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ABSTRACT

The Human Phenotype Ontology (HPO)––a standard-
ized vocabulary of phenotypic abnormalities asso-
ciated with 7000+ diseases––is used by thousands
of researchers, clinicians, informaticians and elec-
tronic health record systems around the world. Its
detailed descriptions of clinical abnormalities and
computable disease definitions have made HPO the
de facto standard for deep phenotyping in the field
of rare disease. The HPO’s interoperability with other
ontologies has enabled it to be used to improve di-
agnostic accuracy by incorporating model organism
data. It also plays a key role in the popular Exomiser
tool, which identifies potential disease-causing vari-
ants from whole-exome or whole-genome sequenc-
ing data. Since the HPO was first introduced in 2008,
its users have become both more numerous and
more diverse. To meet these emerging needs, the
project has added new content, language transla-
tions, mappings and computational tooling, as well
as integrations with external community data. The
HPO continues to collaborate with clinical adopters
to improve specific areas of the ontology and ex-
tend standardized disease descriptions. The newly
redesigned HPO website (www.human-phenotype-
ontology.org) simplifies browsing terms and explor-
ing clinical features, diseases, and human genes.

INTRODUCTION

A cornerstone of differential diagnostics and translational
research is deep phenotyping: the computational analysis
of detailed, individual clinical abnormalities (1,2). The Hu-
man Phenotype Ontology (HPO) provides the most com-
prehensive resource for computational deep phenotyping
and has become the de facto standard for deep phenotyp-
ing in the field of rare disease––whether for computable
disease definitions, description of clinical abnormalities or
to aid genomic diagnostics. A foundational and integrative
component of the Monarch Initiative (3,4), the HPO has
been adopted internationally by numerous organizations,
both academic and commercial; these include the 100,000
Genomes Project, the NIH Undiagnosed Disease Program
and Network (UDP and UDN), the Undiagnosed Diseases
Network International (UDNI), RD-CONNECT, SOLVE-
RD and many others (5–9). The HPO recently achieved
status as an International Rare Disease Research Consor-
tium (IRDiRC) recognized resource and is in use by the
Global Alliance for Genomics and Health (10) and the as-
sociated Matchmaker Exchange (3,11). Here we describe in-
tegrated HPO resources which we have revised, expanded,
or invented since the previous articles in this series (12,13).

Previously, we reported on a range of algorithms that
had been developed by our group and others to support
phenotype-driven genomic diagnostics (12). Since then, the
HPO has been applied to an increasing range of use cases.
Usage of HPO is now commonplace for the analysis of
clinical whole-exome and genome sequencing (WES/WGS)
data (14–25) as well as for data integration in transla-
tional research and bioinformatics (16,26–39). A phenotype
risk score based on a mapping of electronic health-record
(EHR)-derived billing codes to HPO terms allowed high-

http://www.human-phenotype-ontology.org
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throughput ascertainment of EHR phenotypes such that
cases and controls of Mendelian diseases could be distin-
guished and the pathogenicity of variants associated with
Mendelian diseases was characterized (40). In another set-
ting, EHR narratives were explored to extract HPO terms
by natural language processing and the resulting terms were
successfully used to prioritize causal genes for Mendelian
diseases in pediatric patients (41). Additionally, an increas-
ing number of commercial applications are using HPO
terms. For instance, the SimulConsult Genome-Phenome
Analyzer uses HPO terms to tag findings. This is currently
being used to document findings entered by the users with
codes in exported reports, and the codes will also be used
to identify findings in the electronic health record as in-
puts to be considered in diagnosis (42). A key feature of the
HPO is its logical interoperability with basic research on-
tologies such as the Mammalian Phenotype Ontology (MP)
(43), Uberon (44) and the Cell Ontology (45). This inter-
operability is leveraged within the Exomiser tool (described
below). The International Mouse Phenotyping Consortium
(IMPC) recently identified 360 new candidate molecular
causes of human Mendelian diseases (46); these included
an inherited heart disease ‘Arrhythmogenic Right Ventricu-
lar Dysplasia’ that affects the heart muscle, and ‘Charcot-
Marie-Tooth disease’, which is characterized by nerve dam-
age leading to muscle weakness and an awkward way of
walking. This discovery was made possible because (i) the
human diseases had been defined in terms of their com-
ponent HPO phenotypes; (ii) the mouse phenotypes were
mapped to the MP; and (iii) Monarch’s phenotype com-
parison algorithm (47) is designed to traverse HP and MP
with ease. Similarly, the Rat Genome Database (RGD) an-
notates genes, QTLs and strains for phenotype using pheno-
type terms from the Mammalian Phenotype (MP) Ontology
(43); more recently, RGD has converted their annotations of
human phenotypes from MP to HPO (48).

