
Learning to Interpret Natural Language Instructions

James MacGlashan∗ and Monica Babeş-Vroman+ and Kevin Winner∗ and Ruoyuan Gao+

and Richard Adjogah∗ and Marie desJardins∗ and Michael Littman+ and Smaranda Muresan#

∗ Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County
+ Computer Science Department, Rutgers University

School of Communication and Information, Rutgers University

Abstract

We address the problem of training an artificial agent
to follow verbal commands using a set of instructions
paired with demonstration traces of appropriate behav-
ior. From this data, a mapping from instructions to tasks
is learned, enabling the agent to carry out new instruc-
tions in novel environments. Our system consists of
three components: semantic parsing (SP), inverse rein-
forcement learning (IRL), and task abstraction (TA). SP
parses sentences into logical form representations, but
when learning begins, the domain/task specific mean-
ings of these representations are unknown. IRL takes
demonstration traces and determines the likely reward
functions that gave rise to these traces, defined over a set
of provided features. TA combines results from SP and
IRL over a set of training instances to create abstract
goal definitions of tasks. TA also provides SP domain
specific meanings for its logical forms and provides IRL
the set of task-relevant features.

Introduction
Learning how to follow verbal instructions comes naturally
to humans, but it has been a challenging task to automate. In
this paper, we address the following problem: given a ver-
bal instruction, what is the sequence of actions that the in-
structed agent needs to perform to successfully carry out the
corresponding task? Such an agent is faced with many chal-
lenges: What is the meaning of the given sentence and how
should it be parsed? How do words map to objects in the
real world? Once the task is identified, how should the task
be executed? Once the task is learned and executed, how can
we generalize it to a new context, with objects and proper-
ties that the agent has not seen in the past? How should the
agent’s learning be evaluated?

The goal of our project is to develop techniques for a com-
puter or robot to learn from examples to carry out multipart
tasks, specified in natural language, on behalf of a user. Our

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach uses three main subcomponents: (1) recognizing
intentions from observed behavior using variations of In-
verse Reinforcement Learning (IRL) methods; (2) translat-
ing instructions to task specifications using Semantic Pars-
ing (SP) techniques; and (3) creating generalized task spec-
ifications to match user intentions, using probabilistic Task
Abstraction (TA) methods.

In the next section, we discuss related work in this gen-
eral problem domain. We then describe the architecture of
our system and show results from a preliminary experiment.
Finally, we summarize our ongoing and future research on
this problem.

Related Work
Our work relates to the broad class of methods that aim to
learn to interpret language from a situated context (Brana-
van et al. 2009; Branavan, Zettlemoyer, and Barzilay 2010;
Branavan, Silver, and Barzilay 2011; Clarke et al. 2010;
Chen and Mooney 2011; Vogel and Jurafsky 2010; Grubb
et al. 2011; Goldwasser and Roth 2011; Liang, Jordan,
and Klein 2011; Hewlett, Walsh, and Cohen 2010; Tellex
et al. 2011; Atrzi and Zettlemoyer 2011). Instead of us-
ing annotated training data consisting of sentences and
their corresponding logical forms (Kate and Mooney 2006;
Wong and Mooney 2007; Zettlemoyer and Collins 2005;
2009), most of these approaches leverage non-linguistic in-
formation from a situated context as their primary source
of supervision. These approaches have been applied to vari-
ous tasks such as: interpreting verbal commands in the con-
text of navigational instructions (Vogel and Jurafsky 2010;
Chen and Mooney 2011; Grubb et al. 2011), robot manipula-
tion (Tellex et al. 2011), puzzle solving and software control
(Branavan et al. 2009; Branavan, Zettlemoyer, and Barzi-
lay 2010); semantic parsing (Clarke et al. 2010; Liang, Jor-
dan, and Klein 2011; Atrzi and Zettlemoyer 2011), learning
game strategies from text (Branavan, Silver, and Barzilay
2011), and inducing knowledge about a domain based on
text (Goldwasser and Roth 2011). The task closest to ours is
interpreting navigation instructions. However, our goal is to

18

Grounding Language for Physical Systems
AAAI Technical Report WS-12-07

move away from low-level instructions that correspond di-
rectly to actions in the environment (Branavan et al. 2009;
Vogel and Jurafsky 2010) to high-level task descriptions ex-
pressed using complex language.

