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Abstract
This paper introduces a novel transit data analytics platform for public transit planning, assessing service 
quality and revealing service problems in high spatiotemporal resolution for public transit systems based on 
Automatic Passenger Counting (APC) and Automatic Vehicle Location (AVL) technologies. The platform offers a 
systematic way for users and decision makers to understand system performance from many aspects of service 
quality, including passenger waiting time, stop-skipping frequency, bus bunching level, bus travel time, on-time 
performance, and bus fullness. The AVL-APC data from September 2012 to March 2016 were archived in a 
database to support the development of a user-friendly web application that allows both users and managers 
to interactively query bus performance metrics for any bus routes, stops, or trips for any time period. This 
paper demonstrates a case study using the platform to examine bus bunching in a transit system operated by 
the Port Authority of Allegheny County (PAAC) in Pittsburgh. It is found that the incidence of bus bunching is 
heavily impacted by the location on the route as well as the time of day, and the bunching problem is more 
severe for bus routes operating in mixed traffic than for bus rapid transit, which operates along a dedicated 
busway. Furthermore, a second case study is presented with a comprehensive analysis on a representative route 
in Pittsburgh under schedule changes. Suggestions for operation of this route to improve service quality are 
proposed based on the data analytics results.

Keywords: Transit system, Automatic Vehicle Location, Automatic Passenger Counting, data analytics platform, 
performance metrics, bus bunching, service quality
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Introduction

Public transit plays an important role in sustainable mobility. It provides an affordable way for all residents 
to travel across the city. It also helps to reduce congestion in urban road networks and reduce energy 
consumption in the daily passenger transport of cities (Barrero et al. 2008). To attract more riders, public transit 
agencies have been trying to improve their service efficiency and reliability by reducing passenger waiting time, 
reducing dwell time, and rebalancing the distribution of service to meet travel needs. This paper develops 
a transit data analytics platform for systematically understanding transit system performance (efficiency, 
reliability, and service quality) with the increasingly available Automatic Passenger Counting (APC) and 
Automatic Vehicle Location (AVL) data. The data platform has been deployed for assessing the service quality 
of a transit system in the Pittsburgh region operated by the Port Authority of Allegheny County (PAAC).

Prior to the advent of AVL-APC systems, much of the data for the performance metrics used by transit agencies 
to assess their systems had to be painstakingly collected and tabulated by hand. Transit agencies either 
conducted passenger satisfaction surveys by asking passengers about their transit experience (Nathanail 2008; 
Eboil and Mazzulla 2009) or hired observers to record bus punctuality and fullness at bus stops (Badami and 
Haider 2007). The expenses associated with these processes meant that such data was collected only as needed 
or as scheduled by the agency in question. Thus, any researcher or member of the public who was interested in 
looking into the performance of their transit system had access only to whatever data the transit agency made 
publicly available. Alternatively, video cameras paired with computer vision algorithms can be used by transit 
agencies to automatically collect data on buses or at bus stops, e.g., the passenger count (Kimpel et al. 2003; 
Jaiswal et al. 2008). However, this data collection method is costly and generates limited sample sizes. 

As AVL-APC systems have become more widespread and the cost of storing data has decreased drastically, 
agencies have found themselves in possession of much of the data researchers or citizens might be interested 
in. These AVL-APC systems not only provide much bigger data coverage in spatial and time ranges, but also 
ensure a high level of data quality if a suitable quality control process is applied when pre-processing the raw 
data. In fact, in the early 2000s, some transit agencies such as TriMet in Portland, Oregon, collaborated directly 
with university researchers to have them evaluate the data and identify efficiencies that could be realized via 
service modifications (Strathman 2002). Moreover, in some state-of-the-art research, AVL-APC data can be 
used to evaluate bus service reliability, hence improving the schedule and performance of a bus system (Cham 
2006). AVL-APC data may also be used to estimate bus running time (Tétreault and El-Geneidy 2010) or to 
predict arrival and departure times (Shalaby and Farhan 2004) at certain bus stops. In Feng and Figliozzi (2011), 
the spatiotemporal causes of bus bunching phenomena were studied using a half year’s AVL-APC data for a 
low-performance TriMet route. The on-time performance of certain bus routes can also be improved using AVL 
data, as presented in Cevallos et al. (2011).

