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ABSTRACT:  
 
Assessment of horticultural crops under mixed cropping system has been a challenge, both for horticulturists and also to the remote 
sensing communities. But the recent developments in wide range of sensors onboard Unmanned Aerial Vehicles (UAVs) has opened 
up new possibilities in identification, mapping and monitoring of horticultural crops. This paper presents the results made from a 
pilot exercise on horticultural crop discrimination using Parrot Sequoia multi-spectral sensor onboard a UAV. This exercise was 
carried out in Nongkhrah village, Ri-Bhoi district of Meghalaya state located in the north eastern part of India having mixed 
horticultural crops. A two level hierarchical classification system was followed for identification and delineation of the major 
horticultural crops in the village. Parrot Sequoia multi-spectral sensor having four bands has been found to be effective in 
discrimination of horticultural crops based on variation in spectral response of six horticultural crops viz., pineapple, banana, orange, 
papaya, ginger and turmeric using three commonly used indices viz., Normalized Difference Vegetation Index (NDVI), Normalized 
Difference Red Edge Index (NDRE) and Green Normalized Difference Vegetation Index (GNDVI). NDVI and GNDVI showed 
nearly similar spectral response, whereas separability among the horticultural crops significantly improved with the use of NDRE. 
The first level of classification involving the five broad land cover classes has resulted an overall accuracy of about 91%, whereas 
the second level of classification for delineating the five selected horticultural crops has provided an overall accuracy of 79.8%. 
 
 

1. INTRODUCTION 

The horticulture sector has become one of the major drivers of 
growth in agricultural sector, and over last few years, India has 
witnessed a rise in horticulture production, which has even 
surpassed total production of food grains. The area under 
horticulture has grown by 2.6% per annum over the last decade 
and annual production has increased by 4.8%. Horticultural 
crop production was 311.71 million tonnes from an area of 
25.43 million hectares during 2017-18 as per record of Ministry 
of Agriculture and Farmers Welfare, Govt. of India, 2018-19 
(http://agricoop.gov.in/statistics/state-level). Timely availability 
of the horticultural statistics is of paramount importance to the 
administrators, policy makers and research workers, but there is 
no established methodology for collection of reliable statistics 
under horticultural crops in hilly terrain like in the part of the 
north east India (Sahoo et al., 2005). Remote sensing 
approaches have been employed in different aspects of 
horticulture viz., horticultural crop identification (Panda & 
Hoogenboom, 2009; Thomas et al., 2008; Usha & Singh, 2013 
and Yang et al., 2008), acreage and production estimation 
(Yadav et al., 2002; Johnson et al. 2003 and Nageswara Rao et 
al., 2004), identification of suitable sites for horticultural crops 
(Krishna Rao et al., 2014) etc.  There is still requirement in 
terms of plot level management of horticultural crops using very 
high resolution images (Panda et al., 2010) employing advanced 
algorithms, thereby  improving the accuracy of assessment (Min 
et al., 2008; Palaniswami et al., 2006 and Yang et al., 2008). It 
is in that sense the UAV remote sensing technology adding new 
dimensions in assessment and monitoring of horticultural crops 
through the use of multi-spectral digital airborne sensors (Pinter 

et al., 2003; Bühler et al., 2007; Whitehead & Hugenholtz 
2014; Morris, 2013; Gini, 2014 and Pajares, 2015). UAVs 
enable users for many agricultural and horticultural applications 
such as crop acreage and production estimation (Stroppiana et 
al., 2015), growth and quality assessment (Thenkabail et al., 
2002; Herwitz et al., 2004), generation of detailed map of 
vegetation assemblages at the species level (Schuster et al., 
2012), crop stress detection (Carter, 1993 and Smith et al., 
2004), damage assessment (Kim et al., 2002; Handique et al., 
2016 and Zhang et al., 2002) etc. With the possibility of 
increased spatial and temporal resolution provided by UAV-
borne sensors, there has been a shift towards precision, or site 
specific, crop management activities with remote sensing inputs 
such as acreage estimation of multiple horticultural crops and 
also to study within-field variability (Petrie & Walker, 2007 and 
Hunt et al., 2014).  
 
In hilly terrain like north eastern region (NER) of India, there 
are challenges for remote sensing applications due to small and 
fragmented land holding, terrace cultivation, mixed cropping 
pattern, cloud cover, hill shade etc. (Sahoo et al., 2005). Under 
such conditions, UAVs have emerged as an alternative and 
complementary solutions for remote sensing based acreage 
estimation and crop condition assessment (Ustuner et al., 2014). 
Different sensors developed with optical, microwave and 
thermal region of electromagnetic spectrum provide new 
possibilities for studying within field variations (Hunt et al., 
2010 and Karpina et al., 2016). A wide range of vegetation 
indices have been found to be effective in delineating crops 
based on their spectral responses. There is also scope of 
improved statistical estimates for using very high resolution 
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data acquired from satellites and UAVs (Handique, 2012). It is 
of interest to delineate horticultural crops at village level 
following a hierarchical classification approach and assess the
accuracy of the classification.  This paper presents the results 
and observations made from a pilot exercise on identification of 
horticultural crops in mixed cropping pattern using UAV-borne 
multi-spectral sensor. 