Early work on grounded language learning used fea-
tures based on n-grams to represent the natural language
input (Branavan et al. 2009; Branavan, Zettlemoyer, and
Barzilay 2010; Vogel and Jurafsky 2010). More recent meth-
ods have relied on a richer representation of linguistic data,
such as syntactic dependency trees (Branavan, Silver, and
Barzilay 2011; Goldwasser and Roth 2011) and semantic
templates (Grubb et al. 2011; Tellex et al. 2011) to address
the complexity of the natural language input. Our approach
uses a flexible framework that allows us to incorporate var-
ious degrees of knowledge available at different stages in
the learning process (e.g., from dependency relations to a
full-fledged semantic model of the domain learned during
training).

Background
We represent tasks using the Object-oriented Markov De-
cision Process (OO-MDP) formalism (Diuk, Cohen, and
Littman 2008), an extension of Markov Decision Pro-
cesses (MDPs) to explicitly capture relationships be-
tween objects. An MDP is a specific formulation of a
decision-making problem that is defined by a four-tuple:
{S,A,P·(·, ·)R·(·, ·)}, where S is the set of possible states
in which the agent can find itself; A is the set of actions
the agent can take; Pa(s, s′) is the probability of the agent
transitioning from state s to s′ after applying action a in s;
and Ra(s, s′) is the reward received by the agent for tran-
sitioning from state s to s′ after executing action a. In the
context of defining a task corresponding to a particular goal,
an MDP also defines a subset of states β ⊂ S, called ter-
mination states that end an action sequence and goals are
represented as terminal states that return a high reward.

The OO-MDP representation provides a structured fac-
tored state representation for MDPs. Specifically, OO-MDPs
add a set of classes C, each with a set of attributes TC . Each
OO-MDP state is defined by an unordered set of instantiated
objects. In addition to these object definitions, an OO-MDP
also defines a set of propositional functions. For instance, we
might have a propositional function toyIn(toy, room)
that operates on an object belonging to class “toy” and an
object belonging to class “room,” returning true if the speci-
fied “toy” object is in the specific “room” object. We extend
OO-MDPs to include a set of propositional function classes
(F) associating propositional functions that describe similar
properties.

An Example Domain
To illustrate our approach, we present a simple Sokoban-
style domain called Cleanup World. Cleanup World is a
2D grid world defined by various rooms that are connected
by open doorways. The world also contains various objects
(toys) that the agent can move around to different positions
in the world. The agent can move north, south, east, or west,
unless a wall prevents the agent from doing so. To move a

toy, the agent must be in an adjacent cell and move in the
direction of the toy, resulting in the toy being pushed to the
opposite adjacent cell from the agent (unless a wall or an-
other toy is in the way, in which case nothing happens).

The Cleanup World domain can be represented as an OO-
MDP with four object classes: agent, room, doorway, and
toy. The agent class is defined by two attributes: the agent’s
x and y position in the world. It is assumed that every state
includes exactly one agent object. The room class is de-
fined by five attributes: the top, left, bottom, and right co-
ordinates in the world defining a rectangle that spans the
space of the room in the world (and implicitly defines a
wall around this perimeter) and a color attribute that rep-
resents the color of the room. The doorway object is defined
by x and y attributes representing its position in the world.
We assume that doorways are only placed on the perime-
ter of a room wall, creating an opening in the doorway cell
to allow the agent to enter or leave the room. The toy ob-
ject is defined by three attributes: the toy’s x and y position
and an attribute specifying the toy’s shape (star, moon, etc.).
The OO-MDP for Cleanup World also defines a number of
propositional functions that specify whether a toy is a spe-
cific shape (such as isStar(toy)), the color of a room
(such as isGreen(room)), whether a toy is in a specific
room (toyIn(toy, room)), and whether an agent is in a
specific room (agentIn(room)). These functions belong
to respective shape, color, and toy or agent position classes.