HPO has been adopted as the phenotypic annota-
tion ontology of choice for many large-scale rare dis-
ease genome-phenome databases and analysis tools includ-
ing the RD-Connect Genome-Phenome Analysis Platform
(GPAP) (49), the Broad Center for Mendelian Genomics
and its SEQR platform, the rare disease arm of the UK
100,000 Genomes Project, the NIH Undiagnosed Diseases
Program and the Undiagnosed Diseases Network Interna-
tional (UDNI). This is creating a vast body of clinically
validated, linked genome-phenome data that not only as-
sists in the diagnosis of the subjects themselves but can
be exploited for further developments of the ontology and
associated diagnostic algorithms. For example, the RD-
Connect GPAP mandates submission of HPO-coded phe-
notypic data through the PhenoTips tool, using custom-
designed disease-specific data collection forms on top of the
‘enter-what-you-see’ HPO entry box. The average number
of phenotypic annotations per index case is eight (with an
average of six observed and two excluded features) and the
GPAP now contains linked genome-phenome datasets on
5000 individuals. Through data submission from European
Reference Networks in the Horizon 2020-funded Solve-RD
project this number will increase to >20 000 datasets in
the coming 2–3 years. The GPAP allows the user to filter
variants using predefined gene panels for specific groups

of pathologies or alternatively gene lists created ‘on the
fly’ based on the HPO terms provided with the individual
case. These major databases are not only contributing to
gene discovery and diagnosis of the unsolved patients in-
cluded in the platforms (10) but also providing source data
for many computational developments. Within the Solve-
RD project (https://solve-rd.eu), RD-Connect worked with
Orphanet and HPO to implement the first version of the
Phenopackets standard (https://github.com/phenopackets)
and export ∼600 cases in Phenopacket format, including
clinical phenotype (HPO annotation), clinical diagnosis
(ORDO), molecular diagnosis (OMIM) and gene name of
genes identified as causal or candidate. The export included
both solved cases and unsolved cases that contain sufficient
information for phenotypic algorithm evaluation. In addi-
tion, work is ongoing that will enable assessment of the cor-
relation between the level, detail and quantity of phenotypic
annotation and the solve rate, which will provide clinicians
with better advice on the level of detail to provide in their
annotations and feed back into improvements to algorithms
such as those implemented in Exomiser.

Ontologies should be responsive to the community (43).
In the past 2 years we have made improvements to the on-
tology based on input from clinicians and researchers, as
is evidenced by term requests that have been submitted via
our GitHub tracker (12). There, we provide a template that
guides users through the process of providing information
including the suggested term label, definitions and com-
ments, synonyms, references and diseases that should be an-
notated to the new term. Periodically we also organize col-
laborative workshops with clinical groups that would like to
revise and extend entire areas of the HPO. Five such work-
shops have been conducted since the 2017 HPO update (Ta-
ble 1).

The HPO project additionally has a long-term collabora-
tion with Orphanet in the framework HIPBI-RD (harmo-
nizing phenomics information for a better interoperability
in the rare disease field), a project that was funded by the E-
Rare 3 ERA-NET program (50) and will be continued in the
framework of the SOLVE-RD project, as well as in the Eu-
ropean Joint Co-fund Programme for Rare Diseases (EJP-
RD). This project has resulted in more than 60 000 HPO
annotations for diseases in the Orphanet database and over
one thousand new term requests and other improvements
of existing HPO terms. Phenotype-disease annotations in-
clude the frequency of occurrence of a phenotype in a dis-
ease (see Table 2), as well as the fact that a phenotype is
part of established diagnostic criteria or is a pathognomonic
sign. These annotations are available for download and can
be consulted in the Orphanet website. Furthermore, this
collaboration has produced the HPO-ORDO Ontological
Module (HOOM in which the HPO and Orphanet Rare
Diseases Ontology can be used together).

