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Disclaimer

● The following work was developed using Amazon Web 
Services (AWS) and therefore contains terminology 
referencing AWS services and product names

● Technology presented in this talk is not tied to one specific 
cloud provider and has been replicated on other platforms



Seismic wave equation-based inversion

● Solve wave equations for many sources
● Propagate over many wavelengths
● Massive data I/O
● Curse of dimensionality
● Infeasible for very large models (e.g. SEAM)
● Requires HPC environments

FWI LS-RTM  (< 120$)

SEAM (?$)



       Cons
● Very high upfront + maintenance 

costs
● Only available to few companies + 

academic institutions
● Compromises regarding hardware 

(architecture/CPUs/GPUs/RAM)

Seismic inversion on HPC clusters

Conventional compute environment: HPC clusters

       Pros
● Best achievable performance
● 40+ years of experience and 

existing software
● Low mean-time-between failures 

(MTBF)
● Very fast inter-node connections 

possible (Infiniband)



Seismic inversion in the cloud

Cloud computing

       Pros
● Theoretically unlimited scalability
● High flexibility (hardware, jobs)
● No upfront + maintenance costs: 

pay-as-you-go
● Available to anyone
● Latest hardware and architectures 

available (GPUs, ARM)

       Cons
● Slower inter-node connections 

(depending on platform)
● Oftentimes larger MTBF
● High costs if not used properly
● Need to transition software
● Steep learning curve



Moving to the cloud

Lift and shift

Legacy Fortran
or C code



Moving to the cloud

Lift and shift

Legacy Fortran
or C code

● Requires little to no work
● Long cluster start-up time and cost
● Idle instances/resilience/bandwidth/etc.
● Technically infeasible for industry scale



Moving to the cloud
Go serverless 

(and re-engineer)



Moving to the cloud
Go serverless 

(and re-engineer)

● Save cost (up to 10x): no idle instances, 
lower start-up time

● Resilience managed by cloud platform
● Requires re-engineering of software



Serverless LS-RTM in the cloud

Typical components of LS-RTM*:

● 1. Compute gradient for all/subset of source locations:

● 2. Sum gradients:

● 3. Update image based on optimization algorithm (SGD, CG, etc.):

* e.g. Valenciano, 2008; Dong et al., 2012; Zeng et al. 2014



Serverless LS-RTM in the cloud

Serverless workflow with Step Functions:

● Algorithm as collection of states*
● No compute instances required to 

execute workflow (i.e. serverless)
● States invoke AWS Lambda functions to 

run Python code
● Lambda functions: upload + run code w/o 

resource allocation

*Friedmann and Pizarro, AWS Compute Blog, 2017



Serverless LS-RTM in the cloud
State machine defined as json file



Gradient computations

Compute gradients of the LS-RTM 
objective function:

● embarrassingly parallel
● model predicted data + 

backpropagate residual +       
imaging condition

● compute/memory heavy process 
(store/recompute wavefields)



Gradient computations



Gradient computations

Nested levels of parallelization:

● Parallelize shot records (AWS Batch)
● Domain decomposition (MPI)
● Multithreading (OpenMP)
● Each gradient computed on individual 

instance or cluster of instances         
(cluster of clusters)



Gradient computations

Software to compute gradients:

● Batch runs docker containers
● Solve wave equations using Devito*
● Automated performance optimizations    

(loop blocking, vectorization, refactoring, 
OMP, MPI, etc.)

* Luporini et al., 2018; Louboutin et al., 2019



Gradient computations

Summation of gradients

● Gradients stored in object storage (S3)
● Virtually unlimited I/O scalability
● Send object IDs to message queue
● Event-driven gradient summation using 

Lambda functions



Gradient computations



Gradient computations

Event-driven gradient reduction

● AWS Lambda functions
● Cheaper than compute nodes
● Asynchronous and parallel
● Invoked as soon as at least 2 gradients 

are available
● Stream gradients from S3 -> sum -> 

write back
● Update image after final summation



Gradient computations

Serverless workflow:

● No additional EC2 instances during 
gradient computation

● State machine waits for updated 
image

● Automatic progression to next 
iteration



Gradient computations

Serverless workflow:

● No additional EC2 instances during 
gradient computation

● State machine waits for updated 
image

● Automatic progression to next 
iteration

● Clean up resources after final iteration

S3



Numerical examples

Sparsity-promoting LS-RTM of the BP Synthetic 2004 model:

● 1348 shot records
● Velocity model: 67.4 x 11.9 km (10,789 x 1,911 grid points)
● 20 iterations of linearized Bregman method
● Batchsize of 200 shot records per iteration
● Curvelet-based sparsity promotion

BP Synthetic 2004

Billette and Brandsberg-Dahl, 2004



Numerical examples

Sparsity-promoting LS-RTM on the BP Synthetic 2004 model

Image after ~3 data passes (total cost of < 120 $)



Numerical examples

Reverse-time migration of the BP TTI model:

● 1641 shot records
● Velocity model: 78.7 x 11.3 km (12,596 x 1,801 grid points)
● Anisotropic modeling using pseudo-acoustic TTI equations*
● True adjoints of linearized Born scattering operator
● Domain-decomposition to compute gradients
● Each gradient computed on MPI cluster of 6 instances (no spot instances)

BP TTI 2007

*Zhang et al.,  2011



Numerical examples

Reverse-time migration of the BP TTI model

RTM image (total cost of approx. 420 $)



Numerical examples

RTM image (total cost of approx. 420 $)



Numerical examples



Numerical examples

Serverless approach:

● Full flexibility
● On-demand + spot instances or 

combination of both
● Large number of instance types 

(memory, compute, GPU, HPC nodes)
● Adjust resources according to priority: 

cost, turn-around time, importance, etc.



Cost comparison

Compute 100 gradients for BP model:

● Runtime varies for each gradient       
(EC2 related, varying max. offset, etc.)

● Fixed cluster: nodes have to wait until 
last gradient is computed

● Batch: each instance runs only as long 
computations last

● No cost during wait time for other 
gradients

Sorted runtimes of 100 gradients



Cost comparison

Sorted runtimes of 100 gradients



Strong scaling - MPI

● Fixed workload: 1 gradient
● Runtime as function of no. of instances (per gradient)
● Good speed-up but significant cost increase



Conclusions

Seismic imaging in the cloud:

● Need to rethink how to bring software to the cloud
● Lift and shift approach not ideal (complexity, resilience, cost)
● Instead: take advantage of new cloud technologies
● High-throughput batch computing, serverless/event-driven 

computations, object storage, spot instances
● Only pay what you use: up to 10x cost reduction
● Software based on separation of concerns + abstractions is 

prerequisite to go serverless



Future directions

Go large:

● Collaboration with cloud providers to run at industry-scale 
● 3D TTI RTM and LS-RTM
● SEAM model: long offset data acquisition w/ 3D elastic modeling
● Keynote speech at 4th EAGE workshop on HPC for Upstream                     

(Dubai, Oct. 8, presented by F. J. Herrmann)

Check for updates on our website and on Researchgate:

https://slim.gatech.edu/

https://www.researchgate.net/lab/SLIM-Felix-J-Herrmann

https://slim.gatech.edu/
https://www.researchgate.net/lab/SLIM-Felix-J-Herrmann
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