On the other hand, with the development of web technology and the popularity of web applications, web-
based open-source urban traffic and transit planning tools have emerged in recent years. These web-based 
tools can significantly improve the efficiency of data fetching, data analysis, and the decision making of urban 
traffic and public transit planners. Two websites that specialize in transit planning for transit agencies include 
UrbanEngines.com and Remix.com. Another web-based application designed for data analysis of the transit 
system in Singapore is BusViz, which uses passenger fare card data (Anwar et al. 2016). However, BusViz results 
rely on the assumption that every passenger correctly taps their EZ-Link card when boarding and alighting. 
Other transportation data analytics platforms designed or developed in recent years include the traffic big data 
platform by Mian et al. (2014), the Sipresk (Khazaei et al. 2015), and the conceptual platform Godzilla (Shtern et 
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al. 2014), which were designed for general traffic data or highway traffic data. The platform discussed here was 
developed specifically for bus transit data analytics.

By combining the advantages of web applications (low cost for development and maintenance, convenience for 
access anywhere and anytime, customizability, and scalability) and of AVL-APC data (low cost, broad coverage, 
and high quality), the data analytics platform presented here helps automate the public transit data requests 
and analysis process with high spatiotemporal resolutions. There are two major advantages when compared to 
similar platforms such as BusViz and Remix:

1.	 All data fetching, visualization, and calculations in this platform use archived AVL-APC data. The dataset is 
able to provide historical bus arrival, departure, and load data accurately down to the trip and stop level, 
so queries may be performed for a single trip, stop, or route, up to the transit system in the Pittsburgh 
city area as a whole.

2.	 The platform offers a systematic way for users and decision makers to examine system performance 
from many aspects of service quality, such as passenger waiting time, bunching, bus trips that skip stops 
due to heavy loads (stop-skipping), crowding level, travel time, and on-time performance. Those metrics 
can be accurately estimated in the platform at any desired spatiotemporal resolution, allowing a better 
understanding of system performance.

The paper is organized as follows. First, the system architecture of the transit data analytics platform is 
described, followed by details of the data used. We then introduce the different functionalities of our platform 
and various transit performance metrics. In the next section, we perform two case studies using the platform 
to study the causes, patterns, and possible solutions to bus bunching in Pittsburgh, as well as the influence of a 
schedule change of Route 61B in Pittsburgh. Finally, conclusions are drawn.

System Architecture
AVL-APC systems include an onboard computer, a GPS device to record bus location (AVL), and a laser sensor at 
each bus door that counts passengers as they board and alight (APC). In combination, these devices comprise 
a system capable of recording a plethora of statistics regarding each bus trip. We built a transit data analytics 
platform by combining the AVL-APC data and modern web technology. Transit agencies and other users 
can access or download the AVL-APC data, or query various kinds of performance metrics and visualize the 
analytical results on a map or in charts, by simply using a cell phone or personal computer (PC) with a modern 
web browser. 

Figure 1 illustrates the system architecture of this platform. After collecting the AVL-APC data from onboard 
sensors, a quality control process is applied to the raw data to remove illogical or missing records, including 
those with unidentifiable route or stop numbers; trips that cannot match the blocks/stops in the correct 
sequence along the route; and records with invalid on/off/load values, such as a negative load. The processed 
sensor measurements and the General Transit Feed Specification (GTFS) data, which contains geographical 
information for all bus stops and schedule information for all bus routes/trips, are stored in our structured 
query language (SQL) database. Then we use the Django web framework and Nginx HTTP server to set up our 
website. Django and Nginx are both free and open source, and they work well together to create a clean design, 
rapid development, and easy deployment. When users start a query on their terminals (cell phones or PCs), 
the query will pass through the web browser, the Internet, and the Nginx server, and then reach the Django 
framework. Django processes the query, fetches the requested data from the SQL database, then computes 
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different performance metrics and sends the data and analytical results back to the user terminals. Finally, 
the web browser presents the query results to users in the form of data files, data charts, or various types of 
visualization on maps. 