LOGICAL ENHANCEMENTS AND INTEROPERABIL-
ITY

The HPO provides textual definitions for ease of use, but
it also has a robust logical representation with OWL-
based logical definitions based on species-neutral ontolo-
gies such as Uberon, the Gene Ontology, the Cell On-

https://solve-rd.eu
https://github.com/phenopackets
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Table 1. Community workshops and collaborations aimed at HPO content expansion and refinement

Organization Location Focus

Undiagnosed Diseases Network (UDN);
Stanford Center for Inherited Cardiovascular
Diseases (SCICD)

Stanford University, CA, USA (March 2017) Cardiology

European Reference Network for Rare Eye
Disease (ERN-EYE)

Mont Sainte-Odile, France (October 2017) Ophthalmology

National Institute of Allergy and Infectious
Disease (NIAID)

National Institutes of Health, Bethesda, MD,
USA (May and July 2018)

Allergy and immunology

Neuro-MIG European network for brain
malformations (www.neuro-mig.org)

St Julians, Malta; Lisbon, Portugal (February
2018; September 2018)

Malformations of cortical development (MCD)

European Society for Immunodeficiencies
(ESID) and the European Reference network
on rare primary immunodeficiency,
autoinflammatory and autoimmune diseases
(ERN-RITA)

Vienna Austria (September 2018) Inborn errors of immunity.

Table 2. The HPO records the frequencies of phenotypic features in three different ways

Frequency categories

Term ID Definition

Obligate HP:0040280 Always present, i.e. in 100% of the cases.
Very
frequent

HP:0040281 Present in 80–99% of the cases.

Frequent HP:0040282 Present in 30–79% of the cases.
Occasional HP:0040283 Present in 5–29% of the cases.
Very rare HP:0040284 Present in 1–4% of the cases.
Excluded HP:0040285 Present in 0% of the cases.
Percentage of persons in which a phenotypic feature is observed
Percentage x% This is used to record frequency of a feature in a disease if the number of probands is

not available, e.g. 42%.
Number of persons in a cohort in whom a phenotypic feature was observed
N of M
notation

n/m This is used to record how many persons with a certain disease were observed to have a
given phenotypic feature represented by an HPO term, e.g. 5/13. This should be used
only if the feature was ruled out in the remaining m-n individuals.

Frequency information can be used by differential diagnostic algorithms such as BOQA (62). If possible, HPO annotations are made with the precise
counts, but percentages or overall frequency categories are used if that is all that is available. The frequency categories are aligned with those of Orphanet.

tology and others. For instance, Delayed patellar ossifica-
tion (HP:0006454) is defined with reference to the PATO
term delayed (PATO:0000502), the Gene Ontology term os-
sification (GO:0001503) and the Uberon term for patella
(UBERON:0002446). The OBO version of the ontology is
a simplified version of the full OWL version that contains
all of the terms as well as their subclass (is-a) relations, but
does not contain the computational logical definitions.
'has part' some

(delayed
and ('inheres in' some

(ossification
and ('occurs in' some patella)))

and ('has modifier' some abnormal))
These logical definitions can be used for quality con-

trol (51), to infer new classifications (is a/subclass relation-
ships) that were not explicitly asserted and for cross-species
phenotype analysis (46). However, this can only work if
compatible sets of definitions are used.

Manually maintaining compatible logical definitions
across large ontologies such as the HPO is error-prone and
may lead to inconsistent description in one ontology and
especially across different phenotype ontologies. Even spe-
cialized branches of the ontology, such as the ones address-
ing morphological abnormalities, can have divergent logi-

cal definitions. Pattern-based ontology development prac-
tices (52,53) are increasingly used to manage the generation
of logical definitions. Rather than encoding logical defini-
tions manually in OWL using an ontology editor, pattern-
based development separates the blueprint of the logi-
cal definition––essentially the definition with placeholder
variables––from the actual definition of the term, which is
usually encoded in the form of a spreadsheet record. Mem-
bers of the Monarch Initiative are contributing to commu-
nity tools for pattern-based development using Dead Sim-
ple Ontology Design Patterns (DOSDP, (52)) and the On-
tology Development Kit (ODK).