System Architecture
As mentioned in the introduction, the training data for the
overall system is a set of pairs of verbal instructions and be-
havior. For example, one of these pairs could be the instruc-
tion Move the star to the green room with a demonstration of
the task being accomplished in a specific environment con-
taining various toys and rooms of different colors. We as-
sume the availability of a set of features for each state repre-
sented using the OO-MDP propositional functions described
previously. These features play an important role in defining
the tasks to be learned. For example, a robot being taught
to move toys around would have information about whether
or not it is currently carrying a toy, what toy it needs to be
moving, in which room it is currently, which room contains
each toy, etc.

For each task, SP takes the verbal instruction and pro-
duces the corresponding logical form(s) (a form of de-
pendency representation). If the semantics are unknown,
then this parse will represent only the logical structure of
the sentence. For example, if the robot receives the ver-
bal instruction Move the star to the green room, SP will
produce the logical form move(star1,room1), P1(room1,
green). In this case, star1 and room1 are objects that the
sentence references and there is an unknown action rela-
tionship (move) acting on star1 and room1 and an un-
known relationship between the word “green” and the ob-
ject room1. After training, however, the semantics of this
parse will be known and this sentence would be parsed as:
push(star1,room1), color(room1, isGreen), where the sen-
tence has been mapped to an internal task called push, and

19

the word green is mapped to the isGreen propositional
function belonging to class color.

Given a logical form, TA analyzes it to determine which
task it could be referencing, creating a new task if no ex-
isting task seems relevant. TA then generates possible sets
of propositional functions that would be relevant in the re-
ward function of the tasks and passes them to IRL. Using
the demonstration trajectory, IRL finds a reward function
defined over the propositional functions in each set provided
by TA, as well as the likelihood that the derived reward func-
tion is representative of what the agent did. Each reward
function effectively represents the possible goals of the task
by highlighting which propositional functions in a set would
be relevant in that interpretation.

IRL returns the produced reward functions to TA, which
uses the reward functions and their likelihoods to refine
which task was intended from the sentence, as well as the
semantics of the task (that is, how the task was applied,
the relevant features of the task, and the task’s definition of
reward/termination functions). TA then sends this informa-
tion to SP as an expression of the semantics of the logical
form. This feedback in turn allows SP to learn the semantics
of words in terms of OO-MDP propositional functions, en-
abling SP to produce logical forms with assigned semantics
for future tasks, and allowing the system to derive tasks and
reward functions from instructions in novel environments.

Inverse Reinforcement Learning
Inverse Reinforcement Learning (Abbeel and Ng 2004) ad-
dresses the task of learning a reward function from demon-
strations of expert behavior and information about the state
transition function. Recently, more data-efficient IRL meth-
ods have been proposed, including the Maximum Likeli-
hood Inverse Reinforcement Learning (Babeş-Vroman et al.
2011) or MLIRL approach, which our system builds on.
Given a small number of trajectories, MLIRL finds a weigh-
ing of the state features that (locally) maximizes the proba-
bility of these trajectories. In our system, these state features
consist of one of the sets of propositional functions provided
by TA. For a given task and a set of sets of state features,
MLIRL evaluates the feature sets and returns to TA its as-
sessment of the probabilities of the various sets.

Semantic Parsing
The Semantic Parsing component addresses the problem of
mapping instructions to semantic parses, building on re-
cent work on learning to map natural language utterances
to meaning representations. The core of this approach is a
recently developed grammar formalism, Lexicalized Well-
Founded Grammar (LWFG), which balances expressiveness
with practical—and provable—learnability results (Mure-
san and Rambow 2007; Muresan 2010; 2011). In LWFG,
each string is associated with a syntactic-semantic repre-
sentation, and the grammar rules have two types of con-
straints: one for semantic composition (Φc) and one for
semantic interpretation (Φi). The semantic interpretation
constraints, Φi, provide access to a semantic model (do-
main knowledge) during parsing. In the absence of a se-
mantic model, however, the LWFG learnability result still

holds. This fact is important if our agent is assumed to start
with no knowledge of the task and domain. LWFG uses
an ontology-based semantic representation, which is a logi-
cal form represented as a conjunction of atomic predicates.
For example, the representation of the phrase green room
is 〈X1.is=green, X.P1 = X1, X.isa=room〉. The semantic
representation specifies two concepts—green and room—
connected through a property that can be uninstantiated in
the absence of a semantic model, or instantiated via the Φi
constraints to the property name (e.g, color) if such a model
is present.

