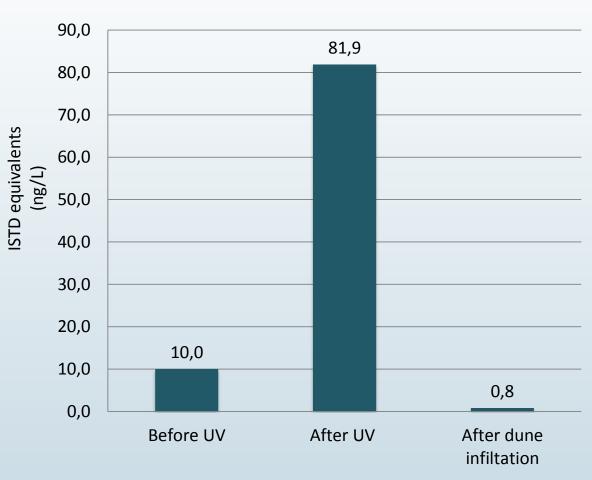
4-hydroxy-3-nitrobenzoic acid

5-nitrovanillin

4-nitrocatechol


4-nitrobenzenesulfonic acid

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

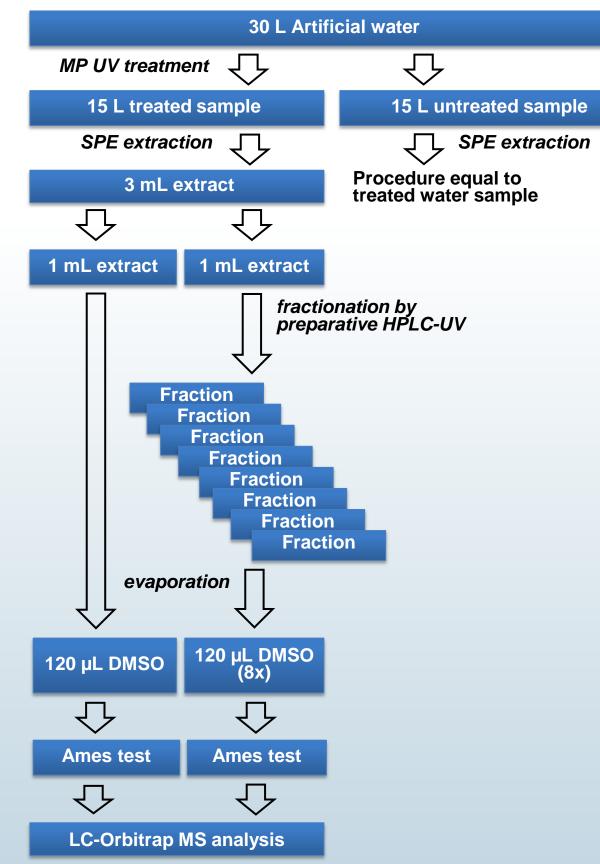

Dinoterb

Full scale water treatment

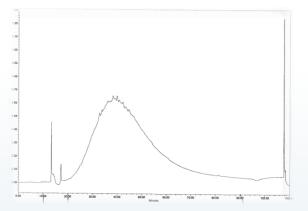
Results bioassays versus chemical analysis

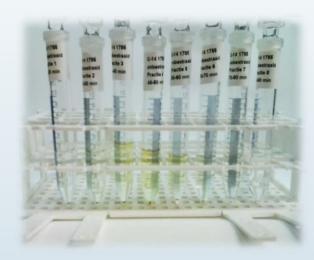
Results Orbitrap analysis (neg)