2. METERIALS AND METHODS

2.1 Study Area 
The study was carried out in the Nongkhrah village located in 
the eastern part of Meghalaya state of India. The study village 
lies between longitude 91°52'26.96"E and 91°53'49.60"E and 
between latitude 25°54'44.92"N and 25°55'49.80"N (Figure 1). 
The physiography and the climate favour a large number of 
crops in the district. Among horticultural crops, pineapple, 
orange, banana, papaya, ginger and turmeric are important. The 
horticultural crops are mostly grown in and around the houses 
without following any systematic pattern. Pineapple is grown 
abundantly in the village and is the main commercial crop for 
the villagers. Some crops are grown as multi-storeyed crops 
such as top canopy is covered by orange and the lower canopy 
by turmeric or ginger. In few households, inter-cropping of 
pineapple and orange was also observed.  

Figure 1. Location map of study village 

2.2 Sensor platform and sensors 
A light weight hexacopter DJI Matrix 600 was employed for the 
survey (Figure 2). The M600 is a six-rotor system with a 
payload capacity of 6.0 kilograms, making it ideal for the full 
range of DJI’s Zenmuse gimbals. The M600’s propulsion 
system is dustproof to simplify maintenance and durability. The 
M600 features an extended flight time and a 5 km long range, 
ultra-low latency HD image transmission for accurate image 
composition and capture. The M600 uses sine-wave driven, 
intelligent to ensure that it performs accurately, safely and 
efficiently.  

It was important to ensure the location accuracy of the pixels 
captured by the camera mounted in the drone on the ground. 
The UAV is equipped with GPS, for inflight recording with 
accuracy of +/- 1.5 meter. During each flight, the camera was 
fixed on a two-axis gimbal, pointing vertically downwards 
covering the entire field to generate the ortho-mosaic images in 
post-processing (Percivall et al., 2015 and He et al., 2012). 
Absolute camera position and orientation uncertainties obtained 
during the flight was within the error limit (1-3 meters). 

Figure 2. DJI Matrix 600 (Source: www.dji.com) 

2.4 Parrot Sequoia sensor 
The Sequoia sensor comprised of two sensors i) the multi-
spectral sensor and ii) the sunshine sensor. (Figure 3) The 
multi-spectral sensor containing five bands i.e. Green, Red, Red 
Edge, Near Infrared (NIR) and one RGB Sensor mounted 
underneath the drone facing towards the Nadir. The sensor has 
length of 59 mm, width of 41 mm and height of 28 mm. The 
central wavelengths of the four bands are given in Table-1. 

Table 1. Details of bands in the multi-spectral sensor 
(Source: www.parrot.com) 

Band Name Central Wavelength 
(in nm) 

Band width 
(in nm) 

Green 550 40 
Red 660 40 

Red edge 735 10 

NIR 790 40 

Figure 3. Parrot Sequoia sensor and sunshine sensor 
(Source: www.parrot.com) 

The sunshine sensor was mounted above the drone facing 
towards the zenith or the sky. The sunshine sensor assisted in 
adjusting the light variability, which occurred during the same 
acquisition or two different acquisitions taken at two different 
times of the day of the earth features. This sunshine sensor was 
very important in the clear as well as overcast conditions of 
north east India thus improving the results. The sunshine sensor 
has length of 47 mm, width of 39.6 mm and height of 18.5 mm. 

The Parrot Sequoia sensor has a built-in GPS module. While 
the GPS modules integrated into UAV made it possible to keep 
an eye on their position during a flight, the Sequoia GPS 
module allowed the position of each captured image to be 
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identified. The GPS module made it possible to significantly 
increase the precision of the data collected by the sensor 
without using data collected by the transport platform: plane, 
drone, tractor, etc. The integration of a GPS module into the 
sensor fulfilled the objective of rendering Sequoia fully 
autonomous, thus dispensing with image monitoring by the 
autopilot of the drone. As a result, it could be used in any 
drone. 

The survey in the village was consisted of four key steps: 
acquisition of high resolution UAV images using the low 
altitude UAV-camera system; post-processing of UAV images 
including ortho-mosaicing, geo-referencing, extraction of 
colour vegetation indices from post-processed othomosaic 
images. We have adopted World Geodetic System 1984 (WGS 
84) datum with UTM coordinate system for geo-referenced
images.

