
Building Customized Data Pipelines Using the
Entrez Programming Utilities (eUtils)
Eric Sayers and David Wheeler

Introduction
The Entrez Programming Utilities (eUtils) are a set of seven server-side programs that
provide a stable interface into the Entrez query and database system at the National
Center for Biotechnology Information (NCBI). The eUtils use a fixed URL syntax that
translates a standard set of input parameters into the values necessary for various NCBI
software components to search for and retrieve the requested data. The eUtils are
therefore the structured interface to the Entrez system, which currently includes 23
databases covering a variety of biomedical data, including nucleotide and protein
sequences, gene records, three-dimensional molecular structures, and the biomedical
literature.

To access these data, a piece of software first posts an eUtils URL to NCBI, then retrieves
the results of this posting, after which it processes the data as required. The software can
thus use any computer language that can send a URL to the eUtils server and interpret the
XML response; examples of such languages are Perl, Python, Java, and C++. Combining
eUtils components to form customized data pipelines within these applications is a
powerful approach to data manipulation.

This guide first describes the general function and use of the eUtils and then outlines
strategies for creating customized data pipelines with examples in Perl.

Links
eUtils course

eUtils-announce mailing list

eUtils help documents

Entrez search

Entrez database model

Entrez help

NLM Citation: Sayers E, Wheeler D. Building Customized Data Pipelines Using the Entrez
Programming Utilities (eUtils). In: NCBI Short Courses [Internet]. Bethesda (MD): National Center
for Biotechnology Information (US); 2004-.

http://www.ncbi.nlm.nih.gov/Entrez/index.html
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/course.html
http://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
http://www.ncbi.nih.gov/Entrez/index.html
http://www.ncbi.nih.gov/Database/datamodel/index.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/helpdoc.html

Entrez tools

Two Things to Remember Before Using the eUtils

The eUtils Access Entrez Databases
The eUtils access the core search and retrieval engine of the Entrez system and, therefore,
are only capable of retrieving data that are already in Entrez. Although the majority of
data at NCBI is in Entrez, there are several datasets that exist outside of the Entrez system.
Before beginning a project with the eUtils, check that the desired data can be found
within an Entrez database.

The Entrez System Identifies Database Records Using UIDs
Each Entrez database refers to the data records within it by an integer ID called a UID.
Examples of UIDs are GI numbers for Nucleotide and Protein, PMIDs for PubMed, or
MMDB-IDs for Structure. The eUtils use UIDs for both data input and output, and thus it
is often critical, especially for advanced data pipelines, to know how to find the UIDs
associated with the desired data before beginning a project with the eUtils.

Understanding Entrez

The Entrez Engine: EGQuery, ESearch, and ESummary
The core of Entrez is an engine that performs two basic tasks for any Entrez database: 1)
assemble a list of UIDs that match a text query, and 2) retrieve a brief summary record
called a Document Summary (DocSum) for each UID. In Entrez, UIDs are always
integers, and each refers to a unique record in a given Entrez database; the common
names of the UIDS are listed. Document Summaries are a familiar sight in any Entrez
Web search and are shown in the results display seen immediately after a search is
executed.

These two basic tasks of the Entrez engine are performed by ESearch and ESummary.
ESearch returns a list of UIDs that match a text query in a given Entrez database, and
ESummary returns DocSums that match a list of input UIDs. EGQuery is a global version
of ESearch that searches all Entrez databases simultaneously. Because these three eUtils
perform the two core Entrez functions, they function well for all Entrez databases.

Entrez Databases: EInfo, EFetch*, and ELink
A growing number of databases, such as PubMed, Nucleotide, Protein, and Structure, use
the core Entrez search and retrieval engine. EInfo provides detailed information about a
given database, including lists of the indexing fields in the database and the available links
to other Entrez databases. Each Entrez database includes two primary enhancements to
the raw data records: 1) software for producing a variety of display formats appropriate to

2 NCBI Short Courses

http://eutils.ncbi.nlm.nih.gov/entrez/query/static/advancedentrez.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html#PrimaryIDs
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html#PrimaryIDs
http://www.ncbi.nih.gov/Database/datamodel/index.html

the given database, and 2) each record may be linked to records in other Entrez databases
via a list of associated UIDs.