 

Using this data platform, users need only to specify several query conditions, including date and time range, bus 
routes or bus stop, type of metrics needed, and data format or visualization preferred, on any portable device. 
They can quickly obtain the desired AVL-APC data or analytical results for any date and time-of-day range for 
any bus route/trip or bus stop. While this framework works generally for any AVL-APC datasets, this paper 
demonstrates it using data from the Pittsburgh region.

Data Description
Usually the AVL-APC system is activated when a bus departs its depot and begins a trip. From the beginning of 
the bus run, the system records basic information such as day of the week, route number, direction (inbound, 
outbound), trip number, vehicle number, and date. As a bus progresses along its route, the system records 
information at each stop, which includes the stop number, arrival time, departure time, and number of 
boarding and alighting passengers. Certain stops are designated as time points. These have a scheduled arrival 
time for the bus, which allows the system to calculate any deviation of the bus from its planned schedule. All 
this data can be recorded onto the system’s onboard memory, downloaded upon the bus’s return to its depot, 
and then integrated into a data warehouse. To provide a quick overview of the AVL-APC data stored in our 
platform database, Table 1 lists the main components, including the trip information, stop information, AVL 
data, and APC data of each data entry.

FIGURE 1.
The system architecture of the web platform
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TABLE 1.
Main Components of Stored AVL-APC Data

All calculations in the analytics platform are made using these AVL-APC data. In July 2012, PAAC installed APC 
and AVL systems on all of its buses. 

Metrics and Functionalities

Passenger Waiting Time

Quantifying the excess waiting time experienced by riders at bus stops helps determine the efficacy of a bus 
system at providing reliable service for customers. Waiting time includes two components: waiting time before 
and waiting time after the scheduled arrival. Waiting time before the scheduled arrival was generally a function 
of headway length and passenger arrival time, while waiting time after the scheduled arrival was related to 
schedule reliability (Salek and Machemehl 1999). However, these approximations do not sufficiently capture the 
effects of service irregularity on passengers because of the difficulty in acquiring the arrival and departure time 
data required to compute them. With the advent of AVL-APC technology, the arrival and departure time data 
of every trip is readily available for transit agencies to analyze (Furth et al. 2006).

Transport for London (TfL), the organization that runs London’s transit system, currently computes waiting 
time in two categories: scheduled waiting time and average actual waiting time (2014). From these two 
measurements, excess waiting time is calculated by subtracting the scheduled waiting time from the average 
actual waiting time. For buses running with no variability and as scheduled, excess waiting time would equal 
zero. Unlike the traditional measures described above, this measurement incorporates historical schedule 
deviation data to better approximate the effect of the deviations on those using the system. TfL’s waiting 
time measurement is intended for use on buses with headways under 12 minutes, shorter than the headways 
of the majority of PAAC’s routes. To help account for this discrepancy, options for two passenger arrival 
distributions are offered. The first will be a uniform distribution, indicative of passengers arriving randomly 
for a high-frequency route, and the second will be a skewed passenger arrival distribution (a shifted Johnson 
SB distribution), which will assume people try to time their arrival at the bus stop to coincide with the bus 
arrival for long-headway routes. Users can choose the passenger arrival distribution they want to apply when 
performing the query.

Uniform Distribution

The actual waiting time is equal to the sum of the half square of observed headways, divided by the sum of 
observed headways. The scheduled waiting time is the sum of the half square of scheduled headways divided by 
the sum of scheduled headways. The excess waiting time is equivalent to actual waiting time minus scheduled 

Component Detail Description

Trip Information
Date, day of week, route, direction (inbound or 
outbound), trip ID number, vehicle number

Stop Information Stop ID number, stop sequence number, stop name

AVL Data
Arrival and departure times (at this stop), dwell time, 
scheduled arrival time, schedule deviation

APC Data
Number of passengers boarding and alighting, number 
of passengers on bus
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waiting time, which results in the amount of time riders had to wait in excess of the scheduled waiting time. 
The formulas are as follows:

								             (1)

						           (2)

						           (3)

where AWT,SWT,EWT are the actual, scheduled, and excess waiting times, respectively; Hi,Ti are the actual and 
scheduled headways of the ith bus trip in the selected time period.