To support the use of model organisms to further hu-
man health research, developers of the Mammalian Pheno-
type (MP) ontology (54) have collaborated with the HPO
team to develop compatible logical definitions, but these ef-
forts were restricted to comparison of individual definitions
and resulted in manual changes to the respective ontolo-
gies. Pattern-based development offers a more accurate and
scalable alternative by developing common patterns that
all phenotype ontologies (i.e. all organisms) can refer to
and that can be applied to a whole branch of an ontology
at once. For example, the ‘increasedSize’ pattern defines a
blueprint for a logical definition as follows: “has part’ some
(‘increased size’ and (‘inheres in’ some %s) and (‘qualifier’

http://www.neuro-mig.org
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some ‘abnormal’))’. Using DOSDP in conjunction with the
ODK, any phenotype ontology developer who needs to de-
fine a phenotype describing the increased size of something
(such as an anatomical entity) can now simply commit to
the increasedSize pattern. More than 40 patterns specif-
ically for phenotype ontology development are currently
available in the Uber-Phenotype (UPheno) repository.

The clinical features represented in HPO are connected
via subclass relations. Other relationships between those
classes hold as well, but have not previously been encoded
computationally. For example, phenotype ontologies may
have two separate classes to represent the increase and de-
crease in size of an anatomical entity such as the liver. To
represent such relations, we have added opposite relations
to all terms in HPO using a text and logic-based approach
(see phenopposites GitHub repository under ‘Availability’).

The Monarch Initiative has been a key organizer of a
community effort to use pattern-based ontology develop-
ment to reconcile logical definitions on a large scale across
well-established and emerging phenotype ontologies includ-
ing HPO, MP, and phenotype ontologies for Caenorhabditis
elegans, Xenopus and Drosophila. To that end, we recently
organized a Phenotype Ontology development and recon-
ciliation workshop (Phenotype Ontologies Traversing All
The Organisms: POTATO). At this workshop, more than 40
ontology curators, developers and biomedical experts came
together to learn about our updated tool-chain for pattern-
based development and to discuss discrepancies between
the logical definitions across various phenotype ontologies.
As a result of the meeting, representatives of all the phe-
notypes ontologies have committed to an ongoing collab-
oration to align their respective ontologies by developing
sets of common design patterns and using these to define
terms in their ontologies. The outcome of these community
efforts will be an integrated ecosystem of phenotype ontolo-
gies that can be leveraged in HPO-based clinical diagnostics
and disease mechanism discovery.

DISEASE ANNOTATIONS

The HPO project provides a comprehensive set of com-
putable definitions of rare diseases in the form of anno-
tations which describe the clinical features (HPO terms)
that characterize each disease. Each annotated feature can
have metadata including its typical age of onset and the fre-
quency (for instance, the HPO lists the frequency of Pro-
trusio acetabuli [HP:0003179] in persons with Marfan syn-
drome as 113/146 based on a published clinical study (55)).
Such annotation metadata can be used to improve the ac-
curacy of the HPO-based matching algorithms (56).

Recent updates to our corpus of disease annotations in-
clude a new file format with robust representation of clini-
cal modifiers, as well as migration to the Monarch Merged
Disease Ontology (MONDO), which provides a unified set
of disease terms and definitions with computationally de-
clared equivalencies to resources such as OMIM and Or-
phanet. The annotation data is readily available for compu-
tational use via Monarch’s Biolink API (see resources be-
low). We have also produced a new stand-alone tool to aid
curation of the disease annotations.

Thirty-six new molecular phenotypes have been added
to the HPO. These new terms were identified from
metabolomics data provided by the Metabolomics Core
from the Undiagnosed Disease Network, the Human
Metabolome Database (HMDB) and articles related to
inborn errors of metabolism. The new terms were cu-
rated in a spreadsheet that captured information about
metabolite name, corresponding chemicals and their
identifiers (ChEBI and HMDB), direction of change
(increase/decrease), location of the abnormal metabo-
lite concentration (blood, urine, cerebrospinal fluid),
synonyms, gene/locus association, disease identifiers for
associated diseases (OMIM or MONDO IDs) and key
publication (PubMed IDs). For instance, an increased level
of galactonate in red blood cell (HP:0410063) is associated
with patients with galactosemia (MONDO:0018116; gene:
GALT).

The new Clinical modifier subontology allows more ex-
pressive and precise disease definitions and can also be used
to annotate individual patients. This subontology contains
terms to describe severity, positionality and external fac-
tors that tend to trigger or ameliorate the features of a dis-
ease. The previous Onset subontology has been expanded to
a Clinical course subontology, which additionally contains
terms to describe mortality, progression of disease and the
temporal pattern of features of disease (Figure 1). The fre-
quency of features can be described in one of three methods
(Table 2).