The display format function is performed by EFetch, which generates formatted output
for a list of input UIDs. For example, EFetch can produce abstracts from Entrez PubMed
or FASTA format from Entrez Protein. The linked-records function is performed by
ELink, which generates a list of UIDs in a specified Entrez database that are linked to a set
of input UIDs. For example, ELink can find Entrez SNP records linked to records in
Entrez Nucleotide, or Entrez Domain records linked to records in Entrez Protein.

*Note: EFetch is currently supported only in the following databases: PubMed, PubMed
Central, Journals, Nucleotide, Protein, Genome, Gene, SNP, PopSet, and Taxonomy.

Using the Entrez History Server: EPost et al.
A powerful feature of the Entrez system is that it can store retrieved sets of UIDs
temporarily on the servers so that they can be combined subsequently or otherwise
manipulated. The Entrez History server provides this service and is accessed on the Web
using either the Preview/Index or History tabs on Entrez search pages. Each of the eUtils
can also use the History server, which assigns each set of UIDs an integer label called a
query key (&query_key) and an encoded server address called a Web environment
(&WebEnv). EPost allows any list of Primary IDs (UIDs) to be uploaded to the History
Server and returns the query key and Web environment. ESearch can also post its output
set of UIDs to the History Server. The resulting query key and Web environment from
either EPost or ESearch can then be used in place of a UID list in ESummary, EFetch, and
ELink, which is very convenient when dealing with large datasets.

Guidelines for Constructing URLs

Special Characters
When constructing URLs for the eUtils, please use lowercase characters for all parameters
except &WebEnv. There is no required order for the URL parameters in an eUtils URL,
and null values or inappropriate parameters are ignored. Avoid placing spaces in the
URLs, particularly in queries. If a space is required, use a plus sign (+) instead of a space:

• Incorrect: &id=352, 25125, 234, ...
• Correct: &id=352,25125,234,...
• Incorrect: &term=biomol mrna[properties] AND mouse[organism]
• Correct: &term=biomol+mrna[properties]+AND+mouse[organism]

Other special characters, such as the # symbol used in referring to a query key on the
History server, should be represented by their URL encodings (%23 for #).

Building Customized Data Pipelines Using the Entrez Programming Utilities (eUtils) 3

Identifying Your Queries
NCBI recommends that you use the &tool and &email parameters to identify all of
your eUtils URLs. For &tool, choose a value that uniquely identifies your software. If
your name is John Smith, use, for example, &tool=johnsmithsoft. If your email
address is jsmith@hotmail.com, use &email=jsmith@hotmail.com. This email
address is used only to inform the creator of the software of any problems. The NCBI does
not use these addresses for mailing lists, although you can join the eUtils-announce
mailing list if you wish.

The Seven eUtils in Brief
• EInfo: provides the number of records indexed in each field of a given database, the

date of the last update of the database, and the available links from the database to
other Entrez databases. [reference documentation]

• EGQuery: responds to a text query with the number of records matching the query
in each Entrez database. [reference documentation]

• ESearch: responds to a text query with the list of UIDs matching the query in a
given database, along with the term translations of the query. [reference
documentation]

• ESummary: responds to a list of UIDs with the corresponding document
summaries. [reference documentation]

• EPost: accepts a list of UIDs, stores the set on the History Server, and responds with
the corresponding query key and Web environment. [reference documentation]

• EFetch: responds to a list of UIDs with the corresponding data records. [reference
documentation]

• ELink: responds to a list of UIDs in a given database with either a list of related IDs
in the same database or a list of linked IDs in another Entrez database. [reference
documentation]

Syntax and Initial Parsing of Entrez Queries
Text search strings entered into the Entrez system are converted into Entrez queries with
the following format:

term1[field1] Op term2[field2] Op term3[field3] Op ...

where the terms are search terms each limited to a particular Entrez field in square
brackets, all combined using one of three Boolean operators: Op = AND, OR, or
NOT. These Boolean operators must be typed in all capital letters.

Example: human[organism] AND topoisomerase[protein name]

Entrez initially splits the query into a series of items that were originally separated by
spaces in the query; therefore it is critical that spaces separate each term and Boolean
operator. If the query consists only of a list of UID numbers (unique identifiers) or

4 NCBI Short Courses

http://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/einfo_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/egquery_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/esearch_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/esearch_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/esummary_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/epost_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetch_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/elink_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/elink_help.html

accession numbers, the Entrez system simply returns the corresponding records and no
further parsing is performed. If the query contains any Boolean operators (AND, OR, or
NOT), the query is split into the terms separated by these operators, and then each term is
parsed independently. The results of these searches are then combined according to the
Boolean operators. Further details about the parsing of Entrez queries are given in the
Appendix.