Non-uniform Distribution

It is also possible to calculate the wait time using a non-uniform distribution such as a skewed distribution, 
which internalizes the fact that people do not arrive randomly for bus stops with longer headways, but instead 
try to time their arrival with that of the bus. According to Luethi et al. (2007), a shifted Johnson SB distribution 
is suitable to depict the skewed passenger arrival distribution. The calculations for actual waiting time and 
excess waiting time for a non-uniform passenger arrival distribution case are generalized from the uniform case. 
The formulas are as follows:

					          (4)

					          
(5)

					          (3)

where AWT,SWT,EWT are the actual, scheduled, and excess waiting times, respectively; Ti_1,d,Ti,d are the actual 
departure times of the (i–1)th (preceding) and ith bus, respectively; Ti_1,s,Ti,s are the scheduled departure 
times of the (i–1)th (preceding) and ith bus, respectively; and f(t) is the passenger arrival distribution (e.g., a 
shifted Johnson SB distribution).

When users query for passenger waiting time, they can choose to query by certain bus routes or by certain 
bus stops. Figure 2 shows the query by route view (a), in which users select a specific bus route and one or 
multiple bus stops along that route, and by stop view (b), in which users select a specific bus stop and one or 
multiple bus routes passing that stop. Users select route, direction, date and time range, and passenger arrival 
distribution from the left panel, and bus stops of interest from the map. Bar graphs under the map display the 
waiting time results separately for weekdays, Saturdays, and Sundays (cyan for scheduled, orange for actual, and 
brown for excess waiting time).
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FIGURE 2.
Query by route and query by stop views
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Bus Bunching Level

Bus bunching occurs when buses along a route deviate from their scheduled headways and begin to travel 
closer together forming “bunches.” When one transit vehicle follows another at an initial headway, increased 
delays for the lead vehicle reduce delays for the trailing vehicle, as the lead vehicle services larger-than-average 
passenger volumes and the trailing vehicle serves smaller-than-average passenger volumes (National Academies 
2013). This process typically continues until the trailing vehicle reaches the lead vehicle, after which the vehicles 
may travel together in tandem as a platoon. 

These deviations can be caused by a multitude of factors including traffic congestion, traffic signal timing, 
traffic incidents, and excess crowding. Bunching decreases the reliability of a bus service, a characteristic that 
is highly valued by transit passengers and instrumental in decisions regarding modal choice (Strathman et 
al. 2003). Additionally, since bunching results in an inefficient allocation of rolling stock, it forces operators 
to purchase additional buses to prevent buses from becoming overloaded with passengers (Strathman et al. 
2003). While some level of headway deviation is unavoidable in the unpredictable environment within which 
bus systems operate, it is possible to set a lower bound on acceptable headway between buses (Feng and 
Figliozzi 2011). This value can then be used to identify buses that have deviated far enough from their scheduled 
headways to form a bunch. These calculations will be performed using the archived AVL-APC data and a user-
defined headway threshold (e.g., 0.5 times the scheduled headway). Any pair of buses with a headway below 
the user-defined threshold would have experienced bunching during the defined times. The number of trips 
identified as part of a bunch will be used to compute a percentage representing the “bunching level” along the 
route segment in question, which will be returned to the user. 