During the learning phase, the SP component, using an
LWFG grammar that is learned offline, provides to TA the
logical forms (i.e., the semantic parses, or the unlabeled
dependency parses if no semantic model is given) for each
verbal instruction. For example, for the instruction Move
the chair into the green room, the SP component knows
initially that move is a verb, chair and room are nouns, and
green is an adjective. It also has grammar rules of the form
S → Verb NP PP: Φc1,Φi1,

1 but it has no knowledge of
what these words mean (that is, to which concepts they
map in the domain model). For this instruction, the LWFG
parser returns the logical form 〈(X1.isa=move, X1.Arg1=
X2)move, (X2.det=the)the, (X2.isa=chair)chair, (X1.P1 =
X3, P2.isa=into)into, (X3.det=the)the, (X4.isa=green, X3.
P2 = X2)green, (X3.isa=room)room〉. (The subscripts
for each atomic predicate indicate the word to which that
predicate corresponds.) This logical form corresponds to
the simplified logical form move(chair1,room1),
P1(room1,green), where predicate P1 is uninstanti-
ated. A key advantage of this framework is that the LWFG
parser has access to the domain (semantic) model via Φi
constraints. As a result, when TA provides feedback about
domain-specific meanings (i.e., groundings), the parser can
incorporate those mappings via the Φi constraints (e.g.,
move might map to the predicate “MoveToRoom” with a
certain probability).

Task Abstraction
The termination conditions for an OO-MDP task can be de-
fined in terms of the propositional functions. For example,
the Cleanup World domain might include a task that re-
quires the agent to put a specific toy (t1) in a specific room
(r1). In this case, the termination states would be defined
by states that satisfy toyIn(t1, r1) and the reward function
would be defined as Ra(s, s′) = {1 : toyIn(ts

′

1 , r
s′

1);−1 :
otherwise}. However, such a task definition is overly spe-
cific and cannot be evaluated in a new environment that
contains different objects. To remove this limitation, we de-
fine abstract task descriptions using parametric lifted reward
and termination functions. A parametric lifted reward func-
tion is a first-order logic expression in which the propo-
sitional functions defining the reward can be selected as
parameters. This representation allows much more general
tasks to be defined; these tasks can be evaluated in any en-
vironment that contains the necessary object classes. For

1For readability, we show here just the context-free backbone,
without the augmented nonterminals or constraints.

20

instance, the reward function for an abstract task that de-
fines an agent taking a toy of a certain shape to a room
of a certain color would be represented as Ra(s, s′) =
{1 : ∃ts′∈toy∃rs′∈roomP1(t) ∧ P2(r) ∧ toyIn(t, r);−1 :

otherwise}, where P1 is a propositional function that op-
erates on toy objects (such as isStar) and P2 is a propo-
sitional function that operates on room objects (such as
isGreen). An analogous definition can be made for ter-
mination conditions.

Given the logical forms provided by SP, TA finds candi-
date tasks that might match each logical form, along with a
set of possible groundings of those tasks. A grounding of an
abstract task is the set of propositional functions (parame-
ters of the abstract task) to be applied to the specific objects
in a given training instance. TA then passes these grounded
propositional functions as the features to use in IRL. (If there
are no candidate tasks, then it will pass all grounded propo-
sitional functions of the OO-MDP to IRL.) When IRL re-
turns a reward function for these possible groundings and
their likelihoods of representing the true reward function, TA
determines whether any abstract tasks it has defined might
match. If not, TA will either create a new abstract task that
is consistent with the received reward functions or it will
modify one of its existing definitions, if doing so does not re-
quire significant changes. With IRL indicating the intended
goal of a trace and with the abstract task indicating relevant
parameters, TA can then inform SP of the semantics of its
logical parse. The entire system proceeds iteratively, with
each component, directly or indirectly, informing the others.