A full account of how to search Entrez can be found in the Entrez Help Document.
Additional information is available from Entrez Help.

Handling Large Datasets

Uploading Large UID Lists
When uploading a large list of UIDs using ESearch or EPost, or when using such a list as
input to ESummary, EFetch, or ELink, it is a good idea to split the list into smaller batches
of around 500 records. A series of URLs can then be posted to upload the entire set.

Downloading Large Datasets
When using ESummary or EFetch to download large datasets, it can be more efficient to
use a series of URLs governed by the retstart and retmax parameters to download
smaller batches of records. An example of doing this is given in Application 3: Retrieving
Large Datasets.

Special Considerations When Using ELink

Preserving Record-to-Record Correspondence in Links
ELink can find links to not only one set of UIDs but also to multiple sets of UIDs
simultaneously. This is very useful for preserving specific record-to-record links after the
ELink call. To do this, use a separate &id parameter for each group of UIDs that requires
a separate list of linked UIDs. Consider the following URLs:

URL 1: elink.fcgi?
dbfrom=nucleotide&db=protein&id=41282244,41282247,40789264

URL 2: elink.fcgi?
dbfrom=nucleotide&db=protein&id=41282244&id=41282247&id=4078
9264

URL 3: elink.fcgi?
dbfrom=nucleotide&db=protein&Webenv=Webenv&query_key=key

Both URLs 1 and 2 return the same protein GI numbers (41282245, 4759258, 40789265),
but URL 1 returns them as a group without information about which nucleotide record is
linked to which protein record. URL 2, on the other hand, returns three groups of links,

Building Customized Data Pipelines Using the Entrez Programming Utilities (eUtils) 5

http://www.ncbi.nlm.nih.gov/entrez/query/static/help/helpdoc.html
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/

one for each &id parameter, preserving the nucleotide-to-protein links. URL 3 is
functionally equivalent to URL 1 (assuming that the three GIs in the example are stored in
that Web Enviroment).

ELink and the History Server
Although ELink can accept a stored set of UIDs from the History server as input, this
eUtil cannot load its output onto the History server. The consequence of this is that the
linked UIDs found by ELink must be parsed out of the XML output and then provided as
input to another eUtil, either directly using the &id parameter or by using EPost to store
them explicitly on the History server. Then they can be passed to other eUtils.

Combining eUtils Calls to Create Entrez Applications
The eUtils are useful when used by themselves in single URLs; however, their full
potential is reached when successive eUtil URLs are combined to create a data pipeline.
When used within such pipelines, the Entrez History server simplifies complex retrieval
tasks by allowing easy data transfer between successive eUtil calls. Listed below are several
examples of pipelines produced by combining eUtils, with the arrows representing the
passing of WebEnv and query_key values from one eUtil to another. These pipelines
are discussed in detail below.

Basic Pipelines
• Retrieving data records matching an Entrez query

⚬ ESearch → ESummary
⚬ ESearch → EFetch

• Retrieving data records matching a list of UIDs
⚬ EPost → ESummary
⚬ EPost → EFetch

• Finding IDs linked to records matching an Entrez query
⚬ ESearch → ELink

• Finding IDs linked to other UIDs
⚬ EPost → ELink

Advanced Pipelines
• Retrieving data records in database B linked to records in database A matching an

Entrez query
⚬ ESearch → ELink → ESummary
⚬ ESearch → ELink → EFetch

• Retrieving data records from a subset of an ID list defined by an Entrez query
⚬ EPost → ESearch → ESummary
⚬ EPost → ESearch → EFetch

• Retrieving a subset of data records, defined by an Entrez query, from a set of
records in database B linked to a list of UIDs in database A

6 NCBI Short Courses

⚬ ELink → EPost → ESearch → ESummary
⚬ ELink → EPost → ESearch → EFetch

Basic Pipelines

ESearch → ESummary/EFetch

Input: Entrez query

Output: DocSums (ESummary) or formatted data (EFetch) that match the Entrez query

Step 1. Use ESearch to find IDs that match an Entrez query and store them on the History
server.

esearch.fcgi?db=database&term=query&usehistory=y

Step 2. Parse the Web Environment (Webenv) and query key (key) parameters from the
XML ouput.

