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Abstract: The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous
skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida.
The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use
in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study
was the screening of new species of the order Verongiida to find another renewable source of naturally
prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which
could be farmed on large scale using marine aquaculture methods. In this study, the demosponge
Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a
potential source of chitin for the first time. Various bioanalytical tools including scanning electron
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microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray
ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used
to confirm the discovery of α-chitin within the skeleton of P. arabica. The current finding should make
an important contribution to the field of application of this verongiid sponge as a novel renewable
source of biologically-active metabolites and chitin, which are important for development of the blue
biotechnology especially in marine oriented biomedicine.

Keywords: chitin; scaffolds; biological materials; demosponges; Pseudoceratina arabica

1. Introduction

Structural aminopolysaccharide chitin is one of the oldest biopolymers due to its presence in fungi
which appeared on our planet around 2.4 billion years ago [1]. In 1811, Henri Braconnot discovered
chitin in the form of an alkali-resistant fraction during his studies on higher fungi and, consequently,
termed it as fungine (for review see [2]). The currently used term chitin, however, has been proposed in
1823 by Auguste Odier who used beetle cuticles to isolate similar biomaterial during alkali treatment
with hot KOH solutions [3]. Chitin has been found in skeletal structures of diverse unicellular
organisms (yeasts, protists) and invertebrate organisms (corals, annelids, molluscs, arthropods) with
exception of crustose coralline algae; cell walls of diatoms and skeletons of sponges (see for review [4,5]).
The existence of chitin within the marine demosponges and glass sponges’ skeletons was reported for
the first time only in 2007 [6,7]. The first report on chitin identification in siliceous cell walls (frustules)
of diatoms was carried out in 2009 [8]. Intriguingly, the presence of chitin in crustose coralline algae
has been described in 2014 [9]. Nowadays, chitin has been reported in 17 species of marine [10] and
in two species of freshwater sponges [11,12]. One of the special characteristics of poriferan chitin is
the 3D fibrous nature, which has been recognized as a naturally prefabricated tubular scaffold that
follows the morphology especially of keratosan demosponges [13–15]. These unique 3D architectures
of such scaffolds are typical for representatives of the Verongiida order (subclass Verongimorpha,
class Demospongiae) and open perspectives for their applications in waste treatment [16], tissue
engineering [14,17,18], electrochemistry [19] as well as extreme biomimetics [2,20–23]. Due to the fact
that manufacturing of fungi, as well as crustaceans chitin into 3D sponge-like scaffolds, is difficult and
expensive, the extensive research of species-specific morphology and structure of the chitin-scaffolds
of sponge origin as “ready to use” materials still remain important for practical applications.

Representatives of Verongiida demosponges contain aplystane-type and bromotyrosine-derived
secondary metabolites, which is a unique feature within Demospongiae. This is a very distinct
chemotaxonomic marker for all members of the order Verongiida [24–26]. It has been proved that
bromotyrosine-derived alkaloids possess antimicrobial, antifungal, cytotoxic, and antimalarial activity
(for review see [27–34]). Interestingly, only nudibranchs represent the natural predator of the verongiid
sponges [35]. As reported previously [36], some of bromotyrosines also showed anti-chitinase activity.
Consequently, it was suggested that bromotyrosine related compounds localized within chitinous
skeletons of verongiid sponges can inhibit the chitinases of bacterial and fungal origins and in this
way protect the integrity of sponge skeleton [13].

So far, only two representative species of the Verongiida order exist in the Red Sea, namely
Pseudoceratina arabica and Suberea mollis. Both sponges have been extensively investigated by our group
to identify their bioactive compounds. Recently, several bromotyrosine alkaloids and halogenated
compounds with different biological activities have been reported from these two sponges [27–31,37,38].
Due to the ability of diverse chitin-producing sponges to grow under marine ranching conditions (see
for overview [39]), poriferan chitin constitutes a renewable source of such unique naturally occurring
scaffolds. This encouraged studies on monitoring of novel demosponge species with chitinous
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skeletons. Therefore, this study focused on the bromotyrosines producing Red Sea demosponge
Pseudoceratina arabica (Figure 1) where the presence of chitin has never been reported before.Mar. Drugs 2018, 16, x 3 of 17 

 

 

Figure 1. The fragment of the dried specimens of P. arabica demosponge used in this study. 