A Simplified System Example
In this section, we show a simplified version of our system
with a unigram language model and minimal abstraction. We
call this version Model 0. The input to Model 0 is as de-
scribed: a set of verbal instructions paired with demonstra-
tions of appropriate behavior. It uses the Expectation Max-
imization algorithm (Dempster, Laird, and Rubin 1977) to
estimate the probability distribution of words conditioned
on reward functions (the parameters). With this information,
when the system receives a new command, it can behave in
a way that maximizes its reward given the posterior proba-
bilities of the possible reward functions given the words.

For all possible reward, demonstration pairs, the E-step of
EM estimates zji = Pr(Rj |(Si, Ti)), the probability that re-
ward functionRj produced sentence-trajectory pair (Si, Ti).
This estimate is given by the equation below:

zji=

= Pr(Rj |(Si, Ti)) =
Pr(Rj)

Pr(Si, Ti)
Pr((Si, Ti)|Rj)

=
Pr(Rj)

Pr(Si, Ti)
Pr(Ti|Rj) Pr(Si|Rj)

=
Pr(Rj)

Pr(Si, Ti)
Pr(Ti|Rj)

∏
wk∈Si

Pr(wk|Rj) (1)

where Si is the ith sentence, Ti is the trajectory demon-
strated for verbal command Si, and wk is an element in the

Algorithm 1 EM Model 0

Input: Demonstrations {(S1, T1), ..., (SN , TN)}, number
of reward functions J , size of vocabulary K.
Initialize: x11, . . . , xJK , randomly.
repeat

E Step: Compute
zji =

Pr(Rj)
Pr(Si,Ti)

Pr(Ti|Rj)
∏
wk∈Si

xkj .

M step: Compute
xkj = 1

X

Σwk∈Si
Pr(Rj |Si)+ε

ΣiN(Si)zji+ε
.

until target number of iterations completed.

set of all possible words (vocabulary).
If the reward functions Rj are known ahead of time,

Pr(Ti|Rj) can be obtained directly by solving the MDP and
estimating the probability of trajectory Ti under a Boltz-
mann policy with respect to Rj . If the Rjs are not known,
EM can estimate them by running IRL during the M-
step (Babeş-Vroman et al. 2011).

The M-step uses the current estimates of zji to further
refine the probabilities xkj = Pr(wk|Rj):

xkj = Pr(wk|Rj) =
1

X

Σwk∈Si Pr(Rj |Si) + ε

ΣiN(Si)zji + ε
(2)

where ε is a smoothing parameter, X is a normalizing factor
and N(Si) is the number of words in sentence Si.

We show these steps in Algorithm 1.

Experiments
While our system is fully designed, it is still being imple-
mented. As such, we only have results for specific parts
of the system. We use these preliminary results to provide
an illustration in the Cleanup World domain of how our fi-
nal system will work. To collect a corpus of training data
that would be linguistically interesting, we crowdsourced
the task of generating instructions for example trajectories
using Amazon Turk. Example trajectories were presented
to users as an animated image of the agent interacting in
the world, and users were asked to provide a correspond-
ing instruction. This process had predictably mixed results:
about 1/3 of the resulting instructions were badly malformed
or inappropriate. For the results shown here, we have used
“human-inspired” sentences, consisting of a manually con-
structed subset of sentences we received from our Turk ex-
periment. These sentences were additionally simplified and
clarified by retaining only the last verb and by pruning irrel-
evant portions of the sentence. Instructions are typically of
the form, “Move the green star to the red room”; the trajec-
tories in the training data consist of a sequence of states and
actions that could be performed by the agent to achieve this
goal.

Model 0
To illustrate the EM unigram model, we selected six ran-
dom sentences for two tasks (three sentences for each task).

21

Figure 1: Training data for two tasks: 1) Taking the star to
the green room (left) and 2) Going to the green room (right).
Each training instance is a demonstration of the task (we
show the starting state, the trace and the final state) paired
with a verbal instruction, shown below the demonstration.

We show the training data in Figure 1. We obtained the re-
ward function for each task using MLIRL, computed the
Pr(Ti|Rj), then ran Algorithm 1 and obtained the param-
eters Pr(wk|Rj).