The HPO annotation file format had remained un-
changed since the first publication of the HPO in 2008 (57);
to accommodate the aforementioned new annotation re-
sources, we have updated the annotation file format. This
format has slots to capture clinical modifiers, sex-specific
features of disease and to track the history of biocuration
of terms (Table 3).

A new tool called HPOWorkbench has been developed
to enable browsing through HPO terms and annotations.
It can generate GitHub issues directly and can be used by
collaborators to provide feedback or new suggestions.

EXOMISER UPDATE

Exomiser utilizes the HPO to find potential disease-causing
variants from whole-exome or whole-genome sequencing
data. The last two major updates to the Exomiser software
have focused on decoupling the data updates from the soft-
ware release cycle and enabling analysis of either GRCh37
or GRCh38 genomic samples. We updated the variant data
sources to also include allele frequency data from gnomAD,
TOPMed and the UK10 datasets and added annotations
for variant pathogenicity from ClinVar. We also added the
ability for users to specify fine-grained maximum allele fre-
quencies to be used for prioritizing alleles under different
inheritance models and assigning these to likely syndromes
based on the phenotype matches. Moreover, the Exomiser
variant data sources have not only been decoupled from the
software release cycle, but also from the phenotype ontolo-
gies and disease annotations. This ensures that we can re-
lease Exomiser with the very latest disease and model organ-
ism annotations and that they can be updated on demand.
These user-facing updates have happened against a back-
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Clinical modifier  
 Aggravated by 
  Aggravated by activity
  Exacerbated by head trauma
                             …
 Ameliorated by 
  Ameliorated by carbohydrate ingestion
  Ameliorated by heat
  Ameliorated by pregnancy
                            …
 Pain characteristic 
  Dull 
  Sharp 
  … 
 Position  
  Laterality 
   Bilateral
   Left
   …
  Spatial pattern 
   Acral
   Axial
   …
 Severity  
  Borderline 
  Mild 
  … 
 Triggered by  
  Triggered by carbohydrate ingestion 
  Triggered by cold
                             . . . 
 Refractory

Clinical course   
 Mortality/Aging  
  Age of death
               . . .
 Onset  
  Infantile onset 
  Childhood onset 
  … 
 Pace of progression  
  Nonprogressive 
  Progressive 
  … 
 Temporal pattern  
  Acute 
  Nocturnal 
  … 

A B

C
OMIM:611762, MONDO:0012724

familial cold autoinflammatory syndrome 2

HP:0001954

has phenotype

onsetmodifier

f=3/3

Episodic Fever

HP:0003593

Infantile Onset
HP:0025206

Triggered by cold

FCAS2

Figure 1. Overview of the clinical modifier (A, left) and clinical course (B, right) subontologies. These subontology terms can be used in combination with
existing HPO terms to qualify and enrich their meaning. (C) A schematic presentation of one HPO annotation for the disease familial cold autoinflam-
matory syndrome 2 (FCAS2). In a publication on this disease, three of three reported patients were found to have episodic fever with infantile (or earlier)
onset that was triggered by exposure to cold (63).

Table 3. New HPO annotation file format

Field Item Required Example

1 Database ID Yes MIM:154700, ORPHA:558 or MONDO:0007947
2 DB Name Yes Achondrogenesis, type IB
3 Qualifier No NOT or empty
4 HPO ID Yes HP:0002487
5 DB Reference Yes OMIM:154700 or PMID:15517394
6 Evidence Yes IEA
7 Onset No HP:0003577
8 Frequency No HP:0003577 or 12/45 or 22%
9 Sex No MALE or FEMALE
10 Modifier No HP:0025257
11 Aspect Yes ‘P’ or ‘C’ or ‘I’ or ‘M’
12 BiocurationBy Yes HPO:skoehler[YYYY-MM-DD]