Kolkman et al, Environ. Sci. Technol. 2015, 49, 4458.4465

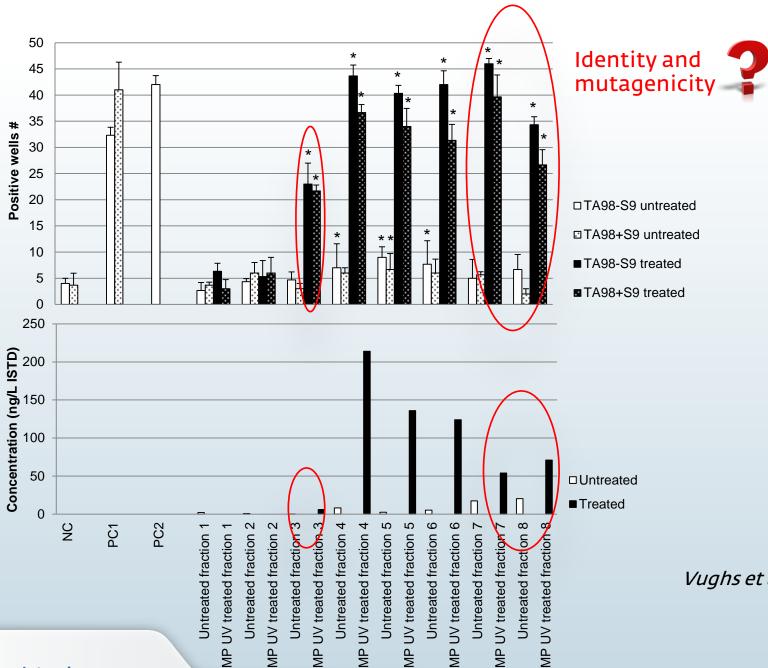

Results

Genotoxic potential of identified N-DBPs


Compound	CAS nr	Formula	Genotoxic potential (based on measured data* and/or QSAR analysis)
4-nitrophenol	100-02-7	C ₆ H ₅ NO ₃	Overall evidence points to absence of mutagenicity in Ames test; insufficient data to assess other genotoxicity and carcinogenic potential.*
4-nitrocatechol	3316-09-4	C ₆ H ₅ NO ₄	Probably not mutagenic in Ames test; insufficient data to assess other genotoxicity and carcinogenic potential.
4-nitro-1,3-benzenediol	3163-07-3	$C_6H_5NO_4$	Structure suggests genotoxic potential.
2-nitrohydroquinone	16090-33-8	C ₆ H ₅ NO ₄	Structure suggests genotoxic potential.
2-hydroxy-5-nitrobenzoic acid	96-97-9	C ₇ H ₅ NO ₅	Structure suggests genotoxic potential but no mutagenicity.
4-hydroxy-3-nitrobenzoic acid	616-82-0	C ₇ H ₅ NO ₅	Structure suggests genotoxic potential.
2-hydroxy-3-nitrobenzoic acid	85-38-1	C ₇ H ₅ NO ₅	Structure suggests genotoxic potential.
2,4-dinitrophenol	51-28-5	$C_6H_4N_2O_5$	Weight-of-evidence indicates no mutagenicity and genotoxicity, but clastogenicity and carcinogenicity cannot be excluded.*
5-nitrovanillin	6635-20-7	$C_8H_7NO_5$	Structure suggests genotoxic potential but no mutagenicity.
4-nitrobenzenesulfonic acid	138-42-1	C ₆ H ₅ NO ₅ S	Mutagenicity and genotoxicity are not expected.*
4-nitrophthalic acid	610-27-5	$C_8H_5NO_6$	Structure suggests genotoxic potential.
2-methoxy-4,6-dinitrophenol	4097-63-6	$C_7H_6N_2O_6$	Potentially mutagenic in Ames test; insufficient data to assess other genotoxicity and carcinogenic potential.
3,5-dinitrosalicylic acid	609-99-4	$C_7H_4N_2O_7$	Structure suggests genotoxic potential.
dinoterb	1420-07-1	$C_{10}H_{12}O_5N_2$	Structure suggests genotoxic potential.


Effect directed analysis approach Introduction

- Genotoxic potential of the identified N-DBPs does not explain the observed Ames response
- Application of effect directed analysis to identify mutagenic nitrogenous disinfection byproducts
 - Preparative HPLC -> combining Ames mutagenicity testing and chemical screening results
 - Investigate which of the N-DBPs contribute to the mutagenic response