After this training process, we presented the agent with
a new task. She is given the instruction SN : “Go to green
room.” and a starting state, somewhere in the same grid. Us-
ing parameters Pr(wk|Rj), the agent can estimate:

Pr(SN |R1) =
∏

wk∈SN

Pr(wk|R1) = 8.6× 10−7,

Pr(SN |R2) =
∏

wk∈SN

Pr(wk|R2) = 4.1× 10−4

and choose the optimal policy corresponding to reward R2,
thus successfully carrying out the task. Note that R1 and R2

corresponded to the two target tasks, but this mapping was
determined by EM.

Using a minimalistic abstraction model, the Model 0
agent could learn that words like “green” and “teal” map to
the same abstract color. Still, this agent is very limited and
could benefit from a richer abstraction and a language model
that can capture semantic information. Our aim is to have an
agent learn what words mean and how they map to objects
and their attributes in her environment.

We illustrate the limitation of the unigram model by
telling the trained agent to “Go with the star to green.” (we
label this sentence S′N). Using the learned parameters, the
agent will compute the following estimates:

Pr(S′N |R1) =
∏

wk∈S′
N

Pr(wk|R1) = 8.25× 10−7,

Figure 2: A task demonstration example for the verbal in-
struction “Push the star into the green room”.

Pr(S′N |R2) =
∏

wk∈S′
N

Pr(wk|R2) = 2.10× 10−5.

The agent wrongly chooses reward R2 and goes to the green
room instead of taking the star to the green room. The prob-
lem with the unigram model in this case is that it gives too
much weight to word frequencies (in this case “go”) without
taking into account what the words mean or how they are
used in the context of the sentence.

We try to address some of these issues in Model 1 by
bringing to bear more complex language and abstraction
models.

Model 1

We assume that SP has the ability to take a verbal command
and interpret it as one or more possible logical forms. We
also assume that the OO-MDP definition of the domain in-
cludes a large set of propositional functions capable of defin-
ing the target task features. The IRL component can take a
set of features and a task demonstration and assign the fea-
ture weights that make this demonstration the most likely.
The role of the TA component is to put this information to-
gether and learn abstract tasks.

When learning about a command, the amount of existing
information may vary. In this section, we illustrate the learn-
ing process 1) when almost all semantic information has al-
ready been learned, 2) when a new command is encountered,
but existing task knowledge is available, and 3) when there
is no pre-existing information. We will use as an example,
the simple task shown in Figure 2 with the verbal command
“Push the star into the green room.”

Learning a New Color Name
The easiest learning challenge is when the semantics of a
command are fully known except for one word. In this ex-
ample, we assume that the semantics of all the words in the
command “Push the star into the green room” are known
except for the word “green.”

SP produces the logical parse:
PushToRoom(star, room), P1(room, green), shape(star, is-
Star). Since the task of pushing an object to a differently
colored room has already been learned, the logical parse
contains semantic knowledge to indicate that the command
refers to the task “PushToRoom” and that the noun “star” in-
dicates a star–shaped object, but SP does not know what the

22

adjective modifier “green” means, in which case it can only
identify that a logical relation between the word “green” and
the object room1 exists, not what it means.

Provided with this incomplete semantic parse, TA finds
all the possible and consistent groundings of the “PushTo-
Room(room, toy)” abstract task for the corresponding tra-
jectory. From the semantic parse, it is also known that the
toy must satisfy the isStar proposition and because the
initial state of the demonstration only contains one star toy,
the scope of possible groundings is limited to those refer-
ring it. The only unknown is the intended room. Therefore,
TA considers the groundings of “PushToRoom” for every
one of the three rooms in the environment:

• PushToRoom(t1,r1), isStar(t1)

• PushToRoom(t1,r2), isStar(t1)

• PushToRoom(t1,r3), isStar(t1)

Each of these groundings of “PushToRoom” induces
the relevant feature set sent to IRL. For instance, the
toyIn(toy,room) feature required by “PushToRoom” has
the three grounded versions toyIn(t1,r1), toyIn(t1,r2)
and toyIn(t1,r3).