Stop-Skipping Frequency

Stop-skipping happens on two major occasions. The first occasion is when there are no passengers waiting 
at the bus stop and no passengers wanting to disembark the bus. The second occasion is when a completely 
full bus skips some stops regardless of whether there are passengers waiting at those stops. Only the second 
case matters because it prevents passengers from boarding, which leads to extra passenger waiting time and 
a deterioration of the bus system’s service quality. The difficulty in computing the frequency of stop-skipping 
with a full bus load is that AVL-APC data do not contain information regarding whether there are passengers 
waiting at a bus stop if the bus does not make a stop. As an approximate solution, our platform filters out the 
bus trips with full bus loads and zero dwell time at stops, considering all of them as stop-skipping because they 
all have the potential to prohibit passenger boarding. 

Crowding Level/Fullness

Crowding level is a vital approximation of the service quality provided by a bus operator from both the 
passenger and operator perspectives. The immediate physical inconveniences of crowding experienced by 
passengers, such as standing for long periods, directly affect customer perception of service quality and 
significantly affect their decisions about using the service again (National Academies 2013). Outside of wanting 
to please and retain their rider base, transit operators have a strong incentive to reduce crowding because 
overcrowded buses have longer dwell times, which leads to decreased service regularity and throughput. 

Typically, passenger load levels are measured and then compared against a standard, which the agency 
considers acceptable from its operational point-of-view as well as customer perception. These standards can 
be defined relative to the seated capacity of the vehicle in question (e.g., 125% of seated capacity) (National 
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Academies 2013). The agency defines acceptable levels of crowding, which can vary widely from agency 
to agency (Li and Hensher 2013). Our platform allows users to analyze crowding levels using the number 
of passengers as a percentage of seated capacity. It also allows users to define their own thresholds for 
overcrowding.

For a specific route and a selected date period with D days, each day has Mi (i=1,2,…,D) trips on that route in 
the selected time interval, and N stops on that route are queried. The average crowding level is computed as:

						           (6)

where Ci,j,k denotes the number of passengers as a percentage of seated capacity of the jth bus trip in the 
selected time intervals, at the kth stop of the selected route, on the ith day of the selected date range. 

When users query for bus bunching, stop-skipping, or crowding level, they select route, direction, start 
and end bus stops, date and time range, and finally customize the legend from the left panel. When 
querying for bunching, users also specify their own criterion for bunching. The result is presented using a 
heat map with detail pop-ups for any selected stops along the queried route. For bunching or crowding, 
the pop-ups contain average levels. For stop-skipping, the pop-ups contain detailed information regarding 
stop-skipping at the selected bus stop, including the total number of trips that skip the stop by trip ID and 
the percentage of stop-skipping trips. An example is shown in Figure 3. For all three functions, users select 
a specific route segment and the date and time range. Results are then shown on the map as different 
colors for each metric. The threshold for colors can be customized by users. Users can also click on stops 
along the route for pop-ups detailing information on (a) bunching level—the percentage of bus trips that 
are considered as bunching; (b) stop-skipping—frequency and trip IDs that skip stops; and (c) crowding 
level—average bus fullness level.
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FIGURE 3.
Bus bunching, stop-skipping, and crowding level views
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Travel Time

The length and variability of a trip’s travel time are two of the major considerations when deciding whether to 
make a trip via public transit or automobile. Also, transit agencies and researchers can use historical travel times 
and their deviations from scheduled ones to assess a system’s ability to provide the service it advertises and 
identify problem areas. Our platform will report the average travel time and two measures of variability: the 
standard deviation of a route’s observed travel times across user-selected times and stops and the 90% travel 
time confidence interval of the distribution of these times (Mazloumi et al. 2009). The platform also produces a 
chart depicting the distribution of the observed travel times for the stops and times in question to illustrate any 
skews or abnormalities associated with the selected travel times. 