Experimental design

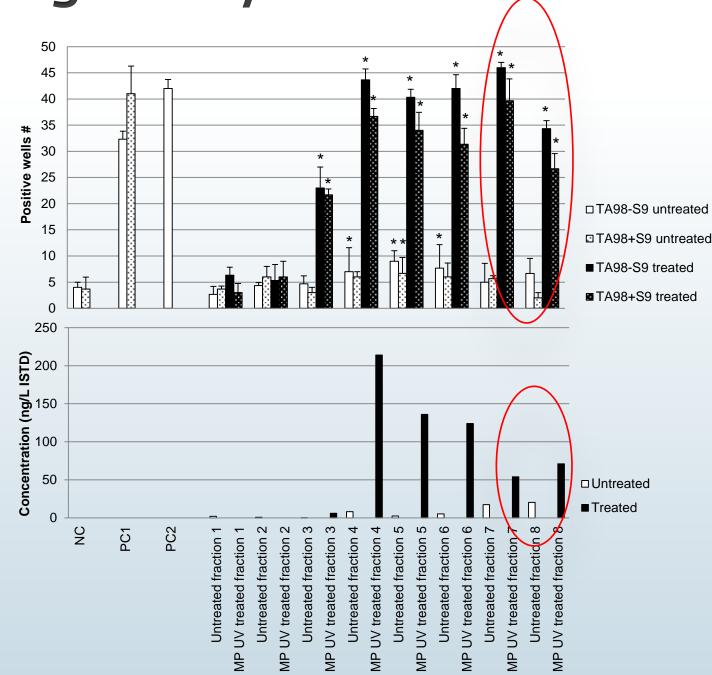
N-DBPs in fractionated water extracts

Vughs et al, Environ. Sci. Pollut.Res. 2016

Top 5 of N-DBPs per fraction

Mass	Conc.		
(m/z)		Formula	Compound
Fraction 3			
400.1262(1)	1.9		
386.1096(1)	1.3		
154.0148(1)	0.8	$C_6H_5O_4N$	4-nitrocatechol
210.0048(1)	0.7	$C_8H_5O_6N$	4-nitrophthalic acid
442.1365 (2)	0.4		
Fraction 4			
182.0098(2)	42.2	$C_7H_5O_5N$	4-hydroxy-3-nitrobenzoic acid
138.0198	29.2	$C_6H_5O_3N$	4-nitrophenol
154.0148(1)	26.2	$C_6H_5O_4N$	4-nitrocatechol
400.1262(2)	10.6		
408.1308(2)	10.0		
Fraction 5			
316.1413(1)	34.9	$C_{14}H_{23}O_{7}N$	
208.0255	7.9	$C_9H_7O_5N$	
452.1203(2)	7.7		
225.9994(2)	7.4	$C_8H_5O_7N$	
213.0154	6.9	$C_7H_6O_6N_2$	2-methoxy-4,6-dinitrophenol

Mass	Conc.	Formula	Compound
(m/z)	(ng/L)	FUITIUIA	Compound
Fraction 6			
213.0154	38.5	$C_7H_6O_6N_2$	2-methoxy-4,6-dinitrophenol
316.1413 (3)	11.7	$C_{14}H_{23}O_{7}N$	
238.0726	9.0	$C_{11}H_{13}O_{5}N$	
270.0755(1)	9.0		
316.1413(1)	8.3	$C_{14}H_{23}O_{7}N$	
Fraction 7			
212.0204	23.9	$C_8H_7O_6N$	Structural isomer of 5-hydroxy-4- methoxy-2-nitrobenzoic acid
266.1037	8.4	$C_{13}H_{17}O_{5}N$	
239.0677	8.0	$C_{10}H_{12}O_5N_2$	dinoterb
153.0073	5.3		
226.9948	1.8	$C_7H_4O_7N_2$	3,5-dinitrosalicylic acid
Fraction 8			
182.0098(3)	56.2	$C_7H_5O_5N$	2-hydroxy-5-nitrobenzoic acid
226.9948	5.5	$C_7H_4O_7N_2$	3,5-dinitrosalicylic acid
196.0258(3)	3.9		
372.1491	2.1		
239.0677	0.6	$C_{10}H_{12}O_5N_2$	dinoterb


Based on (predicted) genotoxic potential 4-nitrophthalic acid, 4-hydroxy-3-nitrobenzoic acid, 2-methoxy-4,6-dinitrophenol, dinoterb and 3,5-dinitrosalicylic acid may have contributed to the observed mutagenicity.

Which N-DBPs explain mutagenicity in fraction 7 and 8?

Mass (m/z)	RT (min)	Mode	fraction	Conc. (ng/L)	Formula	ID
340.1388(1)	27.80	pos	7	0.3	$C_{16}H_{21}O_7N$	
340.1388(2)	28.16	pos	7	1.3	$C_{16}H_{21}O_7N$	
340.1388(3)	28.90	pos	8	0.3	$C_{16}H_{21}O_{7}N$	
239.0677	26.78	neg	7	8.0	$C_{10}H_{12}O_5N_2$	Dinoterb
372.1491	24.99	neg	8	2.1	?	

Vughs et al, Environ. Sci. Pollut.Res. 2016

Conclusions

- · Nitrogen labeling is a new innovative approach for the detection of nitrogen containing by-products
- By applying a fractionation method to MP UV treated water samples, the presence of N-DBPs and mutagenicity in the Ames test were shown to be correlated
- · A selection of byproducts that are likely to contribute to the mutagenic response were identified

Outlook

- Identification and quantification of more by-products
- Evaluation of the N-DBPs by more extensive QSAR and read across analysis and testing of (mixtures
 of) the N-DBPs in the Ames fluctuation tests
- Using other analytical techniques (GC MS, HILIC, APCI, APPI) to analyze fractions
- Labeling experiments with aromatic amino acids as precursors

Acknowledgements

Dennis Vughs, Kirsten Baken, Pim de Voogt, Annemarie van Wezel

Bram Martijn

This study was performed within the framework of the Joint Research Program of the Dutch water companies (BTO) and was co-financed with TKI-funding from the Topconsortia for Knowledge & Innovation (TKI's) of the Ministry of Economic Affairs of the Netherlands.