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Disclaimer

e The following work was developed using Amazon Web
Services (AWS) and therefore contains terminology
referencing AWS services and product names

e Technology presented in this talk is not tied to one specific
cloud provider and has been replicated on other platforms




Seismic wave equation-based inversion

FWI

Solve wave equations for many sources
Propagate over many wavelengths

Massive data I/O

Curse of dimensionality

Infeasible for very large models (e.g. SEAM)
Requires HPC environments

SEAM (?$)




‘/ Pros

Best achievable performance
40+ years of experience and
existing software

Low mean-time-between failures
(MTBF)

Very fast inter-node connections
possible (Infiniband)

Very high upfront + maintenance
costs

Only available to few companies +
academic institutions
Compromises regarding hardware
(architecture/CPUs/GPUs/RAM)



Seismic inversion in the cloud

Cloud computing

L
M amazon

I webservices™ - Microsoft Azure

Google Cloud Platform

v Pros X Cons

e Theoretically unlimited scalability e Slower inter-node connections
e High flexibility (hardware, jobs) (depending on platform)
e No upfront + maintenance costs: Oftentimes larger MTBF
pay-as-you-go High costs if not used properly
e Available to anyone Need to transition software
e Latest hardware and architectures Steep learning curve
available (GPUs, ARM)




Network
Storage

, end_kernel;
, NULLY;

or C code —n —— —— ——

Client 1




-
Storage
Legacy Fortran

or C code N

[ ]
Client 1

Requires little to no work

Long cluster start-up time and cost

|dle instances/resilience/bandwidth/etc.
Technically infeasible for industry scale




Moving to the cloud

Go serverless
(and re-engineer)

Visual workflow

M Success M Failed Cancelled

W In Progress




Moving to the cloud

Go serverless
(and re-engineer)

Visual workflow

M Success M Failed Cancelled M In Progress ‘ +
©

Save cost (up to 10x): no idle instances,
lower start-up time

® Resilience managed by cloud platform
® Requires re-engineering of software




* e.g. Valenciano, 2008; Dong et al., 2012; Zeng et al. 2014

Serverless LS-RTM in the cloud

Typical components of LS-RTM*:

2

Ng 1
minimize Z 5 HJ(m, q;) om — doPs

om

2
1=1

e 1. Compute gradient for all/subset of source locations: g, =J7 (J Sm — dng)

e 2. Sumgradients: g= g

=1

e 3. Update image based on optimization algorithm (SGD, CG, etc.):

m=dm — ag



Serverless LS-RTM in the cloud

Serverless workflow with Step Functions:

Visual workflow

e Algorithm as collection of states*

e No compute instances required to
execute workflow (i.e. serverless)

e States invoke AWS Lambda functions to
run Python code

e Lambda functions: upload + run code w/o
resource allocation

M Success M Failed Cancelled ™ In Progress

1| [+

o

*Friedmann and Pizarro, AWS Compute Blog, 2017




Serverless LS-RTM in the cloud

State machine defined as json file

Definition

Generate code snippet v Learn more [4
1
2 "Comment": "Iterator State Machine Example",
3 "StartAt": "CreateQueues",
4 mStates": {
5 "CreateQueues™: {
6 "Comment": "Create SQS gqueues and lambda triggers for the gradient reduction",
7 "Type": "Task",
8 "Resource™: "arn:aws:lambda:us-east-1:851065145468:function:CreateQueues”,
9 "ResultPath": "$",
10 "Next": "Iterator™
11 be
12 v "Iterator™: {
13 "Type": "Task",
14 "Resource": "arn:aws:lambda:us-east-1:851065145468:function:IteratorStochastic",
15 "ResultPath": "$",
16 "Next": "IsCountReached"
17 153
18 v "IsCountReached": {
19 "Type": "Choice",
20 v "Choices": [
21 {
22 "Variable": "$.iterator.continue®,
23 "BooleanEquals": true,
24 "Next": "ComputeGradient"
25) }
26 1.
27 "Default": "CleanUp"
28 153
29 v "ComputeGradient™: {

30 "Comment": "Your application logic, to run a specific number of times",

o1+




Gradient computations

Visual workflow Compute gradients of the LS-RTM
objective function:

M Success M Failed Cancelled ™ In Progress

e embarrassingly parallel

e model predicted data +
backpropagate residual +
imaging condition

e compute/memory heavy process
(store/recompute wavefields)

o] [1][+




Gradient computations

Visual workflow

M Success M Failed Cancelled ™ In Progress




Gradient computations

Nested levels of parallelization:

Parallelize shot records (AWS Batch)
Domain decomposition (MPI)
Multithreading (OpenMP)

Each gradient computed on individual
instance or cluster of instances
(cluster of clusters)

SQs




Gradient computations

Software to compute gradients: g

® Batch runs docker containers

e Solve wave equations using Devito*

e Automated performance optimizations AWS Batch
(loop blocking, vectorization, refactoring,
OMP, MPI, etc.)

performance
optimization +
JIT compilation

* Luporini et al., 2018; Louboutin et al., 2019

| 1B

. .
PDE solver (C)
o .
Devito, boto3
(Python) & J ; g s /

Python, MPICH

Ubuntu 18.04 LTS e

SQsS S3



Gradient computations

Summation of gradients

Gradients stored in object storage (S3)
Virtually unlimited 1/0 scalability

Send object IDs to message queue
Event-driven gradient summation using
Lambda functions




Gradient computations




Gradient computations

Event-driven gradient reduction

AWS Lambda functions
Cheaper than compute nodes
Asynchronous and parallel
Invoked as soon as at least 2 gradients
are available