On-time Performance

On-time performance is the most widely used transit reliability measure in North America (Sen et al. 2011). Our 
web platform uses the commonly accepted definition of on-time performance, which is simply “the percent of 
schedule deviations that fall within a defined range (e.g., 1 min early to 5 min late)” (National Academies 2013). 
It can be calculated using the bus schedule and actual bus departure time at stops, which are recorded by the 
AVL devices. On-time performance is relatively straightforward and is one of the most useful performance 
metrics for general transit riders since it answers the eternal question: “What are the chances my bus will be 
on time?” The definition of on-time, however, can vary from person to person depending upon the context in 
which the question is asked. To remedy this issue, users can input a chosen time range to define how early or 
late a bus can be before being considered not on-time, for example from one minute early to five minutes late 
(Bates 1986). This flexibility will benefit researchers by allowing them to adjust their definitions of on-time to 
match varying research questions and to allow for interagency comparisons. The query will return a schedule 
deviation distribution bar plot with the deviation mean and standard deviation (most distributions are 
approximately normal with, however, a long tail on the late arrivals) and the percentage indicating the number 
of trips within the defined on-time range. 

Case Studies

Case 1: Bus Bunching in Pittsburgh

The transit data analytics platform is used to analyze AVL-APC data to investigate the geo-temporal occurrence 
of bus bunching in Pittsburgh. This analysis compares the incidence of bunching between two high-ridership 
routes with different operational characteristics. Route P1 is a bus rapid transit (BRT) route that operates on 
a dedicated busway. Route 61C is a “key corridor” route that operates in mixed traffic connecting several of 
Pittsburgh’s business districts, including the central business district (CBD) and Oakland. The key corridor is 
served by Routes 61A, 61B, 61C, and 61D, which operate along the same path within the key corridor (the CBD 
to Squirrel Hill), and then branch to serve separate destinations. Bus bunching is frequently observed along the 
key corridor served by Routes 61. Table 2 summarizes several operational aspects of key corridor Route 61C, the 
combined routes of 61A, 61B, 61C, and 61D, and BRT Route P1.
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Component/Route 61C 61A, 61B, 61C, 
61D (Combined) P1 (BRT)

Average Weekday Ridership 6,201 20,193 12,850

Peak Weekday Headway 15 min 4 min 4 min

Average On-time Performance 64% 67% 80%

TABLE 2.
Operational Aspects of Studied Bus Routes

Using AVL-APC data available through the analytics platform, hourly heat maps of bunching incidence for 
weekdays in the period of March 1 – March 31, 2016, were created for both Route 61C outbound and Route 
P1 outbound for the period from 12:00 to 10:00 p.m. By studying the time period from 12:00 to 10:00 p.m., 
we include the noon-peak hours, off-peak hours, and evening-peak hours for the two outbound (i.e., from 
downtown to suburbs) routes. A side-by-side comparison of bunching incidence is shown in Figures 4 and 5. 
To control for the difference in headway between 61C (15-minute peak and off-peak daytime headway) and P1 
(4-minute peak headway, 6-minute off-peak daytime headway), Route 61C reports observations as bunched 
if operating with less than two-thirds of the scheduled headway (namely < 10 minutes), and Route P1 reports 
observations as bunched if operating with less than one-third of the scheduled headway (namely < 1 minute 20 
seconds in peak hours, or < 2 minutes in off-peak hours).
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FIGURE 4.
Hourly heat maps (12-5 p.m.) of bunching incidence in March 2016 for Routes 61C and P1 
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FIGURE 5.
Hourly heat maps (5-10 p.m.) of bunching incidence in March 2016 for Routes 61C and P1 
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The heat maps in Figures 4 and 5 show that key corridor Route 61C exhibits significant bunching throughout 
the afternoons. BRT Route P1, by contrast, shows significant bunching only during the 5:00–6:00 p.m. peak and 
little bunching otherwise. Figure 6 is an alternative chart representation of the incidence of bunching (for Route 
61ABCD combined and Route P1). Each row corresponds to 1,000 feet of distance traveled along the route, with 
neighborhood boundaries marked on the vertical axis. The color of each cell represents the portion of trips that 
are bunched (pure red = incidence > 80%). Observations summarized in Figure 6 are characterized as bunched 
when observed within 820.2 feet (i.e., 250 meters) of another bus operating the same route and direction. 
The chart view of the incidence of bunching suggests that, regardless of time of day (vertical red bands), some 
locations (horizontal red bands) are more likely to have bunched trips than others. Route 61 exhibits significant 
bunching in the downtown, Oakland, and South Squirrel Hill geographies. Route P1, also as shown in Figures 
4 and 5, exhibits much less bunching than Route 61 (observations of bunching for Route P1 in Downtown and 
Swissvale are attributable to buses in close proximity at the beginning and ends of their routes, not headway 
deviation caused by unscheduled delays).