Step 3. Use ESummary or EFetch to retrieve records for the stored dataset.

esummary.fcgi?db=database&WebEnv=Webenv&query_key=key

efetch.fcgi?db=database&WebEnv=Webenv&query_key=key

EPost → ESummary/EFetch

Input: List of UIDs

Output: DocSums (ESummary) or formatted data (EFetch) that match the Entrez query

Step 1. Use EPost to store the IDs on the History server.

epost.fcgi?db=database&id=id_list

Step 2. Parse the Web Environment (Webenv) and query key (key) parameters from the
XML ouput.

Step 3. Use ESummary or EFetch to retrieve records for the stored dataset.

esummary.fcgi?db=database&WebEnv=Webenv&query_key=key

efetch.fcgi?db=database&WebEnv=Webenv&query_key=key

ESearch → ELink

Input: Entrez query

Output: Primary IDs in database B that are linked to records in database A matching the
Entrez query

Step 1. Use ESearch to find IDs that match an Entrez query and store them on the History
server.

esearch.fcgi?db=databaseA&term=query&usehistory=y

Building Customized Data Pipelines Using the Entrez Programming Utilities (eUtils) 7

Step 2. Parse the Web Environment (Webenv) and query key (key) parameters from the
XML ouput.

Step 3. Use ELink to retrieve linked IDs for the stored dataset.

elink.fcgi?dbfrom=databaseA&db=databaseB&WebEnv=Webenv&query_key=key

EPost → ELink

Input: List of UIDs in database A

Output: List of UIDs in database B linked to the IDs in database A

Step 1. Use EPost to store the IDs on the History server.

epost.fcgi?db=databaseA&id=id_list

Step 2. Parse the Web Environment (Webenv) and query key (key) parameters from the
XML ouput.

Step 3. Use ELink to retrieve linked IDs for the stored dataset.

elink.fcgi?dbfrom=databaseA&db=databaseB&WebEnv=Webenv&query_key=key

Advanced Pipelines

ESearch → ELink → ESummary/EFetch

Input: Entrez query

Output: DocSums (ESummary) or formatted data records (EFetch) in database B that are
linked to records in database A matching the Entrez query

Step 1. Use ESearch to find IDs that match an Entrez query and store them on the History
server.

esearch.fcgi?db=databaseA&term=query&usehistory=y

Step 2. Parse the Web Environment (Webenv) and query key (key) parameters from the
XML ouput.

Step 3. Use ELink to retrieve linked IDs for the stored dataset.

elink.fcgi?dbfrom=databaseA&db=databaseB&WebEnv=Webenv&query_key=key

Step 4. Parse the UIDs from the ELink XML output and assemble as a comma-delimited
list.

Step 5. Use ESummary or EFetch to retrieve data records corresponding to the ID list

esummary.fcgi?db=databaseB&id=id_list

efetch.fcgi?db=databaseB&id=id_list

8 NCBI Short Courses

EPost → ESearch → ESummary/EFetch

Input: List of UIDs

Output: DocSums (ESummary) or formatted data (EFetch) that correspond to the input
list of IDs limited by an Entrez query

Step 1. Use EPost to store the IDs on the History server.

epost.fcgi?db=database&id=id_list

Step 2. Parse the Web Environment (Webenv) and query key (key) parameters from the
XML ouput.

Step 3. Use ESearch to limit the stored dataset by an Entrez query.

esearch.fcgi?db=database&term=query+AND+%23key&WebEnv=Webenv&usehistory=y

Step 4. Parse the new Web Environment (Webenv2) and query key (key2) parameters
from the XML ouput.

Step 5. Use ESummary or EFetch to retrieve records for the stored dataset.

esummary.fcgi?db=database&WebEnv=Webenv2&query_key=key2

efetch.fcgi?db=database&WebEnv=Webenv2&query_key=key2

ELink → EPost → ESearch → ESummary/EFetch

Input: List of UIDs

Output: DocSums (ESummary) or formatted data (EFetch) in database B that are both
linked to input list of IDs in database A and match the Entrez query

Step 1. Use ELink to retrieve IDs in database B linked to IDs in database A.

elink.fcgi?dbfrom=databaseA&db=databaseB&id=id_list

Step 2. Parse the linked UIDs from the ELink XML output and assemble as a comma-
delimited list (id_list2) for posting onto the History server.

