
Georgia Institute of Technology
SLIM

Event-driven workflows for large-scale
seismic imaging in the cloud
Philipp A. Witte , Mathias Louboutin , Henryk Modzelewski*,
Charles Jones , James Selvage and Felix J. Herrmann

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2019 SLIM group @ Georgia Institute of Technology.

Disclaimer

● The following work was developed using Amazon Web
Services (AWS) and therefore contains terminology
referencing AWS services and product names

● Technology presented in this talk is not tied to one specific
cloud provider and has been replicated on other platforms

Seismic wave equation-based inversion

● Solve wave equations for many sources
● Propagate over many wavelengths
● Massive data I/O
● Curse of dimensionality
● Infeasible for very large models (e.g. SEAM)
● Requires HPC environments

FWI LS-RTM (< 120$)

SEAM (?$)

 Cons
● Very high upfront + maintenance

costs
● Only available to few companies +

academic institutions
● Compromises regarding hardware

(architecture/CPUs/GPUs/RAM)

Seismic inversion on HPC clusters

Conventional compute environment: HPC clusters

 Pros
● Best achievable performance
● 40+ years of experience and

existing software
● Low mean-time-between failures

(MTBF)
● Very fast inter-node connections

possible (Infiniband)

Seismic inversion in the cloud

Cloud computing

 Pros
● Theoretically unlimited scalability
● High flexibility (hardware, jobs)
● No upfront + maintenance costs:

pay-as-you-go
● Available to anyone
● Latest hardware and architectures

available (GPUs, ARM)

 Cons
● Slower inter-node connections

(depending on platform)
● Oftentimes larger MTBF
● High costs if not used properly
● Need to transition software
● Steep learning curve

Moving to the cloud

Lift and shift

Legacy Fortran
or C code

Moving to the cloud

Lift and shift

Legacy Fortran
or C code

● Requires little to no work
● Long cluster start-up time and cost
● Idle instances/resilience/bandwidth/etc.
● Technically infeasible for industry scale

Moving to the cloud
Go serverless

(and re-engineer)

Moving to the cloud
Go serverless

(and re-engineer)

● Save cost (up to 10x): no idle instances,
lower start-up time

● Resilience managed by cloud platform
● Requires re-engineering of software

Serverless LS-RTM in the cloud

Typical components of LS-RTM*:

● 1. Compute gradient for all/subset of source locations:

● 2. Sum gradients:

● 3. Update image based on optimization algorithm (SGD, CG, etc.):

* e.g. Valenciano, 2008; Dong et al., 2012; Zeng et al. 2014

Serverless LS-RTM in the cloud

Serverless workflow with Step Functions:

● Algorithm as collection of states*
● No compute instances required to

execute workflow (i.e. serverless)
● States invoke AWS Lambda functions to

run Python code
● Lambda functions: upload + run code w/o

resource allocation

*Friedmann and Pizarro, AWS Compute Blog, 2017

Serverless LS-RTM in the cloud
State machine defined as json file

Gradient computations

Compute gradients of the LS-RTM
objective function:

● embarrassingly parallel
● model predicted data +

backpropagate residual +
imaging condition

● compute/memory heavy process
(store/recompute wavefields)

Gradient computations

Gradient computations

Nested levels of parallelization:

● Parallelize shot records (AWS Batch)
● Domain decomposition (MPI)
● Multithreading (OpenMP)
● Each gradient computed on individual

instance or cluster of instances
(cluster of clusters)

Gradient computations

Software to compute gradients:

● Batch runs docker containers
● Solve wave equations using Devito*
● Automated performance optimizations

(loop blocking, vectorization, refactoring,
OMP, MPI, etc.)

* Luporini et al., 2018; Louboutin et al., 2019

Gradient computations

Summation of gradients

● Gradients stored in object storage (S3)
● Virtually unlimited I/O scalability
● Send object IDs to message queue
● Event-driven gradient summation using

Lambda functions

Gradient computations

Gradient computations

Event-driven gradient reduction

● AWS Lambda functions
● Cheaper than compute nodes
● Asynchronous and parallel
● Invoked as soon as at least 2 gradients

are available
● Stream gradients from S3 -> sum ->

write back
● Update image after final summation

Gradient computations

Serverless workflow:

● No additional EC2 instances during
gradient computation

● State machine waits for updated
image

● Automatic progression to next
iteration

Gradient computations

Serverless workflow:

● No additional EC2 instances during
gradient computation

● State machine waits for updated
image

● Automatic progression to next
iteration

● Clean up resources after final iteration

S3

Numerical examples

Sparsity-promoting LS-RTM of the BP Synthetic 2004 model:

● 1348 shot records
● Velocity model: 67.4 x 11.9 km (10,789 x 1,911 grid points)
● 20 iterations of linearized Bregman method
● Batchsize of 200 shot records per iteration
● Curvelet-based sparsity promotion

BP Synthetic 2004

Billette and Brandsberg-Dahl, 2004

Numerical examples

Sparsity-promoting LS-RTM on the BP Synthetic 2004 model

Image after ~3 data passes (total cost of < 120 $)

Numerical examples

Reverse-time migration of the BP TTI model:

● 1641 shot records
● Velocity model: 78.7 x 11.3 km (12,596 x 1,801 grid points)
● Anisotropic modeling using pseudo-acoustic TTI equations*
● True adjoints of linearized Born scattering operator
● Domain-decomposition to compute gradients
● Each gradient computed on MPI cluster of 6 instances (no spot instances)

BP TTI 2007

*Zhang et al., 2011

Numerical examples

Reverse-time migration of the BP TTI model

RTM image (total cost of approx. 420 $)

Numerical examples

RTM image (total cost of approx. 420 $)

Numerical examples

Numerical examples

Serverless approach:

● Full flexibility
● On-demand + spot instances or

combination of both
● Large number of instance types

(memory, compute, GPU, HPC nodes)
● Adjust resources according to priority:

cost, turn-around time, importance, etc.

Cost comparison

Compute 100 gradients for BP model:

● Runtime varies for each gradient
(EC2 related, varying max. offset, etc.)

● Fixed cluster: nodes have to wait until
last gradient is computed

● Batch: each instance runs only as long
computations last

● No cost during wait time for other
gradients

Sorted runtimes of 100 gradients

Cost comparison

Sorted runtimes of 100 gradients

Strong scaling - MPI

● Fixed workload: 1 gradient
● Runtime as function of no. of instances (per gradient)
● Good speed-up but significant cost increase

Conclusions

Seismic imaging in the cloud:

● Need to rethink how to bring software to the cloud
● Lift and shift approach not ideal (complexity, resilience, cost)
● Instead: take advantage of new cloud technologies
● High-throughput batch computing, serverless/event-driven

computations, object storage, spot instances
● Only pay what you use: up to 10x cost reduction
● Software based on separation of concerns + abstractions is

prerequisite to go serverless

Future directions

Go large:

● Collaboration with cloud providers to run at industry-scale
● 3D TTI RTM and LS-RTM
● SEAM model: long offset data acquisition w/ 3D elastic modeling
● Keynote speech at 4th EAGE workshop on HPC for Upstream

(Dubai, Oct. 8, presented by F. J. Herrmann)

Check for updates on our website and on Researchgate:

https://slim.gatech.edu/

https://www.researchgate.net/lab/SLIM-Felix-J-Herrmann

https://slim.gatech.edu/
https://www.researchgate.net/lab/SLIM-Felix-J-Herrmann

Acknowledgments

This research was funded by the Georgia Research Alliance and the
Georgia Institute of Technology.

Arxiv preprint: https://arxiv.org/abs/1909.01279