2. Results 

Figure 2 clearly shows that the alkali treatment resulted in depigmented, protein-free, fibrous 
scaffolds with residual siliceous spicules and foreign, sandy microparticles within the fibers (Figure 
3). Observations of these contaminants into the NaOH-treated fragments of P. arabica support our 
previous suggestion about the allochronic origin of sponges from Pseudoceratinidae family [33]. 

 

Figure 2. Completely demineralized and pigment-free scaffolds isolated from the sponge P. arabica. 

Figure 1. The fragment of the dried specimens of P. arabica demosponge used in this study.

2. Results

Figure 2 clearly shows that the alkali treatment resulted in depigmented, protein-free, fibrous
scaffolds with residual siliceous spicules and foreign, sandy microparticles within the fibers (Figure 3).
Observations of these contaminants into the NaOH-treated fragments of P. arabica support our previous
suggestion about the allochronic origin of sponges from Pseudoceratinidae family [33].
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Figure 3. Alkali-treated fibers of P. arabica under the optical microscope showing foreign spicules (A) 
and microparticles of sand (B, C) (arrows). 

SEM microphotographs of the scaffolds isolated from P. arabica before (Figure 4) and after 
(Figure 5) HF-treatment show that only treatment using diluted HF water solution leads to 
dissolution and removal of sand microparticles as well as spicules and result in silica-free, pure, 
microfibers with high structural integrity, as observed before in other verongiid sponges [6,13,15,40] 
(Figure 5). These results were also confirmed using light as well as fluorescent microscopy (Figure 6). 

Figure 3. Alkali-treated fibers of P. arabica under the optical microscope showing foreign spicules (A)
and microparticles of sand (B, C) (arrows).

SEM microphotographs of the scaffolds isolated from P. arabica before (Figure 4) and after (Figure 5)
HF-treatment show that only treatment using diluted HF water solution leads to dissolution and
removal of sand microparticles as well as spicules and result in silica-free, pure, microfibers with high
structural integrity, as observed before in other verongiid sponges [6,13,15,40] (Figure 5). These results
were also confirmed using light as well as fluorescent microscopy (Figure 6).
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Figure 4. SEM images of alkali-treated skeletal fibers of P. arabica. Microparticles of siliceous foreign 
sponge spicules (A) and sand particles (B) are marked with arrows. Some parts of partially 
demineralized fibers remain to be free from foreign particles (C). 

Figure 4. SEM images of alkali-treated skeletal fibers of P. arabica. Microparticles of siliceous
foreign sponge spicules (A) and sand particles (B) are marked with arrows. Some parts of partially
demineralized fibers remain to be free from foreign particles (C).
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Figure 5. SEM images of P. arabica fibers after desilicification in 10% of HF under different levels of 
magnification (A–C). 

Figure 5. SEM images of P. arabica fibers after desilicification in 10% of HF under different levels of
magnification (A–C).
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Figure 6. Light microscopy (A, B) and fluorescence (C, D) microscopy images of P. arabica fibers after 
desilicification in 10% HF lacking of spicules and other foreign contaminants in investigated fibers. 

Typically, Calcofluor white staining (CFW) was used as the first stage of chitin identification in 
completely demineralized (including HF-based treatment) sponge skeletons. This fluorescent dye is 
commonly used for staining β-(1→3) and β-(1→4) linked polysaccharides including chitin. 
Consequently, after binding to polysaccharides, CFW dye exhibits bright blue light under UV 
excitations [41]. 

 

Figure 7. Completely purified fibers of P. arabica after CFW staining: (A) light microscopy image and 
(B) fluorescence microscopy image of the same location (light exposure time 1/4800) confirm the 
chitinous nature of the fibers. 

Examination of the scaffolds isolated from P. arabica after CFW staining using fluorescent 
microscopy demonstrate strong fluorescence under light exposure time as short as 1/4800 s (Figure 7 
B). Similar conclusions were reported previously for chitin isolated from sponges of marine 
[6,10,15,32,33,40] as well as freshwater [12] origin and fossilized chitin-containing remains [11,41]. 

More precise methods were applied to study in details the presence and identification of chitin 
in isolated scaffolds. FTIR spectroscopy is considered as an effective technique for structural analysis 

Figure 6. Light microscopy (A,B) and fluorescence (C,D) microscopy images of P. arabica fibers after
desilicification in 10% HF lacking of spicules and other foreign contaminants in investigated fibers.