IRL’s predicted reward function over the features indi-
cates the correct grounding; for instance, since the agent
takes the toy to the green room in the trajectory, the toyIn
function grounded to the green room object will have a
higher weight than the other groundings. Any propositional
function operating on the identified grounded room object
is sent back to SP as a possible semantic interpretation for
P1, such as color(room1, isGreen), since the room satis-
fies isGreen, which belongs to class color.

Processing a New Command
Let us now consider the case when all the words in the verbal
command are unknown, but the corresponding abstract task
is known. In this case, SP parses the sentence into the fol-
lowing possible logical forms without semantic knowledge:

1. push(star,room), P1(room,green) (L1)

2. push(star), P1(room,green), prep into(star,room) (L2)

The score associated with each of the possible parses rep-
resents the likelihood that the parse is correct. Here, L1 cor-
responds to [push [the star] [into the green room]] and L2

to [push [the star into the green room]]. We normalize these
probabilities and then compute the probability of each log-
ical form by summing up the normalized probabilities of
the parses. In this example, we obtain Pr(L1) = 0.65 and
Pr(L2) = 0.35.

These logical forms and their scores are passed to TA.
Based on the content of these parses, TA selects likely can-
didates for the abstracted task, among the tasks that have
already been learned. For instance, the possible tasks se-
lected by TA might be “PushToRoom,” “MoveToRoom,”
and “MoveToObject.” TA then populates a set of relevant
features based on these tasks and gives this list to IRL.

IRL processes these sets of features using the MLIRL al-
gorithm to compute a set of weights for the features in each

set. IRL returns to TA a collection of these weighted fea-
tures. We show some of the ones with the highest weights:
(1.91, toyIn(t1, r1)),
(1.12, agentTouchingToy(t1)),
(0.80, agentIn(r1)).

With the information received from the SP and IRL com-
ponents, TA now has the task of refining the grounded re-
ward functions from the abstract tasks. TA then provides
this grounding information to SP, which updates its seman-
tic representations. The entire process is then repeated in an
iterative-improvement fashion until a stopping condition is
met.

Learning from Scratch
Our system is trained using a set ((S1, T1), ..., (SN , TN)),
of sentence–trajectory pairs. Initially, the system does not
know what any of the words mean and there are no pre-
existing abstract tasks. Here we consider what happens when
the system sees a task for the first time.

Let’s assume that S1 is “Push the star into the green
room.” This sentence is first processed by SP, yielding the
following parses:

Pr(L1) = 0.65

Pr(L2) = 0.35

where L1 is push(star,room), P1(room,green) and L2 is
push(star), P1(room,green), prep into(star,room).

These parses and their likelihoods are passed to TA, and
TA induces incomplete abstract tasks, which define only the
number and kinds of objects that are relevant to the corre-
sponding reward function. TA can send to IRL a set of fea-
tures involving these objects, together with T1, the demon-
stration attached to S1. This set of features might include:
toyIn(t1, r1), toyIn(t1, r2), agentTouchingToy(t1),
agentIn(r1).

IRL sends back a weighting of the features, and TA can
select the subset of features that have the highest weights,
for example:
(1.91, toyIn(t1, r1)),
(1.12, agentTouchingToy(t1)),
(0.80, agentIn(r1)).

Using information from SP and IRL, TA can now create a
new abstract task, called for example “PushToRoom”, adjust
the probabilities of the parses based on the relevant features
obtained from IRL, and send these probabilities back to SP,
enabling it to adjust its semantic model.

Conclusions and Future Work
Our project grounds language in a simulated environment by
training an agent from verbal commands paired with demon-
stration of appropriate behavior. We decompose the problem
into three major modules and show how iteratively exchang-
ing information between these modules can result in correct
interpretations of commands. We show some of the short-
comings of our initial unigram language model and propose
an SP component that includes the possibility of building
an ontology. Another crucial component we add is a com-
ponent in charge of building abstract tasks from language
information and feature relevance. We believe that learning

23

semantics will enable our system to carry out commands that
the system has not seen before.