The height of the UAV was maintained at 120m. At this height 
ground resolution obtained was about 5cm.  Multiple images 
were obtained at the speed of one image per 5 seconds. The 
images and the videos were transferred to the computer and 
processed with Pix4D software (https://www.pix4d.com/). 
Mosacing of the images was done to have seamless boundaries 
of the scenes. 

2.3 Hierarchical classification approach 
A hierarchical classification approach was applied for 
delineating the horticultural crops based on object based image 
analysis approach (OBIA). In the first step, through 
segmentation, all pixels within a segment was assigned to one 
class, eliminating the within-field spectral variability and mixed 
pixels problems associated with pixel-based approaches using 
eCognition software Ver 4.0 (https://geospatial.trimble.com/). 
Segmentation is based on pre-defined parameters viz., 
compactness, shape, and scale. It required the understanding of 
size and shape of farm fields in the study village. Extractions of 
image objects depend on the approach of a trial-and-error, and 
the scale parameters segmentation values are specified 
according to proceeding experience (Ma et al., 2017). Several 
studies have confirmed the superiority of OBIA over pixel-
based classifications, especially in case of heterogeneous 
agricultural and horticultural crop areas (Blaschke, 2010; 
Myint, 2006; Laliberte & Rango, 2009; Myint et al., 2011 and 
Peña-Barragán et al., 2011). Segmentation was followed by 
grouping of the homogenous segments to derive the broad land-
use classes in the village (Aguilar et al., 2015 and Park et al., 

2016).  This is followed by digital classification of the 
horticulture class based on spectral response of the selected 
horticultural crops through generation of three important 
vegetation indices viz., Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Red Edge Index (NDRI) and 
Green Normalized Difference Vegetation Index (GNDVI) to 
observe the possibility for discrimination of the selected 
horticultural crops. Details of the three vegetation indices are 
given in Table 2. During classification, 70/30 proportion of 
samples for training and validation purposes was used. A 
random selection of 70% of the samples were used for training 
(the RF bootstrap sample), and the remaining 30% of the 
samples were used in the validation (the RF out-of-bag sample) 
of the classification accuracy. Validation in the identified 
sample locations points made with the help of the farmers in the 
selected village. Standard class-based confusion matrix and 
subsequent accuracy metrics (including omission error, 
commission error, overall accuracy and kappa co-efficient) were 
derived and interpreted (Congalton & Green, 1999).  

3. RESULTS AND DISCUSSION

3.1 Level-1 classification for broad land-use classes   
The first level of classification involving the five broad land-use 
classes viz., agriculture, horticulture, fallow land, forest, scrub, 
settlement, road and water body resulted overall accuracy of 
about 91% of accuracy. The class under agriculture include the 
field crops like rice and maize in the village. Since the UAV 
images were acquired during the period of beginning of 
transplantation of the rice crops, rice fallow areas are put under 
the fallow land class. Farmers were seen preparing the land for 
different vegetable crops. But these areas have not been taken 
into account in the selected horticultural crops under the study 
and put in the fallow lands. Dominant horticultural crops in the 
village viz., pineapple, banana, orange, papaya, other few 
standing vegetable crops are taken in the horticulture class. 
Ginger and turmeric which are prominent horticulture and also 
the spice crops in the village have been put in the horticulture 
class. Forest class include the community forest attached to the 
village and also the bamboo areas. Significant amount of scrub 
lands in the village include short bushes and wild grasslands. 
Other three categories viz., settlements (houses), Roads and 
water bodies could easily be separated (Figure 4, Figure 5, 
Figure 6). As it is observed from the contingency matrix (Table 
4), there was overlapping of segmented polygon for agriculture 
and horticulture classes, particularly in the vegetable growing  

Table 2. Details of vegetation indices used in the study 

Index Formula 
Spectral Bands or 
Wavelengths(nm) Sensor References 

Normalized 
Difference 
Vegetation Index 

NDVI = 
(NIR- Red)/ 

(NIR+Red) 

Red : 660 
NIR :790 

UAV Based 
Parrot Sequoia Multi-

spectral Sensor 
Tucker, 1979 

Normalized 
Difference Red 
Edge Index 

NDRE = 
(NIR- Red Edge)/ 

(NIR + Red Edge) 

Red Edge :735 
NIR : 790 

UAV Based 
Parrot Sequoia Multi-

spectral Sensor 
Schuster et al., 2012 

Green Normalized 
Difference 
Vegetation Index 

GNDVI = 
(NIR- Green)/     (NIR + 

Green) 
Green : 550 
NIR : 790 

UAV Based 
Parrot Sequoia Multi-

spectral Sensor 
Ustuner, et al., 2014 
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areas resulting a user’s and producer’s accuracy for horticulture 
class as 0.89 and 0.93 respectively. Orange plantations in the 
village resembles to the forests in the village thereby 
contributing the omission error of the horticulture class (0.15).   