Typically, Calcofluor white staining (CFW) was used as the first stage of chitin identification
in completely demineralized (including HF-based treatment) sponge skeletons. This fluorescent
dye is commonly used for staining β-(1→3) and β-(1→4) linked polysaccharides including chitin.
Consequently, after binding to polysaccharides, CFW dye exhibits bright blue light under UV
excitations [41].

Examination of the scaffolds isolated from P. arabica after CFW staining using fluorescent
microscopy demonstrate strong fluorescence under light exposure time as short as 1/4800 s
(Figure 7B). Similar conclusions were reported previously for chitin isolated from sponges
of marine [6,10,15,32,33,40] as well as freshwater [12] origin and fossilized chitin-containing
remains [11,41].
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Figure 7. Completely purified fibers of P. arabica after CFW staining: (A) light microscopy image
and (B) fluorescence microscopy image of the same location (light exposure time 1/4800) confirm the
chitinous nature of the fibers.
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More precise methods were applied to study in details the presence and identification of chitin in
isolated scaffolds. FTIR spectroscopy is considered as an effective technique for structural analysis of
different polysaccharides including chitin. Recently, FTIR analysis was successfully used to obtain
information about of type of polymorph form of chitin [42].

The acquired FTIR spectra of demineralized scaffolds of P. arabica and standard α-chitin are
presented in Figure 8. Between 1700 and 1500 cm−1, the different signatures characteristic for chitin
polymorphs were observed. In this amidic moiety region, the investigated sample showed strong
band related to the stretching vibrations of C=O group characteristic for band I of the amidic moiety.
This band, registered for studied sample, possessed twin peaks at 1651 and 1633 cm−1, which is
related with the presence of two types of carbonyl groups within the chitin chain, and it is also
typical for α-chitin. The first peak derives from the specific intermolecular hydrogen bond of carbonyl
group and hydroxymethyl group on the next chitin residue in the same chain. The second peak is a
result of the intramolecular hydrogen bonds of carbonyl with the amide groups. Additionally, in the
purified sponge chitin sample, as well as in the α-chitin standard, the characteristic intense band at
vmax 948 cm−1 which is referred to γCHx bond was observed. Moreover, the α-chitin characteristic
band assigned to β-glycosidic bond at 895 cm−1 is well visible in the studied samples. However, it
should be noted that the characteristic bands for CaCO3 (855–876 cm−1) and SiO2 (720 cm−1) were not
observed in the spectrum of P. arabica, suggesting that procedure of chitin isolation resulted in chitin of
high purity. Additionally, the comprehensive analysis of acquired spectra shows that recorded bands
correspond with those referred in the α-chitin reference sample.
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Figure 9 shows the Raman spectrum of chitin isolated from P. arabica compared with the spectrum
of the α-chitin reference. Characteristic bands for α-chitin can be found in the spectrum of the isolated
chitin within the spectral resolution of the measurement. The existence of two bands characteristic
to amine band I at vmax 1657 and 1624 cm−1 as well as intense band related to the β-glycosidic bond
at vmax 895 cm−1 clearly indicate that chitin isolated from P. arabica is of α isomorph. Moreover, the
bands in the spectrum are in good agreement with previously published data [5,10,43,44].
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Previously, in order to confirm the presence of chitin in diverse sponges, the chitinase digestion
test has been successfully applied [6,10,15,32,33,40]. This enzyme has unique ability to decompose
chitin into low-molecular oligomers such as N-acetyl-D-glucosamine (GlcNAc). Therefore, the action
of chitinase leads to the loss of chitin integrity and the release of residual chitin microfibers of steadily
decreasing size. The changes in the structure of treated fibers can be observed using light microscopy
(Figure 10). This test is unequivocal and provides additional confirmation of the successful chitin
isolation from the sponge under study here.
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D-glucosamine (dGlcN) is the product of chitin’s acidic hydrolysis which can be readily
identified by electrospray-ionization mass spectroscopy (ESI-MS) measurements. Thus, ESI-MS
spectroscopy becomes a standard method for chitin identification which usability was shown in
complex organisms [40,45,46] and even in 505-million-year-old chitin-containing fossil remnants [47].