The file contains 12 tab-separated fields, some of which can be left empty. The ‘Modifier’ and ‘BiocurationBy’ fields can contain multiple items separated
by semicolons. For instance, to indicate that a disease is characterized by a skin rash (HP:0000988) that is Recurrent (HP:0031796) and Triggered by cold
(HP:0025206) one would annotate HP:0031796;HP:0025206 in the Modifier column. Many annotations go through multiple stages of biocuration. In this
case, the individual biocuration events are also added as a semicolon-separated list.
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ground of continued engineering and performance improve-
ments. As a result of the continued development and usage,
the Exomiser also recently received the approval of the In-
ternational Rare Diseases Research Consortium (IRDiRC)
as a recognized resource. We have also been able to build
on HPO being chosen as the terminology for clinical phe-
notype data collection by the UK National Health Service
(NHS) by introducing Exomiser as a key variant prioriti-
zation service for the 100 000 Genomes Project and future
NHS-commissioned service for rare disease genetic testing.
Benchmarking on the solved cases to date shows Exomiser
can identify over 80% of the diagnoses in the top five candi-
dates (unpublished communication from the 100K Genome
project).

SYNONYMS AND TRANSLATIONS

One of the key advantages of ontologies is that semantic
meaning is attached to concepts, rather than to their names.
This enables each entity to have one or more synonyms, as
well as translations into other languages. Multiple groups
have taken advantage of this ability to create synonyms for
HPO concepts for diverse settings, including enabling self-
phenotyping by patients without medical expertise and en-
abling capture of data in diverse languages, with subsequent
international sharing and analysis.

Patients themselves are an eager and untapped source
of information about symptoms and phenotypes, however,
medical terminology is often perplexing to them, making
it difficult to use resources like the HPO. Further, some
phenotypes go unnoticed by the clinician (such as those
only seen at home). To enable patients to use the HPO di-
rectly and to improve collaboration and communication be-
tween patients and their physicians, we have recently added
‘layperson’ synonyms to the entirety of the HPO (58). Ap-
proximately 36% of the HPO terms have at least one layper-
son synonym, 89% of the MONDO diseases annotated to
HPO have at least one HPO annotation with a layperson
synonym and 60% of all disease annotations refer to HPO
terms with lay translations. This coverage suggests that the
layperson HPO would be useful in a diagnostic setting de-
spite incomplete coverage. Efforts are currently underway
to evaluate the diagnostic utility of the layHPO, both syn-
thetically as well as in cohorts of previously diagnosed rare
disease patients.

The Sanford Health Imagenetics program has deployed
an online screening tool for patients to self-report traits,
signs, and symptoms in a questionnaire format that is
mapped to HPO and leverages the layperson synonyms.
This is integrated with the Sanford Imagenetics population-
based genotyping initiative. The Genetic and Rare Dis-
eases Information Center (GARD), a program of the Na-
tional Center for Advancing Translational Sciences Office
of Rare Diseases Research (NCATS-ORDR), provides re-
liable, public-friendly information for over 7000 genetic
and/or rare diseases (59). GARD recently incorporated ta-
bles on the disease webpages that display information from
the HPO including the medical terms for associated symp-
toms and phenotypic abnormalities, the related layperson
synonyms, the frequency of the phenotypic features and
the link to the HPO webpage for the specific term. By dis-

playing the plain-language vocabulary along with the medi-
cal terminology, patients and families become familiar with
the language they are commonly exposed to in the litera-
ture and clinical settings. The public utilizes the HPO medi-
cal terms and layperson synonyms to better understand the
broad spectrum of clinical findings associated with a spe-
cific disease and to search and navigate the GARD web-
site and other resources to retrieve information about mul-
tiple diseases associated with a given phenotype. Inclusion
of the HPO data on the GARD website makes the disease
webpages more robust, educates the rare disease commu-
nity and empowers them to become partners in their medi-
cal care.

The labels, synonyms and textual definitions of the HPO
are also being translated into several languages includ-
ing French, Spanish, Italian, German, Dutch, Portuguese,
Turkish, Japanese, Russian and Chinese; this is critical to
ensure equitable health care and precision public health (See
project homepage below). Tools such as PhenoTips (60) al-
ready make use of the existing Spanish and French trans-
lations, together with a user interface in those languages
to enable HPO-based phenotyping for clinicians who are
not fluent in English. In the Spanish Undiagnosed Disease
Network clinicians phenotype patients in Spanish, and then
share with the Matchmaker Exchange (13). One further ex-
ample is the Life Languages project in Western Australia
(WA), which is using the HPO to translate medical and
biological terms into partner Aboriginal Australian Lan-
guages. This is being integrated with HPO term extraction
from 3D facial images as part of the Pilbara Faces program
in remote WA.