Stream gradients from S3 -> sum ->
write back

Update image after final summation




Gradient computations

Serverless workflow:

e No additional EC2 instances during
gradient computation

e State machine waits for updated
image

e Automatic progression to next
iteration

Visual workflow

M Success M Failed Cancelled ™ In Progress




Gradient computations

Visual workflow

M Success M Failed

Cancelled ™ In Progress

-

I}

Serverless workflow:

Depth [km]

10 1

=) o £ N o
1 L 1 L

No additional EC2 instances during
gradient computation

State machine waits for updated
image

Automatic progression to next
iteration

Clean up resources after final iteration

T T T T T T
10 20 30 40 50 60
Lateral position [km]




Billette and Brandsberg-Dahl, 2004

Numerical examples

Sparsity-promoting LS-RTM of the BP Synthetic 2004 model:

e 1348 shot records

e Velocity model: 67.4 x11.9 km (10,789 x 1,911 grid points)
e 20 iterations of linearized Bregman method

® Batchsize of 200 shot records per iteration

® Curvelet-based sparsity promotion

BP Synthetic 2004




Numerical examples

Depth [km]

Sparsity-promoting LS-RTM on the BP Synthetic 2004 model

Lateral position [km]

Image after ~3 data passes (total cost of < 120 $)



Numerical examples

Reverse-time migration of the BP TTI model:

*Zhang et al., 2011

1641 shot records

Velocity model: 78.7 x 11.3 km (12,596 x 1,801 grid points)
Anisotropic modeling using pseudo-acoustic TTl equations*
True adjoints of linearized Born scattering operator
Domain-decomposition to compute gradients

Each gradient computed on MPI cluster of 6 instances (no spot instances)

BP TTI1 2007




Depth [km]

Numerical examples

Reverse-time migration of the BP TTI model

Lateral position [km]

RTM image (total cost of approx. 420 $)



Numerical examples

[w] yadaa

0

[w3] yadag

Lateral position [km]

Lateral position [km]

RTM image (total cost of approx. 420 $)



Numerical examples

BP TTI2007  BP 2004
No. of shots 1641 1348
Instances/gradient 6 1
Instance type m3.xlarge rS.large
Runtime/gradient 13.5 minutes 45 minutes
C-ASTiAU. Pk 026 $ 0.0945 $
gradient
Spot price/gradient N/A 0.027 $
On-demand price/ 42535 $ 127.39$
data pass
Spot price/data pass N/A 3599 %




Numerical examples

BP TTI2007  BP 2004 Serverless approach:
No. of shots 1641 1348 e Full flexibility
Instances/gradient 6 1 e On-demand + spot instances or
Instance type mb5.xlarge rS.large combination of both

Runtime/gradient 13.5 minutes 45 minutes
On-demand price/

® Large number of instance types

gradient 0268 0.0945 $ (memory, compute, GPU, HPC nodes)
Spot price/gradient N/A 0.027 $ ® Adjust resources according to priority:
On-demand price/ 42535 $ 12739 § cost, turn-around time, importance, etc.

data pass
Spot price/data pass N/A 3599 %




Cost comparison

Compute 100 gradients for BP model:

® Runtime varies for each gradient
(EC2 related, varying max. offset, etc.)

e Fixed cluster: nodes have to wait until
last gradient is computed

® Batch: each instance runs only as long
computations last

® No cost during wait time for other
gradients

Runtime per gradient [s]

400 ~

20 40 60 80 100
Job ID

Sorted runtimes of 100 gradients




Cost comparison

250 4 — EC2 cluster
- AWS Batch

200 -

150 -

100 -

Cumulative idle time [min]

50 -

- 1.8

20 40 60 80 100
No. of parallel EC2 instances

Total cost [$]

Runtime per gradient [s]

400 ~

20 40 60 80 100
Job ID

Sorted runtimes of 100 gradients




Strong scaling - MPI

e Fixed workload: 1 gradient
e Runtime as function of no. of instances (per gradient)
e Good speed-up but significant cost increase

1000
] —@- Job B c5n on-demand
1 —@~ Container 3.5 9 m== 5 on-demand
500‘_ —— Python _ 30- B c5n spot
—&— Devito kernel A B r5 spot
—_ 1 € 25 4
@ 250 - 5
g - 3
E £ 2.0 -
5 o
2 %7 8 1.5 4
@
o
© 1.0 A
50 1 0.5 - -
. . . —— : 0.0 -
1 2 4 8 16 1 2 4 8 16

No. of instances No. of instances




Conclusions

Seismic imaging in the cloud:

Need to rethink how to bring software to the cloud

Lift and shift approach not ideal (complexity, resilience, cost)
Instead: take advantage of new cloud technologies
High-throughput batch computing, serverless/event-driven
computations, object storage, spot instances

Only pay what you use: up to 10x cost reduction

Software based on separation of concerns + abstractions is
prerequisite to go serverless




Future directions

Go large:

e Collaboration with cloud providers to run at industry-scale

e 3DTTIRTM and LS-RTM

e SEAM model: long offset data acquisition w/ 3D elastic modeling

e Keynote speech at 4th EAGE workshop on HPC for Upstream
(Dubai, Oct. 8, presented by F. J. Herrmann)

Check for updates on our website and on Researchgate:
https://slim.gatech.edu/

https://www.researchgate.net/lab/SLIM-Felix-J-Herrmann



https://slim.gatech.edu/
https://www.researchgate.net/lab/SLIM-Felix-J-Herrmann
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