In the positive ESI-MS spectra, D-glucosamine (dGlcN) standard revealed several main ion peaks
with m/z = 162.08, 180.09, 202.07, 359.17, and 381.15 (Figure 11). The ion peak at m/z = 180.09 and
202.07 correspond to a [M + H]+ and [M + Na]+ species with molecular weight of 179.09 which is
dGlcN molecule (calculated: 179.1). The ion peak at m/z = 161.85 corresponds to a [M + H]+ specie
with molecular weight of 160.85 that is dGlcN ion [M−H2O + H]+ without one water molecule
(calculated: 161.1). There are also week ion peaks at m/z = 359.17 and 381.15 corresponding to
[2M + H]+ and [2M + Na]+ species which are proton- or sodium-bound dGlcN noncovalent dimmer.
The ESI-MS spectra of the P. arabica hydrolysate has revealed nearly identical ion peaks to those of the
D-glucosamine standard signal composition (Figure 12). This result clearly demonstrates the presence
of dGlcN in the hydrolysate and correspondingly chitin in the sample.
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3. Discussion

Seas and oceans are a huge source of various invertebrate animals with potential to be used in
biomedicine. For this reason, these organisms are frequently being tested for the presence of various
useful products (unique secondary metabolites, biopolymers and biological materials), and many of
them have been found in marine sponges. The order Verongiida has been recognized to be divided
into four families, which differ in the structure and composition of skeletal fibers [48,49]. The largest
verongiid family is Aplysinidae (52 species from three genera: Aiolochroia, Aplysina, and Verongula).
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This family is characterized by an anastomosing fiber skeleton with both pith and bark elements. The
second largest verongiid family is Ianthellidae (21 species in four genera: Anomoianthella, Hexadella,
Ianthella, and Vansoestia). The presence of eurypylous choanocyte chambers is a feature distinguishing
this family from the others verongiids. Aplysinellidae includes 17 species in three genera (Aplysinella,
Porphyra, and Suberea) with dendritic fiber skeleton possessing both pith and bark elements, which
are typical morphological features characteristic for representatives of this family. The verongiid
P. arabica (Keller, 1889) that has been investigated in this study belongs to the family Pseudoceratinidae,
which is currently including four species representing the only genus Pseudoceratina. Representatives
of this family are characterized by a dendritic fiber skeleton with only pith elements. Interestingly,
sponges of the genus Pseudoceratina are assumedly the richest sources of pharmacologically active
alkaloids with diverse chemical skeletons within the order Verongiida [33]. Among various secondary
metabolites isolated from Pseudoceratina species are: moloka’iamine derivatives, phenolic halogenated
compounds, psammaplysins, pseudoceratinamide A and B, ceratinines, moloka’iakitamide, aplysterol,
and aplysamine [33]. To date, a variety of secondary metabolites obtained from P. arabica have been
purified using the solvent extraction method. Surprisingly, there are no literature reports on the
extraction of these metabolites using the alkaline-based solution as well as about structural stability of
such biomolecules at pH above 7. Alkaline stepwise extraction procedures were recently reported as
effective methods for isolation of chitin-based scaffolds with bromotyrosines from other representatives
of the order Verongiida and to “squeeze the full potential” of marine sponges [39]. However, it is
necessary to prove, the pharmacological and biotechnological potential of the Red Sea verongiid
sponges especially because of the recently published intriguing results concerning anti-tumorigenic and
anti-metastatic activity of Aeroplysinin-1 which is one of the main bromotyrosine derivatives extracted
from Verongiida [34]. All Verongiida sponge samples analyzed until now were found to exhibit a
chitin-based scaffold, and here it was proved that P. arabica is the new example of chitin-containing
sponge from this order. Apart from the bioactive metabolites of P. arabica, which are excellently
described in the literature, here it was strongly demonstrated that this marine sponge can be effectively
used also as a source of naturally prefabricated 3D chitinous scaffold with open-pore structure.
Unfortunately, there is still lack of information concerning the interrelationships between the secondary
metabolites and chitinous skeleton of P. arabica, especially with respect to their localization within so
called spherulous cells. However, it known that spherulous cells are rich on bromotyrosines and have
been found within skeletal fibres of verongiids [50]. The questions about the role of bromotyrosines in
regeneration of chitinous skeleton as well as the growth rate of this species are still open. However,
these data are crucial for the future estimation of the biotechnological, biomedical and pharmaceutical
potential of P. arabica in the region.