FIGURE 6.
Chart view of bunching incidence for Routes 61 and P1
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FIGURE 6. (CONT.)
Chart view of bunching incidence for Routes 61 and P1

Comparing the key corridor Route 61C with BRT Route P1 separates the headway deviation caused by peak 
passenger demand (observed between 5:00 and 6:00 p.m.) from other causes of delay (traffic congestion, signal 
delay). The frequency of bunching along Route 61C outside of peak demand suggests that solutions to bunching 
in the key corridor will need to address the delay associated with operating in mixed traffic. Everything else 
being equal, intuition would suggest that a route with higher ridership and lower headway would exhibit 
more bunching. However, comparison between Routes 61C and P1 shows the opposite: Route 61C, as a route 
with lower ridership and higher headway compared to Route P1, exhibits more severe bunching. The reason is 
because Route 61C operates in mixed traffic, whereas P1 operates as BRT along a dedicated busway. In addition 
to passenger delay experienced by both routes, Route 61C experiences signal delay, interference with on-street 
traffic, and lower maximum operating speeds. 

What can be done to reduce bunching and increase the reliability of transit on Routes 61? Prior research 
suggests that adding service will not increase reliability, while worsening resource utilization. When bunching 
is prevalent, excess waiting time is not resolved by adding additional vehicles, as additional vehicles simply 
aggregate to platoons (Gershenson and Pineda 2009). Possible solutions to reduce the frequency of bunching 
for key corridor bus routes such as Route 61 in Pittsburgh include transit signal priority (National Academies 
2013), scheduling recovery time between inbound and outbound trips (delay at the point of origin tends to 
persist across a route), incorporating operator experience and temporal variation in passenger demand to 
minimize bunching (Strathman et al. 2003), or the creation of a new BRT corridor connecting downtown (CBD), 
university districts (Oakland), and large residential districts (Squirrel Hill).
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Case 2: Schedule Change Analysis for Route 61B

To further demonstrate the practical usage of this data analytics platform, we perform a comprehensive 
analysis on Route 61B inbound, which travels from Braddock through Oakland to downtown Pittsburgh. Route 
61B is a representative bus route serving demand along a busy corridor and carrying a substantial number of 
riders. Passenger waiting time, bunching level, crowding level, schedule deviation, and stop-skipping under 
two different bus schedules are studied and compared. Suggestions for scheduling Route 61B inbound are also 
proposed to improve its service quality based on the performance metrics results. 

On November 22, 2015, PAAC published a new version of GTFS in which the schedule of bus Route 61B inbound 
changed substantially. Specifically, the total number of trips remains the same, but the departure time of all trips 
on weekdays at the initial bus stop is scheduled seven to nine minutes early. We use the AVL-APC data from 
Route 61B inbound for two weeks before the change and two weeks after the change to examine the influence 
of the schedule change on that route on weekdays. The AVL-APC data used before the schedule change cover 
November 9–20, 2015 (except weekends), and the data after the schedule change cover November 30–December 
11, 2015 (except weekends). These four weeks span from November to December, so we can almost rule out the 
seasonal effects on bus performance, such as the average temperature and daytime length. We do not use the 
data between November 23 and 29 because it is believed that commuters need time to get used to the new 
bus schedule and that span covers the Thanksgiving holiday. Since Route 61B inbound travels from suburb to 
downtown, we mainly study the morning peak hours from 6:00 to 9:00 a.m. In this time period, the trip frequency 
is about one trip every 15 minutes. 