This level-1 classification for the broad land-use classes yielded 
acceptable accuracy with regards to our class of interest, that is 
the areas under various horticulture crops. Similar results were 
reported by Ahmed et al., 2017 following a two-level 
hierarchical classification approach. 

Figure 6.  Classified image of land cover classes for part of the 
village (level-1) 

3.2 Level-2 classification for selected horticultural crops   
The level-2 classification for delineating the major horticultural 
crops was carried out in the villages. Four fruit crops viz., 
pineapple, banana, orange and papaya and two spice crops viz., 
ginger and turmeric were considered for identification through 
spectral analysis using the three commonly used indices (NDVI, 
NDRE and GNDVI). NDVI and GNDVI showed nearly similar 
spectral response. Pineapple, which grows abundantly in the 
village with row plantations, has exhibited highest values for all 

the three indices. (NDVI=0.694, GNDVI=0.584 and NDRE= 
0.232). Ginger and turmeric grown in small scale in the village 
have values in the lower ranges in all the three indices. Ginger 
has the least values in NDVI (0.356), GNDVI (0.245) and 
NDRE (0.025).   

The lower vegetation index value for ginger and turmeric crops 
due to the fact that these two crops are towards the maturity 
stage, leaves started yellowing. Another reason for lower values 
in the vegetation indices is due to sparse pattern of the leaf 
structure having exposed soil. When we considered the 
separability of the selected crops with the indices, it was 
observed that pineapple and the orange crops were closely 
placed in terms of NDVI and GNDVI (difference ranges from 
1% to 11% respectively). On the other hand, there were 
significant differences observed in case of GNDVI, between 
orange and ginger crops. Separability among the crops 
improved significantly with the use of NDRE. The difference 
among the selected horticultural crops ranged between 34% to 
78%, the highest between the papaya and the ginger. The major 
gain in using the NDRE is that average difference of its range of 
values went up to 51% as compared to 19% in case of NDVI 
and 34 % in case of GNDVI (Figure 7). Similar observations 
reported earlier by Hunt et al., 2010. 

Figure 7. Mean values of vegetation indices for the selected 
horticultural crops 

Correlation among the selected indices revealed that there is 
closer relation with NDVI and GNDVI (r=0.91) against r=0.74 
between NDVI and NDRE and r=0.71 between GNDVI and 
NDRE.  

Figure 4. Part of Nongkhrah village with different land use Figure 5. Segmented image of part of the Nongkhrah village 
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Table 4. Confusion matrix for Level-1 classification
(Land cover classes) 
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Table 5. Confusion matrix for Level-2 classification 
(horticultural crops) 
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This suggests that employing of either NDVI or GNDVI will 
result in similar classification accuracy as there is no significant 
gain in additional information due to the use of GNDVI, 
whereas there is no close relation between NDVI and NDRE 
and between GNDVI and NDRE (Table 3).  

Table 3. Correlation matrix of vegetation indices 

The second level of classification for delineating the six 
selected horticultural crops has resulted overall accuracy of 
79.8% (Table 5).  Ginger and turmeric have contributed in 
reducing both user’s and producer’s accuracy. The highest 
omission errors have been observed in case of turmeric and 
papaya (0.35 and 0.27 respectively), where as highest 
commission error has been observed in case of ginger (0.42) 
followed by turmeric (0.31).  Orange crop, which is grown as 
plantation with distinct tree spacing was easy to delineate, 
which has also exhibited highest users and producers accuracy 
(93%). 

Considering the observations of the study, it may be felt the 
necessity of using more spectral bands for spectral separation of 
horticultural crops as separability of minor crops yet to reach to 
level of acceptance for operational use. Use of hyper-spectral 
sensors onboard UAVs may be explored in such conditions 
(Yang et al., 2007).   

CONCLUSION 

Horticultural statistics at large scale (village level/field level) is 
extremely important for the administrators and famers for 
production estimation, processing, marketing etc. The 
conventional satellite remote sensing approaches could not 
yield the desired level of accuracy due to distinct physiographic 
and social features of north eastern region of India under small 
& fragmented holding, shifting cultivation, terrace farming in 
steep slope, persistent cloud cover during most part of the year 
etc. Use of UAV remote sensing technology in horticultural 
system may significantly improved the efficiency in terms of 
providing a solution for rapid assessment of horticultural crops 
at the plant/species level with acceptable accuracy. Use of UAV 
borne hyperspectral images may further enhance the scope of 
delineation of multiple crops including the minor crops such as 
vegetable crops. However for various operational applications 
in horticulture sector, issues like long endurance period, 
procedures for classification of large volume of heterogeneous 
very resolution data need to be effectively addressed.   
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