References
Abbeel, P., and Ng, A. 2004. Apprenticeship learning via in-
verse reinforcement learning. In Proceedings of the Twenty-
First International Conference in Machine Learning (ICML
2004).
Atrzi, Y., and Zettlemoyer, L. 2011. Bootstrapping semantic
parsers for conversations. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language Pro-
cessing.
Babeş-Vroman, M.; Marivate, V.; Subramanian, K.; and
Littman, M. 2011. Apprenticeship learning about multi-
ple intentions. In Proceedings of the Twenty Eighth Interna-
tional Conference on Machine Learning (ICML 2011).
Branavan, S. R. K.; Chen, H.; Zettlemoyer, L. S.; and Barzi-
lay, R. 2009. Reinforcement learning for mapping instruc-
tions to actions. In Association for Computational Linguis-
tics (ACL 2009).
Branavan, S.; Silver, D.; and Barzilay, R. 2011. Learning
to win by reading manuals in a monte-carlo framework. In
Association for Computational Linguistics (ACL 2011).
Branavan, S. R. K.; Zettlemoyer, L. S.; and Barzilay, R.
2010. Reading between the lines: Learning to map high-
level instructions to commands. In Association for Compu-
tational Linguistics (ACL 2010).
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI-2011)., 859–865.
Clarke, J.; Goldwasser, D.; Chang, M.-W.; and Roth, D.
2010. Driving semantic parsing from the world’s response.
In Proceedings of the Association for Computational Lin-
guistics (ACL 2010).
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society 39(1):1–38.
Diuk, C.; Cohen, A.; and Littman, M. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the Twenty-Fifth International Conference
on Machine Learning (ICML-08).
Goldwasser, D., and Roth, D. 2011. Learning from natural
instructions. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence.
Grubb, A.; Duvallet, F.; Tellex, S.; Kollar, T.; Roy, N.;
Stentz, A.; and Bagnel, J. A. 2011. Imitation learning for
natural language direction following. In Proceedings of the
ICML Workshop on New Developments in Imitation Learn-
ing.

The authors acknowledge the support of the National Science
Foundation (collaborative grant IIS-00006577 and IIS-1065195).
Any opinions, findings, conclusions, or recommendations ex-
pressed in this paper are those of the authors, and do not necessarily
reflect the views of the funding organization.

Hewlett, D.; Walsh, T. J.; and Cohen, P. R. 2010. Teach-
ing and executing verb phrases. In Proceedings of the First
Joint IEEE International Conference on Development and
Learning and on Epigenetic Robotics (ICDL-Epirob-11).
Kate, R. J., and Mooney, R. J. 2006. Using string-kernels for
learning semantic parsers. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational
Linguistics, ACL-44.
Liang, P.; Jordan, M.; and Klein, D. 2011. Learning
dependency-based compositional semantics. In Association
for Computational Linguistics (ACL 2011).
Muresan, S., and Rambow, O. 2007. Grammar approxima-
tion by representative sublanguage: A new model for lan-
guage learning. In Proceedings of ACL.
Muresan, S. 2010. A learnable constraint-based grammar
formalism. In Proceedings of COLING.
Muresan, S. 2011. Learning for deep language understand-
ing. In Proceedings of IJCAI-11.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M.; Banerjee,
A. G.; Teller, S.; and Roy, N. 2011. Understanding natural
language commands for robotic navigation and mobile ma-
nipulation. In Proceedings of the Twenty-Fifth AAAI Con-
ference on Articifical Intelligence.
Vogel, A., and Jurafsky, D. 2010. Learning to follow nav-
igational directions. In Association for Computational Lin-
guistics (ACL 2010).
Wong, Y. W., and Mooney, R. 2007. Learning synchronous
grammars for semantic parsing with lambda calculus. In
Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics (ACL-2007).
Zettlemoyer, L. S., and Collins, M. 2005. Learning to
map sentences to logical form: Structured classification with
probabilistic categorial grammars. In Proceedings of UAI-
05.
Zettlemoyer, L., and Collins, M. 2009. Learning context-
dependent mappings from sentences to logical form. In Pro-
ceedings of the Association for Computational Linguistics
(ACL’09).

24