The average passenger waiting time and average absolute schedule deviation for two different bus schedules of 
Route 61B inbound are presented in Figure 7. Waiting time is calculated using the non-uniform passenger arrival 
distribution. The average is taken on nine main bus stops along the route that are selected as the “time-point” 
stops. The results show the new schedule leads to approximately 20% less average absolute schedule deviation, 
and approximately 10% less average passenger waiting time. Given that the trip frequency is the same, 15 
minutes within the queried time range, before and after the schedule change, this schedule change effectively 
improves both waiting time and on-time performance.

FIGURE 7.
Average passenger waiting time and average schedule deviation for two different bus schedules of Route 61B
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The heat maps of bus crowding level, bus bunching level (bus trip percentage considered as bunching), and the 
proportion of stop-skipping trips with full load for two different bus schedules of Route 61B inbound are also 
presented in Figure 8, with the identical color legend for the same function. According to the heat map results, 
PAAC could easily identify the spatial distribution of overcrowded bus, bus bunching, and stop-skipping. For 
example, Figure 8(b) shows the bunching problem was relieved after the schedule change, especially in the 
areas close to downtown, which also matches the result of decreased schedule deviation in Figure 7. However, 
the bunching still takes place sometimes near the Carnegie Mellon University (CMU), University of Pittsburgh 
(UPitt), and downtown Pittsburgh, which requires additional operational strategies to alleviate. Figure 8(a) 
and (c) also reveal a higher crowding level of bus trips in morning peak hours after the schedule change, and 
hence more stop-skipping occurrences, especially in the CMU-UPitt area and the residential areas ahead of the 
universities along the bus route (such as Squirrel Hill). PAAC may need to replace the buses running in morning 
peak hours with larger capacity models or decrease the trip headways if possible.

FIGURE 8.
Heat maps of (a) bus crowding level, (b) bus bunching level, and (c) proportion of stop-skipping trips with full load 
before (left) and after (right) schedule change
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Conclusions
This paper introduces a novel transit data analytics platform for assessing the service quality of public transit 
systems based on APC and AVL systems. The platform offers a systematic way for users and decision makers 
to examine the system performance from many aspects of service quality, including passenger waiting time, 
stop-skipping frequency, bus bunching level, bus travel time, on-time performance, and bus fullness. We 
archive the AVL-APC data from September 2012 to March 2016 in a database and develop a user-friendly web 
application that allows users to interactively query bus performance metrics for any bus routes, bus stops, 
or bus trips for any time period. After data processing and computation, the query results are presented 
to users in a convenient and easy way to understand the system performance in high spatiotemporal 
resolutions.

In the case studies, we use the platform to discover the causes, patterns, and possible solutions to the bus 
bunching problem along several representative routes in Pittsburgh. It is found that bus bunching incidence 
is heavily impacted by both the location on route as well as the time of day, and the bunching problem is 
more severe for bus routes operating in mixed traffic than for BRT, which operates along a dedicated busway. 
Possible solutions to reduce the frequency of bunching for key corridor bus routes, such as Route 61 in 
Pittsburgh, include transit signal priority, scheduling recovery time between inbound and outbound trips, or 
the creation of a new bus rapid transit corridor connecting downtown (CBD), university districts (Oakland), 
and big residential districts (Squirrel Hill). Furthermore, a comprehensive impact analysis of schedule change 
on a representative bus route in Pittsburgh is performed using this analytics platform. Suggestions for 
operation of this route are also proposed to improve its service quality based on the performance metrics 
results before and after the schedule change. 

In future work we plan to focus on three aspects. First, real-time access to AVL-APC data will help identify 
non-recurrent causes of bunching to detect and resolve bunching issues. Currently we only have the archived 
AVL-APC data in the backend of our web platform. In our future work, we hope to incorporate real-time AVL-
APC data into our models to predict and manage bus bunching. Second, each of the current metrics currently 
works independently. We plan to combine all metrics (e.g., stop-skipping, waiting time, and bus bunching) and 
provide a holistic method to evaluate and optimize the transit systems. And third, additional data sources other 
than the AVL-APC data could be incorporated into our models and the platform. Some potential data sources 
include customer satisfaction data as well as demographic, weather, and economic data. These sources could be 
further mined to learn behavioral insights in conjunction with the AVL-APC data.
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