Step 3. Use EPost to store the IDs on the History server.

epost.fcgi?db=databaseB&id=id_list2

Step 4. Parse the Web Environment (Webenv) and query key (key) parameters from the
XML ouput.

Step 5. Use ESearch to limit the stored dataset by an Entrez query.

esearch.fcgi?db=databaseB&term=query+AND+%23key&WebEnv=Webenv&usehistory=y

Step 6. Parse the new Web Environment (Webenv2) and query key (key2) parameters
from the XML ouput.

Building Customized Data Pipelines Using the Entrez Programming Utilities (eUtils) 9

Step 7. Use ESummary or EFetch to retrieve records for the stored dataset.

esummary.fcgi?db=databaseB&WebEnv=Webenv2&query_key=key2

efetch.fcgi?db=databaseB&WebEnv=Webenv2&query_key=key2

Sample Applications of the eUtils
In the applications below, it is assumed that Perl is being used to create eUtils pipelines. In
Perl, scalar variable names are preceded by a “$” symbol, and array names are preceded by
a “@”. In several instances, results will be stored in such variables for use in subsequent
URLs.

Application 1: Converting GI Numbers to Accession Numbers

I have a list of nucleotide GI numbers and I want the corresponding accession numbers.

Solution: Use EFetch with &rettype=acc

URL: efetch.fcgi?db=nucleotide&id=$gi_list&rettype=acc

Application 2: Converting Accession Numbers to Data

I have a list of genome Accession numbers ($acc_list) and I want the sequences in
FASTA format.

Solution: Use EFetch with &rettype=fasta

URL: efetch.fcgi?db=genome&id=$acc_list&rettype=fasta

Application 3: Retrieving Large Datasets

I want to retrieve an arbitrary number of formatted records that match an Entrez query.

Solution: First, run ESearch in Web Environment mode to retrieve the total number of
UIDs that match the Entrez query (<Count> tag in the ESearch output). Then store this
number into $count, and store the values of WebEnv and query_key into $Webenv
and $key. Next, run EFetch multiple times, each time retrieving a batch of size
$retmax (for example, $retmax = 500). Accomplish this by incrementing
$retstart iteratively in a “for” loop to retrieve successive batches of records of size
$retmax:

use LWP::Simple;

URL 1: esearch.fcgi?db=database&term=$query&usehistory=y

URL 2+: produced by the following loop:

Perl:

for ($retstart = 0; $retstart < $count; $restart += $retmax) {

 $efetch_url = $base ."db=$db&WebEnv=$Webenv&query_key=$key";

10 NCBI Short Courses

 $efetch_url .= "&retstart=$retstart&retmax=$retmax";

 $efetch_out = get($efetch_url);

 print "$efetch_out";

}

where $base = http://eutils.ncbi.nlm.nih.gov/entrez/eutils/
efetch.fcgi?, $db is the database, and $efetch_url is a string containing the
EFetch URL. This Perl code assumes that the LWP::Simple module is installed. This
module allows the use of the get command for retrieving data from a URL.

Application 4: Downloading Contigs

I want to download a flatfile with the full sequence of an assembly (e.g., a contig).

Solution: Use EFetch with &rettype=gbwithparts

URL: efetch.fcgi?
db=nucleotide&id=27479347&rettype=gbwithparts

Application 5: Limiting and Converting GI Lists

I have list of protein GI numbers from a BLAST search and I want to download the
document summaries of only those protein records that are mammalian sequences with
annotated SNPs.

Solution: Use EPost to upload the GI list, then use ESearch to limit the list, followed by
EFetch to download the FASTA formatted data.

URL 1: epost.fcgi?db=protein&id=$gi_list

Result: In Perl, store WebEnv as $Webenv1, query_key as $key1

URL 2: esearch.fcgi?db=protein&term=%23$key1+AND
+mammalia[organism]+AND+protein
+snp[filter]&usehistory=y&WebEnv=$Webenv1

Result: In Perl, store WebEnv as $Webenv2, query_key as $key2

Note: The %23 resolves to the # symbol, so that %23$key1 → #2.

URL 3: esummary.fcgi?db=protein&WebEnv=$Webenv2&query_key=
$key2

Application 6: Finding Related Records in Other Entrez Databases

I want to find all available 3D structure records similar to protein BAA20519.

Solution: Use ESearch to find the GI number, then ELink to find related sequences to that
protein. Then use ELink again to find linked MMDB-IDs, and finally ESummary to
download the document summaries of the structure records.