It is worth to mention that, the 3D macroporous biomaterials of sponge origin gain a particular
interest in tissue engineering, water purification, catalysis, and electrochemistry [51]. Preliminary
research done with the use of corresponding 3D chitinous-scaffolds isolated from A. aerophoba [17] and
Ianthella basta [18] confirm their biocompatibility with human mesenchymal stromal cells; supporting
their adhesion, viability, growth, and proliferation. Additional, useful features of chitinous scaffolds of
poriferan origin are their simplicity and ease of isolation. Calculated swelling capacity for chitinous
matrices isolated from P. arabica is equal to 255 ± 8%. There are no doubts that comparative studies on
interconnected porosity and swelling ability between chitinous matrices of P. arabica and that from other
verongiid species [17,18] should be carried out. Consequently, the discovery of chitin in other members
of the genus Pseudoceratina would be the next stage in the evaluation of the possibility to accept these
organisms as a new source of 3D chitin scaffolds with macroporosity which range between 150–350 µm
for biomedical applications. We suggest that the opportunity for ex situ cultivation of P. arabica can be
an important advantage, which enables the use of this sponge for large scale applications in diverse
advanced technologies.
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4. Materials and Methods

4.1. Collection of Samples

Specimens of marine sponge Pseudoceratina arabica (Keller, 1889) (Porifera: Demospongiae:
Verongiida: Pseudoceratinidae) described initially as Psammaplysilla arabica Keller, 1889 were collected
by hands using SCUBA from the southern part of the Egyptian Hurghada (N 27◦02′46.8” E 33◦54′21.4”)
in July 2017 at depths up to 25 m. The yellowish green encrusting sponge with its conulose surface
measuring about 1–2 cm thick. The preserved sponge in ethanol is completely black in color with
dark-discolored ethanol. The conules on the sponge surface are bluntly rounded in shape, compressible
and rubbery. The individual conules measure about 2–5 mm. The sponge skeleton consists of irregular
and scattered fibers composed of pith. The outline and branching were irregular with thickness
measuring between 80 and 300 µm. The sponge is similar to the sample collected in Red Sea from
Eritrea. The sponge voucher (10.0× 4.0× 1.0 cm) was kept in the Zoological Museum of the University
of Amsterdam with reference no. 17951. A similar specimen of the sponge was kept at Suez Canal
University with collection reference DY-61. Collected specimens were kept on ice after collection.
After returning to our laboratory, the specimens were freeze-dried (Figure 1) and transferred to the
bioanalytical laboratories at TU Bergakademie Freiberg (Freiberg, Germany).

4.2. Isolation of Chitin from P. Arabica

The isolation of chitin scaffolds from P. arabica (Figure 1) was carried out according to our previous
reports [12,40,52]. The methodology consists of four steps (Figure 11): first, the skeleton of P. arabica
was incubated in deionized water at room temperature for one hour to remove possible water-soluble
sediment particles and salts. In the second step, the samples were treated with 3 M HCl at room
temperature for 6 h in order to eliminate possible residual calcium carbonate-based debris (micro
fragments of crustacean carapaces and mollusc shells) from the skeleton of P. arabica. Afterwards,
the samples were washed several times with deionized water until achieving a pH of 6.5 followed
by treatment with 2.5 M NaOH at 37 ◦C for 72 h to remove pigments and proteins. Due to the
observation of the foreign spicules and their fragments in the samples after 72 h of alkali treatment,
additional desilicification was needed. Consequently, alkali-treated samples were accurately rinsed
with deionized water and stored in a plastic vessel containing appropriate amount of 10% hydrofluoric
acid (HF) solution (step four). The vessel was covered in order to prevent the evaporation of HF. The
desilicification process was conducted at room temperature for 12 h. The influence of alkaline and
strong acidic treatments on the structure of skeleton of the studied sponge was investigated using
stereo, white light and fluorescence microscopy. Finally, the isolated material was washed several
times with deionized water up to a pH level of 6.5. The fibrous translucent scaffolds (Figure 2) were
placed into 250 mL large GLS 80 Duran glass bottles containing deionized water and stored at 4 ◦C for
further analyses.

4.3. Light and Fluorescent Microscopy Analyses and Imaging

Collected sponge samples and isolated chitinous scaffolds were observed using BZ-9000
microscope (Keyence, Osaka, Japan) in the light as well as in the fluorescent microscopy modus.