NEW HPO WEBSITE

The HPO website application has been redesigned and re-
built from the ground up to be both more responsive and
more intuitive (Figure 2). Made possible by the new single-
page app approach and lightweight microservices, the new
application loads faster and supports intuitive search capa-
bilities, such as auto-complete and term highlight features,
to allow the user to efficiently browse through the ontol-
ogy data and corresponding hierarchy. The HPO website
uses the ProtVista tool to display genes and genetic vari-
ants associated with Mendelian diseases (61). The redesign
also sets the stage for better integration with monarchinitia-
tive.org to facilitate exploration of similar genes and pheno-
types across species.

HPO FOR MEDICAL EDUCATION

Clinical features in HPO are also connected to disease
nosologies (medical classification schemes) such as ORDO,
OMIM, and MONDO. These relationships are typically
curated from literature; however, they can also be crowd-
sourced. Phenotate (http://phenotate.org), which was de-
veloped in the framework of the HIPBI-RD project, is a
web-based tool that allows undergraduate or medical stu-
dents, as well as medical residents, to annotate OMIM and
ORDO diseases with HPO phenotypes by completing class-
room exercises. Students are encouraged to refer to the lit-
erature to select the correct symptoms and enter the refer-

http://phenotate.org
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Figure 2. Screenshot of the new HPO Website application. Users can search for HPO terms, annotated diseases, or disease-associated genes using an
autocomplete widget. The hierarchical structure of the ontology is shown in an abbreviated fashion for clarity’s sake. Only the direct parent and child
terms of the currently displayed term are shown in the hierarchy. The total number of decedent terms is shown for each term in the hierarchy to help users
decide which parts of the ontology to explore.

ences used into their annotations. In a second-year under-
graduate molecular genetics class (MGY200) at the Uni-
versity of Toronto, 78 students used Phenotate to annotate
three genetic diseases: Marfan syndrome (MFS), Friedre-
ich’s ataxia (FRDA) and congenital myasthenic syndrome.
Overall, students collectively provided more comprehen-
sive annotations than clinicians who also submitted anno-
tations. Phenotate is an open platform, available for use by
anyone teaching genetics. By crowdsourcing annotations,
Phenotate hopes to improve the HPO and related nosolo-
gies, while also offering students an educational tool that
supplements their coursework.

CONCLUSION

In the 2 years since the previous Nucleic Acids Research
database article (12), the HPO has continued to grow in
both reach and scope. The HPO has put a strong emphasis
on working with interested members of the community to
revise and extend individual areas of the HPO, and we wel-
come interactions with more groups in any area of medicine.
The HPO project has begun to develop resources for layper-
sons to interact with the HPO and software designed for
patients. Annotations and improved representation of phe-

notypes in the HPO have been greatly improved for several
areas of medicine thanks to community interactions.
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51. Köhler,S., Bauer,S., Mungall,C.J., Carletti,G., Smith,C.L.,
Schofield,P., Gkoutos,G.V. and Robinson,P.N. (2011) Improving
ontologies by automatic reasoning and evaluation of logical
definitions. BMC Bioinformatics, 12, 418.

52. Osumi-Sutherland,D., Courtot,M., Balhoff,J.P. and Mungall,C.
(2017) Dead simple OWL design patterns. J. Biomed. Semantics, 8, 18.

53. Xiang,Z., Zheng,J., Lin,Y. and He,Y. (2015) Ontorat: automatic
generation of new ontology terms, annotations, and axioms based on
ontology design patterns. J. Biomed. Semantics, 6, 4.

54. Smith,C.L. and Eppig,J.T. (2012) The Mammalian Phenotype
Ontology as a unifying standard for experimental and
high-throughput phenotyping data. Mamm. Genome, 23, 653–668.

55. Chun,K.J., Yang,J.H., Jang,S.Y., Lee,S.H., Gwag,H.B., Chung,T.-Y.,
Huh,J., Ki,C.S., Sung,K., Choi,S.H. et al. (2015) Analysis of
protrusio acetabuli using a CT-based diagnostic method in korean
patients with marfan syndrome: Prevalence and association with
other manifestations. J. Korean Med. Sci., 30, 1260–1265.
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