Building Customized Data Pipelines Using the Entrez Programming Utilities (eUtils) 11

URL 1: esearch.fcgi?db=protein&term=BAA20519

Result: Find GI 2208903.

URL 2: elink.fcgi?dbfrom=protein&db=protein&id=2208903

Result: Find 1084 related sequences, extract into $gi_list1

URL 3: elink.fcgi?dbfrom=protein&db=structure&id=$gi_list1

Result: Find 9 related structures, extract into $gi_list2

URL 4: esummary.fcgi?db=structure&id=$gi_list2

Application 7: Entrez TBLASTX

I want to download all mRNAs from green plants that are related at the protein level to
human NM_001126, in flatfile format.

Motivation: For finding distant homologs, protein BLAST searches are generally more
sensitive than nucleotide BLAST searches. In this specific case, a nucleotide BLAST search
finds no significant matches to NM_001126 from green plants, whereas TBLASTX will
find several homologous sequences. However, TBLASTX is the most time-consuming
version of BLAST, and therefore using the pre-computed results in Entrez saves significant
computing time.

Solution: Use ESearch to retrieve the record for NM_001126, and then use ELink to find
the linked protein sequence. Then use ELink again to find all related sequences to that
protein, and then use ELink a third time to find all nucleotide records linked to those
related proteins and then limit them to mRNAs from green plants. Finally, download the
formatted data with EFetch.

URL 1: esearch.fcgi?db=nucleotide&term=NM_001126

Result: Find GI = 4557270.

URL 2: elink.fcgi?dbfrom=nucleotide&db=protein&id=4557270

Result: Find GI = 4557271.

URL 3: elink.fcgi?dbfrom=protein&db=protein&id=4557271

Result: Extract the 507 GI numbers into $gi_list1, and if desired, the raw BLAST
scores reported by ELink into @scores

URL 4: elink.fcgi?dbfrom=protein&db=nucleotide&id=
$gi_list1&term=biomol+mrna[properties]+AND
+viridiplantae[organism]

Result: Extract the 7 GI numbers into $gi_list2

12 NCBI Short Courses

URL 5: efetch.fcgi?db=nucleotide&WebEnv=$Webenv2&query_key=
$key2&rettype=gb

Result: Download the 7 plant mRNAs, none of which are found using Related Sequences
to NM_001126

eUtils Course
The National Center for Biotechnology Information (NCBI) presents NCBI
PowerScripting, a 3-day course that includes both lectures and computer workshops on
using the NCBI eUtils effectively within scripts to automate search-and-retrieval
operations across the entire suite of Entrez databases.

Full details of the course.

Appendix

Automatic Term Mapping in Entrez Queries

After the initial parsing, each resulting term in the Entrez query is then searched against
three lists in the following order, and if a match is found, the indicated search is
performed:

1. Taxonomic nodes → taxonomic node[organism] OR term[All
Fields]

2. Journal names → term[Journal]
3. Author names → term[Author]

A valid author name is any word followed by a space and then one or two letters.

Subsequent Parsing

If no matches are found after automatic term mapping, the rightmost word of the term is
removed, and automatic term mapping is repeated. This continues until either a match is
found or the term is exhausted. If there is still no match, each word of the term is limited
to All Fields and all terms are combined with AND.

Examples

• cancer cell receptor → "Cancer Cell"[Journal] AND receptor[All
Fields]

• cell receptor cancer → (cell[All Fields] AND receptor[All
Fields]) AND ("Cancer"[Organism] OR cancer[All Fields])

• human c-src kinase → (("Homo sapiens"[Organism] OR human[All
Fields]) AND c-src[All Fields]) AND kinase[All Fields]

• wheat nuclear protein → (("Triticum aestivum"[Organism] OR
wheat[All Fields]) AND nuclear[All Fields]) AND
protein[All Fields]

Building Customized Data Pipelines Using the Entrez Programming Utilities (eUtils) 13

http://www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/course.html

• wheat w nuclear protein → (wheat w[Author] AND nuclear[All
Fields]) AND protein[All Fields]

14 NCBI Short Courses

	Introduction
	Links
	Two Things to Remember Before Using the eUtils
	Understanding Entrez
	Guidelines for Constructing URLs
	The Seven eUtils in Brief
	Syntax and Initial Parsing of Entrez Queries
	Handling Large Datasets
	Special Considerations When Using ELink
	Combining eUtils Calls to Create Entrez Applications