4.4. Scanning Electron Microscopy Analysis

The morphology and microstructure of isolated and purified chitinous scaffolds, as well as
untreated samples of P. arabica, were studied on the basis of SEM images using a Philips ESEM XL
30 scanning electron microscope (FEI Company, Peabody, MA, USA). Before analysis, samples were
covered with a carbon layer for one minute using an Edwards S150B sputter coater (BOC Edwards,
Wilmington, MA, USA).
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4.5. Calcofluor White Staining Test

Due to the fact that Calcofluor White (Fluorescent Brightener M2R, Sigma-Aldrich, Taufkirchen,
Germany) exhibits enhanced fluorescence after binding to chitin [53,54], this staining method was
applied to investigate the location of chitin in the completely purified fibers of P. arabica. The selected
chitinous fibers were soaked in 0.1 M KOH-glycerine-water solution and few drops of the 0.1% CFW
solution were added. This mixture was incubated for 3 h in darkness, washed several times with
demineralized water, dried at room temperature and examined using BZ-9000 microscope (Keyence,
Osaka, Japan).

4.6. FTIR and Raman Spectroscopy

FTIR spectra of chitinous scaffolds were acquired using a Nicolet 210c FTIR spectrometer. The
samples were analysed using the ATR system with resolution equals 4 cm−1. A micro-Raman system
composed by a spectrometer (RamanRxn1™, Kaiser Optical Systems Inc., Ann Arbor, MI, USA), a
785 nm excitation laser diode (Invictus 785, Kaiser Optical Systems Inc., Ann Arbor, MI, USA) and an
upright microscope (DM2500 P, Leica Microsystems GmbH, Wetzlar, Germany) was used to acquire
the Raman spectra from the sample surface. Each spectrum was registered in the range 150–3250 cm−1

with resolution of 4 cm−1, using a total acquisition time of 80 s. The fluorescence background was
subtracted in MATLAB (MathWorks Inc., Natick, MA, USA) with a baseline procedure.

4.7. Chitinase Digestion Test

Yatalase®from culture supernatants of Corynebacterium sp. OZ-21 (Cosmo Bio, Tokyo, Japan) was
used for the digestion test. Yatalase is a complex enzyme, consisting mainly of chitinase, chitobiase
and β-1,3-glucanase. One unit of this enzyme released one µmol of N-acetylglucosamine from 0.5%
chitin solution and 1 µmol of p-nitrophenol from p-nitrophenyl-N-acetyl-β-D-glucosaminide solution
in 1 min at 37 ◦C and pH 6.0. The selected, completely demineralized chitinous scaffolds of P. arabica
(Figure 3) were incubated in an enzyme solution containing 10 mg/mL Yatalase dissolved in phosphate
buffer at pH 6.0 for 2 h. The progress of digestion was monitored under light microscopy using BZ-9000
microscope (Keyence, Osaka, Japan).

4.8. Estimation of N-Acetyl-D-Glucosamine (NAG) Content and Electrospray Ionization Mass Spectrometry
(ESI-MS)

The Morgan–Elson assay was used in order to evaluate the N-acetyl-D-glucosamine released after
chitinase treatment, as described previously. For more details see [6,11,12].

Sample preparation for the ESI-MS analysis was performed by the hydrolysis of organic matrixes
obtained after HF-treatment of the biological samples in 6M HCl (24 h at 90 ◦C). The samples, after HCl
hydrolysis were filtrated with a 0.4 micron filter and freeze-dried in order to remove any excess HCl.
The standard D-glucosamine as a control was purchased from Sigma (Sigma-Aldrich, Taufkirchen,
Germany Both the commercial standard and the prepared sample were dissolved in water before
ESI-MS analysis. ESI-MS measurements were performed on an Agilent Technologies 6230 TOF LC/MS
spectrometer (Applied Biosystems, Foster City, CA, USA) in line as a detector in the analytical HPLC
instrument. Nitrogen was used as the nebulizing and desolation gas.

5. Conclusions

The results of this investigation showed the need to develop new, simultaneous, more effective
methods of extraction of both biologically active compounds and chitinous scaffolds from P. arabica
and other species. The possibility of farming of Pseudoceratina species from primmorph-based cultures
and under marine ranching conditions possesses high potential for advanced blue biotechnology. Due
to the fact that, the P. arabica species live at low depths (around 10 m) development of a new method
for their aquaculture in tropical areas become very attractive from the industrial and economical
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point of view. It is already confirmed that chitinous scaffolds isolated from representatives of the
order Verongiida are lucrative for the development of regenerative medicine. Further research could
also be conducted to determine the possibility of technological application of chitinous scaffolds of
P. arabica origin as advanced 3D composite materials under conditions of extreme biomimetics or
adsorbents. We suggest that this study will trigger the future research dedicated to both (i) discovery of
chitin within other representatives of the family Pseudoceratinidae (ii) and their utilization in modern
technologies improving the quality of human life and health.
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